mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge pull request #1391 from explosion/feature/multilabel-textcat
💫 Fix multi-label support for text classification
This commit is contained in:
commit
e79fc41ff8
|
@ -21,7 +21,6 @@ import thinc.neural._classes.layernorm
|
|||
thinc.neural._classes.layernorm.set_compat_six_eight(False)
|
||||
|
||||
|
||||
|
||||
def train_textcat(tokenizer, textcat,
|
||||
train_texts, train_cats, dev_texts, dev_cats,
|
||||
n_iter=20):
|
||||
|
@ -57,18 +56,20 @@ def evaluate(tokenizer, textcat, texts, cats):
|
|||
for i, doc in enumerate(textcat.pipe(docs)):
|
||||
gold = cats[i]
|
||||
for label, score in doc.cats.items():
|
||||
if score >= 0.5 and label in gold:
|
||||
if label not in gold:
|
||||
continue
|
||||
if score >= 0.5 and gold[label] >= 0.5:
|
||||
tp += 1.
|
||||
elif score >= 0.5 and label not in gold:
|
||||
elif score >= 0.5 and gold[label] < 0.5:
|
||||
fp += 1.
|
||||
elif score < 0.5 and label not in gold:
|
||||
elif score < 0.5 and gold[label] < 0.5:
|
||||
tn += 1
|
||||
if score < 0.5 and label in gold:
|
||||
elif score < 0.5 and gold[label] >= 0.5:
|
||||
fn += 1
|
||||
precis = tp / (tp + fp)
|
||||
recall = tp / (tp + fn)
|
||||
fscore = 2 * (precis * recall) / (precis + recall)
|
||||
return {'textcat_p': precis, 'textcat_r': recall, 'textcat_f': fscore}
|
||||
return {'textcat_p': precis, 'textcat_r': recall, 'textcat_f': fscore}
|
||||
|
||||
|
||||
def load_data(limit=0):
|
||||
|
@ -80,7 +81,7 @@ def load_data(limit=0):
|
|||
train_data = train_data[-limit:]
|
||||
|
||||
texts, labels = zip(*train_data)
|
||||
cats = [(['POSITIVE'] if y else []) for y in labels]
|
||||
cats = [{'POSITIVE': bool(y)} for y in labels]
|
||||
|
||||
split = int(len(train_data) * 0.8)
|
||||
|
||||
|
@ -97,7 +98,7 @@ def main(model_loc=None):
|
|||
textcat = TextCategorizer(tokenizer.vocab, labels=['POSITIVE'])
|
||||
|
||||
print("Load IMDB data")
|
||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=1000)
|
||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=2000)
|
||||
|
||||
print("Itn.\tLoss\tP\tR\tF")
|
||||
progress = '{i:d} {loss:.3f} {textcat_p:.3f} {textcat_r:.3f} {textcat_f:.3f}'
|
||||
|
|
|
@ -387,7 +387,7 @@ cdef class GoldParse:
|
|||
|
||||
def __init__(self, doc, annot_tuples=None, words=None, tags=None, heads=None,
|
||||
deps=None, entities=None, make_projective=False,
|
||||
cats=tuple()):
|
||||
cats=None):
|
||||
"""Create a GoldParse.
|
||||
|
||||
doc (Doc): The document the annotations refer to.
|
||||
|
@ -398,12 +398,15 @@ cdef class GoldParse:
|
|||
entities (iterable): A sequence of named entity annotations, either as
|
||||
BILUO tag strings, or as `(start_char, end_char, label)` tuples,
|
||||
representing the entity positions.
|
||||
cats (iterable): A sequence of labels for text classification. Each
|
||||
label may be a string or an int, or a `(start_char, end_char, label)`
|
||||
cats (dict): Labels for text classification. Each key in the dictionary
|
||||
may be a string or an int, or a `(start_char, end_char, label)`
|
||||
tuple, indicating that the label is applied to only part of the
|
||||
document (usually a sentence). Unlike entity annotations, label
|
||||
annotations can overlap, i.e. a single word can be covered by
|
||||
multiple labelled spans.
|
||||
multiple labelled spans. The TextCategorizer component expects
|
||||
true examples of a label to have the value 1.0, and negative examples
|
||||
of a label to have the value 0.0. Labels not in the dictionary are
|
||||
treated as missing -- the gradient for those labels will be zero.
|
||||
RETURNS (GoldParse): The newly constructed object.
|
||||
"""
|
||||
if words is None:
|
||||
|
@ -434,7 +437,7 @@ cdef class GoldParse:
|
|||
self.c.sent_start = <int*>self.mem.alloc(len(doc), sizeof(int))
|
||||
self.c.ner = <Transition*>self.mem.alloc(len(doc), sizeof(Transition))
|
||||
|
||||
self.cats = list(cats)
|
||||
self.cats = {} if cats is None else dict(cats)
|
||||
self.words = [None] * len(doc)
|
||||
self.tags = [None] * len(doc)
|
||||
self.heads = [None] * len(doc)
|
||||
|
|
|
@ -551,7 +551,6 @@ class NeuralLabeller(NeuralTagger):
|
|||
label = self.make_label(i, words, tags, heads, deps, ents)
|
||||
if label is not None and label not in self.labels:
|
||||
self.labels[label] = len(self.labels)
|
||||
print(len(self.labels))
|
||||
if self.model is True:
|
||||
token_vector_width = util.env_opt('token_vector_width')
|
||||
self.model = chain(
|
||||
|
@ -720,11 +719,17 @@ class TextCategorizer(BaseThincComponent):
|
|||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
truths = numpy.zeros((len(golds), len(self.labels)), dtype='f')
|
||||
not_missing = numpy.ones((len(golds), len(self.labels)), dtype='f')
|
||||
for i, gold in enumerate(golds):
|
||||
for j, label in enumerate(self.labels):
|
||||
truths[i, j] = label in gold.cats
|
||||
if label in gold.cats:
|
||||
truths[i, j] = gold.cats[label]
|
||||
else:
|
||||
not_missing[i, j] = 0.
|
||||
truths = self.model.ops.asarray(truths)
|
||||
not_missing = self.model.ops.asarray(not_missing)
|
||||
d_scores = (scores-truths) / scores.shape[0]
|
||||
d_scores *= not_missing
|
||||
mean_square_error = ((scores-truths)**2).sum(axis=1).mean()
|
||||
return mean_square_error, d_scores
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user