mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Add Lemmatizer and simplify related components (#5848)
* Add Lemmatizer and simplify related components * Add `Lemmatizer` pipe with `lookup` and `rule` modes using the `Lookups` tables. * Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma) * Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer, or morph rules) * Remove lemmatizer from `Vocab` * Adjust many many tests Differences: * No default lookup lemmas * No special treatment of TAG in `from_array` and similar required * Easier to modify labels in a `Tagger` * No extra strings added from morphology / tag map * Fix test * Initial fix for Lemmatizer config/serialization * Adjust init test to be more generic * Adjust init test to force empty Lookups * Add simple cache to rule-based lemmatizer * Convert language-specific lemmatizers Convert language-specific lemmatizers to component lemmatizers. Remove previous lemmatizer class. * Fix French and Polish lemmatizers * Remove outdated UPOS conversions * Update Russian lemmatizer init in tests * Add minimal init/run tests for custom lemmatizers * Add option to overwrite existing lemmas * Update mode setting, lookup loading, and caching * Make `mode` an immutable property * Only enforce strict `load_lookups` for known supported modes * Move caching into individual `_lemmatize` methods * Implement strict when lang is not found in lookups * Fix tables/lookups in make_lemmatizer * Reallow provided lookups and allow for stricter checks * Add lookups asset to all Lemmatizer pipe tests * Rename lookups in lemmatizer init test * Clean up merge * Refactor lookup table loading * Add helper from `load_lemmatizer_lookups` that loads required and optional lookups tables based on settings provided by a config. Additional slight refactor of lookups: * Add `Lookups.set_table` to set a table from a provided `Table` * Reorder class definitions to be able to specify type as `Table` * Move registry assets into test methods * Refactor lookups tables config Use class methods within `Lemmatizer` to provide the config for particular modes and to load the lookups from a config. * Add pipe and score to lemmatizer * Simplify Tagger.score * Add missing import * Clean up imports and auto-format * Remove unused kwarg * Tidy up and auto-format * Update docstrings for Lemmatizer Update docstrings for Lemmatizer. Additionally modify `is_base_form` API to take `Token` instead of individual features. * Update docstrings * Remove tag map values from Tagger.add_label * Update API docs * Fix relative link in Lemmatizer API docs
This commit is contained in:
parent
1d01d89b79
commit
e962784531
|
@ -19,9 +19,6 @@ after_pipeline_creation = null
|
|||
[nlp.tokenizer]
|
||||
@tokenizers = "spacy.Tokenizer.v1"
|
||||
|
||||
[nlp.lemmatizer]
|
||||
@lemmatizers = "spacy.Lemmatizer.v1"
|
||||
|
||||
[components]
|
||||
|
||||
# Training hyper-parameters and additional features.
|
||||
|
|
|
@ -510,7 +510,7 @@ class Errors:
|
|||
E952 = ("The section '{name}' is not a valid section in the provided config.")
|
||||
E953 = ("Mismatched IDs received by the Tok2Vec listener: {id1} vs. {id2}")
|
||||
E954 = ("The Tok2Vec listener did not receive a valid input.")
|
||||
E955 = ("Can't find table '{table}' for language '{lang}' in spacy-lookups-data.")
|
||||
E955 = ("Can't find table(s) '{table}' for language '{lang}' in spacy-lookups-data.")
|
||||
E956 = ("Can't find component '{name}' in [components] block in the config. "
|
||||
"Available components: {opts}")
|
||||
E957 = ("Writing directly to Language.factories isn't needed anymore in "
|
||||
|
@ -633,6 +633,11 @@ class Errors:
|
|||
E1001 = ("Target token outside of matched span for match with tokens "
|
||||
"'{span}' and offset '{index}' matched by patterns '{patterns}'.")
|
||||
E1002 = ("Span index out of range.")
|
||||
E1003 = ("Unsupported lemmatizer mode '{mode}'.")
|
||||
E1004 = ("Missing lemmatizer table(s) found for lemmatizer mode '{mode}'. "
|
||||
"Required tables '{tables}', found '{found}'. If you are not "
|
||||
"providing custom lookups, make sure you have the package "
|
||||
"spacy-lookups-data installed.")
|
||||
|
||||
|
||||
@add_codes
|
||||
|
|
|
@ -1,38 +1,17 @@
|
|||
from typing import Callable
|
||||
from thinc.api import Config
|
||||
from typing import Optional
|
||||
from thinc.api import Model
|
||||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .lemmatizer import GreekLemmatizer
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
|
||||
from ...lookups import load_lookups
|
||||
from .lemmatizer import GreekLemmatizer
|
||||
from ...lookups import Lookups
|
||||
from ...language import Language
|
||||
from ...util import registry
|
||||
|
||||
|
||||
DEFAULT_CONFIG = """
|
||||
[nlp]
|
||||
|
||||
[nlp.lemmatizer]
|
||||
@lemmatizers = "spacy.el.GreekLemmatizer"
|
||||
"""
|
||||
|
||||
|
||||
@registry.lemmatizers("spacy.el.GreekLemmatizer")
|
||||
def create_lemmatizer() -> Callable[[Language], GreekLemmatizer]:
|
||||
tables = ["lemma_index", "lemma_exc", "lemma_rules"]
|
||||
|
||||
def lemmatizer_factory(nlp: Language) -> GreekLemmatizer:
|
||||
lookups = load_lookups(lang=nlp.lang, tables=tables)
|
||||
return GreekLemmatizer(lookups=lookups)
|
||||
|
||||
return lemmatizer_factory
|
||||
|
||||
|
||||
class GreekDefaults(Language.Defaults):
|
||||
config = Config().from_str(DEFAULT_CONFIG)
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
prefixes = TOKENIZER_PREFIXES
|
||||
suffixes = TOKENIZER_SUFFIXES
|
||||
|
@ -47,4 +26,22 @@ class Greek(Language):
|
|||
Defaults = GreekDefaults
|
||||
|
||||
|
||||
@Greek.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
lookups: Optional[Lookups],
|
||||
):
|
||||
lookups = GreekLemmatizer.load_lookups(nlp.lang, mode, lookups)
|
||||
return GreekLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
|
||||
|
||||
|
||||
__all__ = ["Greek"]
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from typing import Dict, List
|
||||
from typing import List
|
||||
|
||||
from ...lemmatizer import Lemmatizer
|
||||
from ...pipeline import Lemmatizer
|
||||
from ...tokens import Token
|
||||
|
||||
|
||||
class GreekLemmatizer(Lemmatizer):
|
||||
|
@ -14,13 +15,27 @@ class GreekLemmatizer(Lemmatizer):
|
|||
not applicable for Greek language.
|
||||
"""
|
||||
|
||||
def lemmatize(
|
||||
self,
|
||||
string: str,
|
||||
index: Dict[str, List[str]],
|
||||
exceptions: Dict[str, Dict[str, List[str]]],
|
||||
rules: Dict[str, List[List[str]]],
|
||||
) -> List[str]:
|
||||
def rule_lemmatize(self, token: Token) -> List[str]:
|
||||
"""Lemmatize using a rule-based approach.
|
||||
|
||||
token (Token): The token to lemmatize.
|
||||
RETURNS (list): The available lemmas for the string.
|
||||
"""
|
||||
cache_key = (token.lower, token.pos)
|
||||
if cache_key in self.cache:
|
||||
return self.cache[cache_key]
|
||||
string = token.text
|
||||
univ_pos = token.pos_.lower()
|
||||
if univ_pos in ("", "eol", "space"):
|
||||
return [string.lower()]
|
||||
|
||||
index_table = self.lookups.get_table("lemma_index", {})
|
||||
exc_table = self.lookups.get_table("lemma_exc", {})
|
||||
rules_table = self.lookups.get_table("lemma_rules", {})
|
||||
index = index_table.get(univ_pos, {})
|
||||
exceptions = exc_table.get(univ_pos, {})
|
||||
rules = rules_table.get(univ_pos, {})
|
||||
|
||||
string = string.lower()
|
||||
forms = []
|
||||
if string in index:
|
||||
|
@ -42,4 +57,6 @@ class GreekLemmatizer(Lemmatizer):
|
|||
forms.extend(oov_forms)
|
||||
if not forms:
|
||||
forms.append(string)
|
||||
return list(set(forms))
|
||||
forms = list(set(forms))
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
|
|
|
@ -1,39 +1,18 @@
|
|||
from typing import Callable
|
||||
from thinc.api import Config
|
||||
from typing import Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .lemmatizer import is_base_form
|
||||
from .punctuation import TOKENIZER_INFIXES
|
||||
from .lemmatizer import EnglishLemmatizer
|
||||
from ...language import Language
|
||||
from ...lemmatizer import Lemmatizer
|
||||
from ...lookups import load_lookups
|
||||
from ...util import registry
|
||||
|
||||
|
||||
DEFAULT_CONFIG = """
|
||||
[nlp]
|
||||
|
||||
[nlp.lemmatizer]
|
||||
@lemmatizers = "spacy.en.EnglishLemmatizer"
|
||||
"""
|
||||
|
||||
|
||||
@registry.lemmatizers("spacy.en.EnglishLemmatizer")
|
||||
def create_lemmatizer() -> Callable[[Language], Lemmatizer]:
|
||||
tables = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"]
|
||||
|
||||
def lemmatizer_factory(nlp: Language) -> Lemmatizer:
|
||||
lookups = load_lookups(lang=nlp.lang, tables=tables)
|
||||
return Lemmatizer(lookups=lookups, is_base_form=is_base_form)
|
||||
|
||||
return lemmatizer_factory
|
||||
from ...lookups import Lookups
|
||||
|
||||
|
||||
class EnglishDefaults(Language.Defaults):
|
||||
config = Config().from_str(DEFAULT_CONFIG)
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
infixes = TOKENIZER_INFIXES
|
||||
lex_attr_getters = LEX_ATTRS
|
||||
|
@ -46,4 +25,22 @@ class English(Language):
|
|||
Defaults = EnglishDefaults
|
||||
|
||||
|
||||
@English.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
lookups: Optional[Lookups],
|
||||
):
|
||||
lookups = EnglishLemmatizer.load_lookups(nlp.lang, mode, lookups)
|
||||
return EnglishLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
|
||||
|
||||
|
||||
__all__ = ["English"]
|
||||
|
|
|
@ -1,36 +1,43 @@
|
|||
from typing import Optional
|
||||
|
||||
from ...pipeline import Lemmatizer
|
||||
from ...tokens import Token
|
||||
|
||||
def is_base_form(univ_pos: str, morphology: Optional[dict] = None) -> bool:
|
||||
"""
|
||||
Check whether we're dealing with an uninflected paradigm, so we can
|
||||
avoid lemmatization entirely.
|
||||
|
||||
univ_pos (unicode / int): The token's universal part-of-speech tag.
|
||||
morphology (dict): The token's morphological features following the
|
||||
Universal Dependencies scheme.
|
||||
class EnglishLemmatizer(Lemmatizer):
|
||||
"""English lemmatizer. Only overrides is_base_form.
|
||||
"""
|
||||
if morphology is None:
|
||||
morphology = {}
|
||||
if univ_pos == "noun" and morphology.get("Number") == "sing":
|
||||
return True
|
||||
elif univ_pos == "verb" and morphology.get("VerbForm") == "inf":
|
||||
return True
|
||||
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
|
||||
# morphology
|
||||
elif univ_pos == "verb" and (
|
||||
morphology.get("VerbForm") == "fin"
|
||||
and morphology.get("Tense") == "pres"
|
||||
and morphology.get("Number") is None
|
||||
):
|
||||
return True
|
||||
elif univ_pos == "adj" and morphology.get("Degree") == "pos":
|
||||
return True
|
||||
elif morphology.get("VerbForm") == "inf":
|
||||
return True
|
||||
elif morphology.get("VerbForm") == "none":
|
||||
return True
|
||||
elif morphology.get("Degree") == "pos":
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def is_base_form(self, token: Token) -> bool:
|
||||
"""
|
||||
Check whether we're dealing with an uninflected paradigm, so we can
|
||||
avoid lemmatization entirely.
|
||||
|
||||
univ_pos (unicode / int): The token's universal part-of-speech tag.
|
||||
morphology (dict): The token's morphological features following the
|
||||
Universal Dependencies scheme.
|
||||
"""
|
||||
univ_pos = token.pos_.lower()
|
||||
morphology = token.morph.to_dict()
|
||||
if univ_pos == "noun" and morphology.get("Number") == "Sing":
|
||||
return True
|
||||
elif univ_pos == "verb" and morphology.get("VerbForm") == "Inf":
|
||||
return True
|
||||
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
|
||||
# morphology
|
||||
elif univ_pos == "verb" and (
|
||||
morphology.get("VerbForm") == "Fin"
|
||||
and morphology.get("Tense") == "Pres"
|
||||
and morphology.get("Number") is None
|
||||
):
|
||||
return True
|
||||
elif univ_pos == "adj" and morphology.get("Degree") == "Pos":
|
||||
return True
|
||||
elif morphology.get("VerbForm") == "Inf":
|
||||
return True
|
||||
elif morphology.get("VerbForm") == "None":
|
||||
return True
|
||||
elif morphology.get("Degree") == "Pos":
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from typing import Callable
|
||||
from thinc.api import Config
|
||||
from typing import Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS, TOKEN_MATCH
|
||||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
|
||||
|
@ -7,33 +8,12 @@ from .punctuation import TOKENIZER_SUFFIXES
|
|||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .lemmatizer import FrenchLemmatizer, is_base_form
|
||||
from ...lookups import load_lookups
|
||||
from .lemmatizer import FrenchLemmatizer
|
||||
from ...lookups import Lookups
|
||||
from ...language import Language
|
||||
from ...util import registry
|
||||
|
||||
|
||||
DEFAULT_CONFIG = """
|
||||
[nlp]
|
||||
|
||||
[nlp.lemmatizer]
|
||||
@lemmatizers = "spacy.fr.FrenchLemmatizer"
|
||||
"""
|
||||
|
||||
|
||||
@registry.lemmatizers("spacy.fr.FrenchLemmatizer")
|
||||
def create_lemmatizer() -> Callable[[Language], FrenchLemmatizer]:
|
||||
tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
|
||||
|
||||
def lemmatizer_factory(nlp: Language) -> FrenchLemmatizer:
|
||||
lookups = load_lookups(lang=nlp.lang, tables=tables)
|
||||
return FrenchLemmatizer(lookups=lookups, is_base_form=is_base_form)
|
||||
|
||||
return lemmatizer_factory
|
||||
|
||||
|
||||
class FrenchDefaults(Language.Defaults):
|
||||
config = Config().from_str(DEFAULT_CONFIG)
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
prefixes = TOKENIZER_PREFIXES
|
||||
infixes = TOKENIZER_INFIXES
|
||||
|
@ -49,4 +29,22 @@ class French(Language):
|
|||
Defaults = FrenchDefaults
|
||||
|
||||
|
||||
@French.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
lookups: Optional[Lookups],
|
||||
):
|
||||
lookups = FrenchLemmatizer.load_lookups(nlp.lang, mode, lookups)
|
||||
return FrenchLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
|
||||
|
||||
|
||||
__all__ = ["French"]
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
from typing import Optional, List, Dict
|
||||
from typing import List, Dict
|
||||
|
||||
from ...lemmatizer import Lemmatizer
|
||||
from ...symbols import POS, NOUN, VERB, ADJ, ADV, PRON, DET, AUX, PUNCT, ADP
|
||||
from ...symbols import SCONJ, CCONJ
|
||||
from ...pipeline import Lemmatizer
|
||||
from ...tokens import Token
|
||||
|
||||
|
||||
class FrenchLemmatizer(Lemmatizer):
|
||||
|
@ -15,65 +14,55 @@ class FrenchLemmatizer(Lemmatizer):
|
|||
the lookup table.
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self, string: str, univ_pos: str, morphology: Optional[dict] = None
|
||||
) -> List[str]:
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
if "lemma_rules" not in self.lookups:
|
||||
return [lookup_table.get(string, string)]
|
||||
if univ_pos in (NOUN, "NOUN", "noun"):
|
||||
univ_pos = "noun"
|
||||
elif univ_pos in (VERB, "VERB", "verb"):
|
||||
univ_pos = "verb"
|
||||
elif univ_pos in (ADJ, "ADJ", "adj"):
|
||||
univ_pos = "adj"
|
||||
elif univ_pos in (ADP, "ADP", "adp"):
|
||||
univ_pos = "adp"
|
||||
elif univ_pos in (ADV, "ADV", "adv"):
|
||||
univ_pos = "adv"
|
||||
elif univ_pos in (AUX, "AUX", "aux"):
|
||||
univ_pos = "aux"
|
||||
elif univ_pos in (CCONJ, "CCONJ", "cconj"):
|
||||
univ_pos = "cconj"
|
||||
elif univ_pos in (DET, "DET", "det"):
|
||||
univ_pos = "det"
|
||||
elif univ_pos in (PRON, "PRON", "pron"):
|
||||
univ_pos = "pron"
|
||||
elif univ_pos in (PUNCT, "PUNCT", "punct"):
|
||||
univ_pos = "punct"
|
||||
elif univ_pos in (SCONJ, "SCONJ", "sconj"):
|
||||
univ_pos = "sconj"
|
||||
@classmethod
|
||||
def get_lookups_config(cls, mode: str) -> Dict:
|
||||
if mode == "rule":
|
||||
return {
|
||||
"required_tables": [
|
||||
"lemma_lookup",
|
||||
"lemma_rules",
|
||||
"lemma_exc",
|
||||
"lemma_index",
|
||||
],
|
||||
"optional_tables": [],
|
||||
}
|
||||
else:
|
||||
return [self.lookup(string)]
|
||||
return super().get_lookups_config(mode)
|
||||
|
||||
def rule_lemmatize(self, token: Token) -> List[str]:
|
||||
cache_key = (token.orth, token.pos)
|
||||
if cache_key in self.cache:
|
||||
return self.cache[cache_key]
|
||||
string = token.text
|
||||
univ_pos = token.pos_.lower()
|
||||
if univ_pos in ("", "eol", "space"):
|
||||
return [string.lower()]
|
||||
elif "lemma_rules" not in self.lookups or univ_pos not in (
|
||||
"noun",
|
||||
"verb",
|
||||
"adj",
|
||||
"adp",
|
||||
"adv",
|
||||
"aux",
|
||||
"cconj",
|
||||
"det",
|
||||
"pron",
|
||||
"punct",
|
||||
"sconj",
|
||||
):
|
||||
return self.lookup_lemmatize(token)
|
||||
index_table = self.lookups.get_table("lemma_index", {})
|
||||
exc_table = self.lookups.get_table("lemma_exc", {})
|
||||
rules_table = self.lookups.get_table("lemma_rules", {})
|
||||
lemmas = self.lemmatize(
|
||||
string,
|
||||
index_table.get(univ_pos, {}),
|
||||
exc_table.get(univ_pos, {}),
|
||||
rules_table.get(univ_pos, []),
|
||||
)
|
||||
return lemmas
|
||||
|
||||
def lookup(self, string: str, orth: Optional[int] = None) -> str:
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
if orth is not None and orth in lookup_table:
|
||||
return lookup_table[orth][0]
|
||||
return string
|
||||
|
||||
def lemmatize(
|
||||
self,
|
||||
string: str,
|
||||
index: Dict[str, List[str]],
|
||||
exceptions: Dict[str, Dict[str, List[str]]],
|
||||
rules: Dict[str, List[List[str]]],
|
||||
) -> List[str]:
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
index = index_table.get(univ_pos, {})
|
||||
exceptions = exc_table.get(univ_pos, {})
|
||||
rules = rules_table.get(univ_pos, [])
|
||||
string = string.lower()
|
||||
forms = []
|
||||
if string in index:
|
||||
forms.append(string)
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
forms.extend(exceptions.get(string, []))
|
||||
oov_forms = []
|
||||
|
@ -90,45 +79,9 @@ class FrenchLemmatizer(Lemmatizer):
|
|||
if not forms:
|
||||
forms.extend(oov_forms)
|
||||
if not forms and string in lookup_table.keys():
|
||||
forms.append(lookup_table[string][0])
|
||||
forms.append(self.lookup_lemmatize(token)[0])
|
||||
if not forms:
|
||||
forms.append(string)
|
||||
return list(set(forms))
|
||||
|
||||
|
||||
def is_base_form(univ_pos: str, morphology: Optional[dict] = None) -> bool:
|
||||
"""
|
||||
Check whether we're dealing with an uninflected paradigm, so we can
|
||||
avoid lemmatization entirely.
|
||||
"""
|
||||
morphology = {} if morphology is None else morphology
|
||||
others = [
|
||||
key
|
||||
for key in morphology
|
||||
if key not in (POS, "Number", "POS", "VerbForm", "Tense")
|
||||
]
|
||||
if univ_pos == "noun" and morphology.get("Number") == "sing":
|
||||
return True
|
||||
elif univ_pos == "verb" and morphology.get("VerbForm") == "inf":
|
||||
return True
|
||||
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
|
||||
# morphology
|
||||
elif univ_pos == "verb" and (
|
||||
morphology.get("VerbForm") == "fin"
|
||||
and morphology.get("Tense") == "pres"
|
||||
and morphology.get("Number") is None
|
||||
and not others
|
||||
):
|
||||
return True
|
||||
elif univ_pos == "adj" and morphology.get("Degree") == "pos":
|
||||
return True
|
||||
elif "VerbForm=inf" in morphology:
|
||||
return True
|
||||
elif "VerbForm=none" in morphology:
|
||||
return True
|
||||
elif "Number=sing" in morphology:
|
||||
return True
|
||||
elif "Degree=pos" in morphology:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
forms = list(set(forms))
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
|
|
|
@ -38,8 +38,6 @@ def create_tokenizer(split_mode: Optional[str] = None):
|
|||
class JapaneseTokenizer(DummyTokenizer):
|
||||
def __init__(self, nlp: Language, split_mode: Optional[str] = None) -> None:
|
||||
self.vocab = nlp.vocab
|
||||
# TODO: is this the right way to do it?
|
||||
self.vocab.morphology.load_tag_map(TAG_MAP)
|
||||
self.split_mode = split_mode
|
||||
self.tokenizer = try_sudachi_import(self.split_mode)
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ from .lex_attrs import LEX_ATTRS
|
|||
from ...language import Language
|
||||
from ...tokens import Doc
|
||||
from ...compat import copy_reg
|
||||
from ...symbols import POS
|
||||
from ...util import DummyTokenizer, registry
|
||||
|
||||
|
||||
|
@ -29,8 +30,6 @@ def create_tokenizer():
|
|||
class KoreanTokenizer(DummyTokenizer):
|
||||
def __init__(self, nlp: Optional[Language] = None):
|
||||
self.vocab = nlp.vocab
|
||||
# TODO: is this the right way to do it?
|
||||
self.vocab.morphology.load_tag_map(TAG_MAP)
|
||||
MeCab = try_mecab_import()
|
||||
self.mecab_tokenizer = MeCab("-F%f[0],%f[7]")
|
||||
|
||||
|
@ -44,6 +43,7 @@ class KoreanTokenizer(DummyTokenizer):
|
|||
for token, dtoken in zip(doc, dtokens):
|
||||
first_tag, sep, eomi_tags = dtoken["tag"].partition("+")
|
||||
token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미)
|
||||
token.pos = TAG_MAP[token.tag_][POS]
|
||||
token.lemma_ = dtoken["lemma"]
|
||||
doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens]
|
||||
return doc
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from typing import Callable
|
||||
from thinc.api import Config
|
||||
from typing import Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
|
@ -7,32 +8,11 @@ from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
|||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
|
||||
from .punctuation import TOKENIZER_SUFFIXES
|
||||
from .lemmatizer import DutchLemmatizer
|
||||
from ...lookups import load_lookups
|
||||
from ...lookups import Lookups
|
||||
from ...language import Language
|
||||
from ...util import registry
|
||||
|
||||
|
||||
DEFAULT_CONFIG = """
|
||||
[nlp]
|
||||
|
||||
[nlp.lemmatizer]
|
||||
@lemmatizers = "spacy.nl.DutchLemmatizer"
|
||||
"""
|
||||
|
||||
|
||||
@registry.lemmatizers("spacy.nl.DutchLemmatizer")
|
||||
def create_lemmatizer() -> Callable[[Language], DutchLemmatizer]:
|
||||
tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
|
||||
|
||||
def lemmatizer_factory(nlp: Language) -> DutchLemmatizer:
|
||||
lookups = load_lookups(lang=nlp.lang, tables=tables)
|
||||
return DutchLemmatizer(lookups=lookups)
|
||||
|
||||
return lemmatizer_factory
|
||||
|
||||
|
||||
class DutchDefaults(Language.Defaults):
|
||||
config = Config().from_str(DEFAULT_CONFIG)
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
prefixes = TOKENIZER_PREFIXES
|
||||
infixes = TOKENIZER_INFIXES
|
||||
|
@ -46,4 +26,22 @@ class Dutch(Language):
|
|||
Defaults = DutchDefaults
|
||||
|
||||
|
||||
@Dutch.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
lookups: Optional[Lookups],
|
||||
):
|
||||
lookups = DutchLemmatizer.load_lookups(nlp.lang, mode, lookups)
|
||||
return DutchLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
|
||||
|
||||
|
||||
__all__ = ["Dutch"]
|
||||
|
|
|
@ -1,44 +1,34 @@
|
|||
from typing import Optional, List, Dict, Tuple
|
||||
from typing import List, Dict
|
||||
|
||||
from ...lemmatizer import Lemmatizer
|
||||
from ...symbols import NOUN, VERB, ADJ, NUM, DET, PRON, ADP, AUX, ADV
|
||||
from ...pipeline import Lemmatizer
|
||||
from ...tokens import Token
|
||||
|
||||
|
||||
class DutchLemmatizer(Lemmatizer):
|
||||
# Note: CGN does not distinguish AUX verbs, so we treat AUX as VERB.
|
||||
univ_pos_name_variants = {
|
||||
NOUN: "noun",
|
||||
"NOUN": "noun",
|
||||
"noun": "noun",
|
||||
VERB: "verb",
|
||||
"VERB": "verb",
|
||||
"verb": "verb",
|
||||
AUX: "verb",
|
||||
"AUX": "verb",
|
||||
"aux": "verb",
|
||||
ADJ: "adj",
|
||||
"ADJ": "adj",
|
||||
"adj": "adj",
|
||||
ADV: "adv",
|
||||
"ADV": "adv",
|
||||
"adv": "adv",
|
||||
PRON: "pron",
|
||||
"PRON": "pron",
|
||||
"pron": "pron",
|
||||
DET: "det",
|
||||
"DET": "det",
|
||||
"det": "det",
|
||||
ADP: "adp",
|
||||
"ADP": "adp",
|
||||
"adp": "adp",
|
||||
NUM: "num",
|
||||
"NUM": "num",
|
||||
"num": "num",
|
||||
}
|
||||
@classmethod
|
||||
def get_lookups_config(cls, mode: str) -> Dict:
|
||||
if mode == "rule":
|
||||
return {
|
||||
"required_tables": [
|
||||
"lemma_lookup",
|
||||
"lemma_rules",
|
||||
"lemma_exc",
|
||||
"lemma_index",
|
||||
],
|
||||
}
|
||||
else:
|
||||
return super().get_lookups_config(mode)
|
||||
|
||||
def __call__(
|
||||
self, string: str, univ_pos: str, morphology: Optional[dict] = None
|
||||
) -> List[str]:
|
||||
def lookup_lemmatize(self, token: Token) -> List[str]:
|
||||
"""Overrides parent method so that a lowercased version of the string
|
||||
is used to search the lookup table. This is necessary because our
|
||||
lookup table consists entirely of lowercase keys."""
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
string = token.text.lower()
|
||||
return [lookup_table.get(string, string)]
|
||||
|
||||
# Note: CGN does not distinguish AUX verbs, so we treat AUX as VERB.
|
||||
def rule_lemmatize(self, token: Token) -> List[str]:
|
||||
# Difference 1: self.rules is assumed to be non-None, so no
|
||||
# 'is None' check required.
|
||||
# String lowercased from the get-go. All lemmatization results in
|
||||
|
@ -46,74 +36,61 @@ class DutchLemmatizer(Lemmatizer):
|
|||
# any problems, and it keeps the exceptions indexes small. If this
|
||||
# creates problems for proper nouns, we can introduce a check for
|
||||
# univ_pos == "PROPN".
|
||||
string = string.lower()
|
||||
try:
|
||||
univ_pos = self.univ_pos_name_variants[univ_pos]
|
||||
except KeyError:
|
||||
# Because PROPN not in self.univ_pos_name_variants, proper names
|
||||
# are not lemmatized. They are lowercased, however.
|
||||
return [string]
|
||||
# if string in self.lemma_index.get(univ_pos)
|
||||
cache_key = (token.lower, token.pos)
|
||||
if cache_key in self.cache:
|
||||
return self.cache[cache_key]
|
||||
string = token.text
|
||||
univ_pos = token.pos_.lower()
|
||||
if univ_pos in ("", "eol", "space"):
|
||||
forms = [string.lower()]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
|
||||
index_table = self.lookups.get_table("lemma_index", {})
|
||||
exc_table = self.lookups.get_table("lemma_exc", {})
|
||||
rules_table = self.lookups.get_table("lemma_rules", {})
|
||||
index = index_table.get(univ_pos, {})
|
||||
exceptions = exc_table.get(univ_pos, {})
|
||||
rules = rules_table.get(univ_pos, {})
|
||||
|
||||
string = string.lower()
|
||||
if univ_pos not in (
|
||||
"noun",
|
||||
"verb",
|
||||
"aux",
|
||||
"adj",
|
||||
"adv",
|
||||
"pron",
|
||||
"det",
|
||||
"adp",
|
||||
"num",
|
||||
):
|
||||
forms = [string]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
lemma_index = index_table.get(univ_pos, {})
|
||||
# string is already lemma
|
||||
if string in lemma_index:
|
||||
return [string]
|
||||
forms = [string]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
exc_table = self.lookups.get_table("lemma_exc", {})
|
||||
exceptions = exc_table.get(univ_pos, {})
|
||||
# string is irregular token contained in exceptions index.
|
||||
try:
|
||||
lemma = exceptions[string]
|
||||
return [lemma[0]]
|
||||
forms = [exceptions[string][0]]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
except KeyError:
|
||||
pass
|
||||
# string corresponds to key in lookup table
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
looked_up_lemma = lookup_table.get(string)
|
||||
if looked_up_lemma and looked_up_lemma in lemma_index:
|
||||
return [looked_up_lemma]
|
||||
forms = [looked_up_lemma]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
rules_table = self.lookups.get_table("lemma_rules", {})
|
||||
forms, is_known = self.lemmatize(
|
||||
string, lemma_index, exceptions, rules_table.get(univ_pos, [])
|
||||
)
|
||||
# Back-off through remaining return value candidates.
|
||||
if forms:
|
||||
if is_known:
|
||||
return forms
|
||||
else:
|
||||
for form in forms:
|
||||
if form in exceptions:
|
||||
return [form]
|
||||
if looked_up_lemma:
|
||||
return [looked_up_lemma]
|
||||
else:
|
||||
return forms
|
||||
elif looked_up_lemma:
|
||||
return [looked_up_lemma]
|
||||
else:
|
||||
return [string]
|
||||
|
||||
# Overrides parent method so that a lowercased version of the string is
|
||||
# used to search the lookup table. This is necessary because our lookup
|
||||
# table consists entirely of lowercase keys.
|
||||
def lookup(self, string: str, orth: Optional[int] = None) -> str:
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
string = string.lower()
|
||||
if orth is not None:
|
||||
return lookup_table.get(orth, string)
|
||||
else:
|
||||
return lookup_table.get(string, string)
|
||||
|
||||
# Reimplemented to focus more on application of suffix rules and to return
|
||||
# as early as possible.
|
||||
def lemmatize(
|
||||
self,
|
||||
string: str,
|
||||
index: Dict[str, List[str]],
|
||||
exceptions: Dict[str, Dict[str, List[str]]],
|
||||
rules: Dict[str, List[List[str]]],
|
||||
) -> Tuple[List[str], bool]:
|
||||
# returns (forms, is_known: bool)
|
||||
oov_forms = []
|
||||
for old, new in rules:
|
||||
if string.endswith(old):
|
||||
|
@ -121,7 +98,31 @@ class DutchLemmatizer(Lemmatizer):
|
|||
if not form:
|
||||
pass
|
||||
elif form in index:
|
||||
return [form], True # True = Is known (is lemma)
|
||||
forms = [form]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
else:
|
||||
oov_forms.append(form)
|
||||
return list(set(oov_forms)), False
|
||||
forms = list(set(oov_forms))
|
||||
# Back-off through remaining return value candidates.
|
||||
if forms:
|
||||
for form in forms:
|
||||
if form in exceptions:
|
||||
forms = [form]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
if looked_up_lemma:
|
||||
forms = [looked_up_lemma]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
else:
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
elif looked_up_lemma:
|
||||
forms = [looked_up_lemma]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
else:
|
||||
forms = [string]
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from typing import Callable
|
||||
from thinc.api import Config
|
||||
from typing import Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
|
||||
from .punctuation import TOKENIZER_SUFFIXES
|
||||
|
@ -7,42 +8,16 @@ from .stop_words import STOP_WORDS
|
|||
from .lex_attrs import LEX_ATTRS
|
||||
from .lemmatizer import PolishLemmatizer
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ...lookups import load_lookups
|
||||
from ...lookups import Lookups
|
||||
from ...language import Language
|
||||
from ...util import registry
|
||||
|
||||
|
||||
DEFAULT_CONFIG = """
|
||||
[nlp]
|
||||
|
||||
[nlp.lemmatizer]
|
||||
@lemmatizers = "spacy.pl.PolishLemmatizer"
|
||||
"""
|
||||
|
||||
TOKENIZER_EXCEPTIONS = {
|
||||
exc: val for exc, val in BASE_EXCEPTIONS.items() if not exc.endswith(".")
|
||||
}
|
||||
|
||||
|
||||
@registry.lemmatizers("spacy.pl.PolishLemmatizer")
|
||||
def create_lemmatizer() -> Callable[[Language], PolishLemmatizer]:
|
||||
# fmt: off
|
||||
tables = [
|
||||
"lemma_lookup_adj", "lemma_lookup_adp", "lemma_lookup_adv",
|
||||
"lemma_lookup_aux", "lemma_lookup_noun", "lemma_lookup_num",
|
||||
"lemma_lookup_part", "lemma_lookup_pron", "lemma_lookup_verb"
|
||||
]
|
||||
# fmt: on
|
||||
|
||||
def lemmatizer_factory(nlp: Language) -> PolishLemmatizer:
|
||||
lookups = load_lookups(lang=nlp.lang, tables=tables)
|
||||
return PolishLemmatizer(lookups=lookups)
|
||||
|
||||
return lemmatizer_factory
|
||||
|
||||
|
||||
class PolishDefaults(Language.Defaults):
|
||||
config = Config().from_str(DEFAULT_CONFIG)
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
prefixes = TOKENIZER_PREFIXES
|
||||
infixes = TOKENIZER_INFIXES
|
||||
|
@ -56,4 +31,22 @@ class Polish(Language):
|
|||
Defaults = PolishDefaults
|
||||
|
||||
|
||||
@Polish.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "lookup", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
lookups: Optional[Lookups],
|
||||
):
|
||||
lookups = PolishLemmatizer.load_lookups(nlp.lang, mode, lookups)
|
||||
return PolishLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
|
||||
|
||||
|
||||
__all__ = ["Polish"]
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import Optional, List, Dict
|
||||
from typing import List, Dict
|
||||
|
||||
from ...lemmatizer import Lemmatizer
|
||||
from ...parts_of_speech import NAMES
|
||||
from ...pipeline import Lemmatizer
|
||||
from ...tokens import Token
|
||||
|
||||
|
||||
class PolishLemmatizer(Lemmatizer):
|
||||
|
@ -9,12 +9,30 @@ class PolishLemmatizer(Lemmatizer):
|
|||
# dictionary (morfeusz.sgjp.pl/en) by Institute of Computer Science PAS.
|
||||
# It utilizes some prefix based improvements for verb and adjectives
|
||||
# lemmatization, as well as case-sensitive lemmatization for nouns.
|
||||
def __call__(
|
||||
self, string: str, univ_pos: str, morphology: Optional[dict] = None
|
||||
) -> List[str]:
|
||||
if isinstance(univ_pos, int):
|
||||
univ_pos = NAMES.get(univ_pos, "X")
|
||||
univ_pos = univ_pos.upper()
|
||||
|
||||
@classmethod
|
||||
def get_lookups_config(cls, mode: str) -> Dict:
|
||||
if mode == "lookup":
|
||||
return {
|
||||
"required_tables": [
|
||||
"lemma_lookup_adj",
|
||||
"lemma_lookup_adp",
|
||||
"lemma_lookup_adv",
|
||||
"lemma_lookup_aux",
|
||||
"lemma_lookup_noun",
|
||||
"lemma_lookup_num",
|
||||
"lemma_lookup_part",
|
||||
"lemma_lookup_pron",
|
||||
"lemma_lookup_verb",
|
||||
]
|
||||
}
|
||||
else:
|
||||
return super().get_lookups_config(mode)
|
||||
|
||||
def lookup_lemmatize(self, token: Token) -> List[str]:
|
||||
string = token.text
|
||||
univ_pos = token.pos_
|
||||
morphology = token.morph.to_dict()
|
||||
lookup_pos = univ_pos.lower()
|
||||
if univ_pos == "PROPN":
|
||||
lookup_pos = "noun"
|
||||
|
@ -71,15 +89,3 @@ class PolishLemmatizer(Lemmatizer):
|
|||
return [lookup_table[string]]
|
||||
return [string.lower()]
|
||||
return [lookup_table.get(string, string)]
|
||||
|
||||
def lookup(self, string: str, orth: Optional[int] = None) -> str:
|
||||
return string.lower()
|
||||
|
||||
def lemmatize(
|
||||
self,
|
||||
string: str,
|
||||
index: Dict[str, List[str]],
|
||||
exceptions: Dict[str, Dict[str, List[str]]],
|
||||
rules: Dict[str, List[List[str]]],
|
||||
) -> List[str]:
|
||||
raise NotImplementedError
|
||||
|
|
|
@ -1,32 +1,16 @@
|
|||
from typing import Callable
|
||||
from thinc.api import Config
|
||||
from typing import Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .lemmatizer import RussianLemmatizer
|
||||
from ...util import registry
|
||||
from ...language import Language
|
||||
|
||||
|
||||
DEFAULT_CONFIG = """
|
||||
[nlp]
|
||||
|
||||
[nlp.lemmatizer]
|
||||
@lemmatizers = "spacy.ru.RussianLemmatizer"
|
||||
"""
|
||||
|
||||
|
||||
@registry.lemmatizers("spacy.ru.RussianLemmatizer")
|
||||
def create_lemmatizer() -> Callable[[Language], RussianLemmatizer]:
|
||||
def lemmatizer_factory(nlp: Language) -> RussianLemmatizer:
|
||||
return RussianLemmatizer()
|
||||
|
||||
return lemmatizer_factory
|
||||
from ...lookups import Lookups
|
||||
|
||||
|
||||
class RussianDefaults(Language.Defaults):
|
||||
config = Config().from_str(DEFAULT_CONFIG)
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
lex_attr_getters = LEX_ATTRS
|
||||
stop_words = STOP_WORDS
|
||||
|
@ -37,4 +21,21 @@ class Russian(Language):
|
|||
Defaults = RussianDefaults
|
||||
|
||||
|
||||
@Russian.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "pymorphy2", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
lookups: Optional[Lookups],
|
||||
):
|
||||
return RussianLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
|
||||
|
||||
|
||||
__all__ = ["Russian"]
|
||||
|
|
|
@ -1,8 +1,12 @@
|
|||
from typing import Optional, Tuple, Dict, List
|
||||
from typing import Optional, List, Dict, Tuple
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from ...symbols import ADJ, DET, NOUN, NUM, PRON, PROPN, PUNCT, VERB, POS
|
||||
from ...lemmatizer import Lemmatizer
|
||||
from ...lookups import Lookups
|
||||
from ...pipeline import Lemmatizer
|
||||
from ...symbols import POS
|
||||
from ...tokens import Token
|
||||
from ...vocab import Vocab
|
||||
|
||||
|
||||
PUNCT_RULES = {"«": '"', "»": '"'}
|
||||
|
@ -11,8 +15,17 @@ PUNCT_RULES = {"«": '"', "»": '"'}
|
|||
class RussianLemmatizer(Lemmatizer):
|
||||
_morph = None
|
||||
|
||||
def __init__(self, lookups: Optional[Lookups] = None) -> None:
|
||||
super(RussianLemmatizer, self).__init__(lookups)
|
||||
def __init__(
|
||||
self,
|
||||
vocab: Vocab,
|
||||
model: Optional[Model],
|
||||
name: str = "lemmatizer",
|
||||
*,
|
||||
mode: str = "pymorphy2",
|
||||
lookups: Optional[Lookups] = None,
|
||||
) -> None:
|
||||
super().__init__(vocab, model, name, mode=mode, lookups=lookups)
|
||||
|
||||
try:
|
||||
from pymorphy2 import MorphAnalyzer
|
||||
except ImportError:
|
||||
|
@ -25,10 +38,10 @@ class RussianLemmatizer(Lemmatizer):
|
|||
if RussianLemmatizer._morph is None:
|
||||
RussianLemmatizer._morph = MorphAnalyzer()
|
||||
|
||||
def __call__(
|
||||
self, string: str, univ_pos: str, morphology: Optional[dict] = None
|
||||
) -> List[str]:
|
||||
univ_pos = self.normalize_univ_pos(univ_pos)
|
||||
def pymorphy2_lemmatize(self, token: Token) -> List[str]:
|
||||
string = token.text
|
||||
univ_pos = token.pos_
|
||||
morphology = token.morph.to_dict()
|
||||
if univ_pos == "PUNCT":
|
||||
return [PUNCT_RULES.get(string, string)]
|
||||
if univ_pos not in ("ADJ", "DET", "NOUN", "NUM", "PRON", "PROPN", "VERB"):
|
||||
|
@ -81,25 +94,8 @@ class RussianLemmatizer(Lemmatizer):
|
|||
return [string.lower()]
|
||||
return list(set([analysis.normal_form for analysis in filtered_analyses]))
|
||||
|
||||
@staticmethod
|
||||
def normalize_univ_pos(univ_pos: str) -> Optional[str]:
|
||||
if isinstance(univ_pos, str):
|
||||
return univ_pos.upper()
|
||||
symbols_to_str = {
|
||||
ADJ: "ADJ",
|
||||
DET: "DET",
|
||||
NOUN: "NOUN",
|
||||
NUM: "NUM",
|
||||
PRON: "PRON",
|
||||
PROPN: "PROPN",
|
||||
PUNCT: "PUNCT",
|
||||
VERB: "VERB",
|
||||
}
|
||||
if univ_pos in symbols_to_str:
|
||||
return symbols_to_str[univ_pos]
|
||||
return None
|
||||
|
||||
def lookup(self, string: str, orth: Optional[int] = None) -> str:
|
||||
def lookup_lemmatize(self, token: Token) -> List[str]:
|
||||
string = token.text
|
||||
analyses = self._morph.parse(string)
|
||||
if len(analyses) == 1:
|
||||
return analyses[0].normal_form
|
||||
|
|
|
@ -1,32 +1,16 @@
|
|||
from typing import Callable
|
||||
from thinc.api import Config
|
||||
from typing import Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from ...util import registry
|
||||
from ...language import Language
|
||||
from .lemmatizer import UkrainianLemmatizer
|
||||
|
||||
|
||||
DEFAULT_CONFIG = """
|
||||
[nlp]
|
||||
|
||||
[nlp.lemmatizer]
|
||||
@lemmatizers = "spacy.uk.UkrainianLemmatizer"
|
||||
"""
|
||||
|
||||
|
||||
@registry.lemmatizers("spacy.uk.UkrainianLemmatizer")
|
||||
def create_ukrainian_lemmatizer() -> Callable[[Language], UkrainianLemmatizer]:
|
||||
def lemmatizer_factory(nlp: Language) -> UkrainianLemmatizer:
|
||||
return UkrainianLemmatizer()
|
||||
|
||||
return lemmatizer_factory
|
||||
from ...language import Language
|
||||
from ...lookups import Lookups
|
||||
|
||||
|
||||
class UkrainianDefaults(Language.Defaults):
|
||||
config = Config().from_str(DEFAULT_CONFIG)
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
lex_attr_getters = LEX_ATTRS
|
||||
stop_words = STOP_WORDS
|
||||
|
@ -37,4 +21,21 @@ class Ukrainian(Language):
|
|||
Defaults = UkrainianDefaults
|
||||
|
||||
|
||||
@Ukrainian.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "pymorphy2", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
lookups: Optional[Lookups],
|
||||
):
|
||||
return UkrainianLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
|
||||
|
||||
|
||||
__all__ = ["Ukrainian"]
|
||||
|
|
|
@ -1,187 +1,30 @@
|
|||
from typing import Optional, List, Tuple, Dict
|
||||
from typing import Optional
|
||||
|
||||
from ...symbols import ADJ, DET, NOUN, NUM, PRON, PROPN, PUNCT, VERB, POS
|
||||
from thinc.api import Model
|
||||
|
||||
from ..ru.lemmatizer import RussianLemmatizer
|
||||
from ...lookups import Lookups
|
||||
from ...lemmatizer import Lemmatizer
|
||||
from ...vocab import Vocab
|
||||
|
||||
|
||||
PUNCT_RULES = {"«": '"', "»": '"'}
|
||||
|
||||
|
||||
class UkrainianLemmatizer(Lemmatizer):
|
||||
_morph = None
|
||||
|
||||
def __init__(self, lookups: Optional[Lookups] = None) -> None:
|
||||
super(UkrainianLemmatizer, self).__init__(lookups)
|
||||
class UkrainianLemmatizer(RussianLemmatizer):
|
||||
def __init__(
|
||||
self,
|
||||
vocab: Vocab,
|
||||
model: Optional[Model],
|
||||
name: str = "lemmatizer",
|
||||
*,
|
||||
mode: str = "pymorphy2",
|
||||
lookups: Optional[Lookups] = None,
|
||||
) -> None:
|
||||
super().__init__(vocab, model, name, mode=mode, lookups=lookups)
|
||||
try:
|
||||
from pymorphy2 import MorphAnalyzer
|
||||
|
||||
if UkrainianLemmatizer._morph is None:
|
||||
UkrainianLemmatizer._morph = MorphAnalyzer(lang="uk")
|
||||
except (ImportError, TypeError):
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"The Ukrainian lemmatizer requires the pymorphy2 library and "
|
||||
'dictionaries: try to fix it with "pip uninstall pymorphy2" and'
|
||||
'"pip install git+https://github.com/kmike/pymorphy2.git pymorphy2-dicts-uk"'
|
||||
) from None
|
||||
|
||||
def __call__(
|
||||
self, string: str, univ_pos: str, morphology: Optional[dict] = None
|
||||
) -> List[str]:
|
||||
univ_pos = self.normalize_univ_pos(univ_pos)
|
||||
if univ_pos == "PUNCT":
|
||||
return [PUNCT_RULES.get(string, string)]
|
||||
if univ_pos not in ("ADJ", "DET", "NOUN", "NUM", "PRON", "PROPN", "VERB"):
|
||||
# Skip unchangeable pos
|
||||
return [string.lower()]
|
||||
analyses = self._morph.parse(string)
|
||||
filtered_analyses = []
|
||||
for analysis in analyses:
|
||||
if not analysis.is_known:
|
||||
# Skip suggested parse variant for unknown word for pymorphy
|
||||
continue
|
||||
analysis_pos, _ = oc2ud(str(analysis.tag))
|
||||
if analysis_pos == univ_pos or (
|
||||
analysis_pos in ("NOUN", "PROPN") and univ_pos in ("NOUN", "PROPN")
|
||||
):
|
||||
filtered_analyses.append(analysis)
|
||||
if not len(filtered_analyses):
|
||||
return [string.lower()]
|
||||
if morphology is None or (len(morphology) == 1 and POS in morphology):
|
||||
return list(set([analysis.normal_form for analysis in filtered_analyses]))
|
||||
if univ_pos in ("ADJ", "DET", "NOUN", "PROPN"):
|
||||
features_to_compare = ["Case", "Number", "Gender"]
|
||||
elif univ_pos == "NUM":
|
||||
features_to_compare = ["Case", "Gender"]
|
||||
elif univ_pos == "PRON":
|
||||
features_to_compare = ["Case", "Number", "Gender", "Person"]
|
||||
else: # VERB
|
||||
features_to_compare = [
|
||||
"Aspect",
|
||||
"Gender",
|
||||
"Mood",
|
||||
"Number",
|
||||
"Tense",
|
||||
"VerbForm",
|
||||
"Voice",
|
||||
]
|
||||
analyses, filtered_analyses = filtered_analyses, []
|
||||
for analysis in analyses:
|
||||
_, analysis_morph = oc2ud(str(analysis.tag))
|
||||
for feature in features_to_compare:
|
||||
if (
|
||||
feature in morphology
|
||||
and feature in analysis_morph
|
||||
and morphology[feature].lower() != analysis_morph[feature].lower()
|
||||
):
|
||||
break
|
||||
else:
|
||||
filtered_analyses.append(analysis)
|
||||
if not len(filtered_analyses):
|
||||
return [string.lower()]
|
||||
return list(set([analysis.normal_form for analysis in filtered_analyses]))
|
||||
|
||||
@staticmethod
|
||||
def normalize_univ_pos(univ_pos: str) -> Optional[str]:
|
||||
if isinstance(univ_pos, str):
|
||||
return univ_pos.upper()
|
||||
symbols_to_str = {
|
||||
ADJ: "ADJ",
|
||||
DET: "DET",
|
||||
NOUN: "NOUN",
|
||||
NUM: "NUM",
|
||||
PRON: "PRON",
|
||||
PROPN: "PROPN",
|
||||
PUNCT: "PUNCT",
|
||||
VERB: "VERB",
|
||||
}
|
||||
if univ_pos in symbols_to_str:
|
||||
return symbols_to_str[univ_pos]
|
||||
return None
|
||||
|
||||
def lookup(self, string: str, orth: Optional[int] = None) -> str:
|
||||
analyses = self._morph.parse(string)
|
||||
if len(analyses) == 1:
|
||||
return analyses[0].normal_form
|
||||
return string
|
||||
|
||||
|
||||
def oc2ud(oc_tag: str) -> Tuple[str, Dict[str, str]]:
|
||||
gram_map = {
|
||||
"_POS": {
|
||||
"ADJF": "ADJ",
|
||||
"ADJS": "ADJ",
|
||||
"ADVB": "ADV",
|
||||
"Apro": "DET",
|
||||
"COMP": "ADJ", # Can also be an ADV - unchangeable
|
||||
"CONJ": "CCONJ", # Can also be a SCONJ - both unchangeable ones
|
||||
"GRND": "VERB",
|
||||
"INFN": "VERB",
|
||||
"INTJ": "INTJ",
|
||||
"NOUN": "NOUN",
|
||||
"NPRO": "PRON",
|
||||
"NUMR": "NUM",
|
||||
"NUMB": "NUM",
|
||||
"PNCT": "PUNCT",
|
||||
"PRCL": "PART",
|
||||
"PREP": "ADP",
|
||||
"PRTF": "VERB",
|
||||
"PRTS": "VERB",
|
||||
"VERB": "VERB",
|
||||
},
|
||||
"Animacy": {"anim": "Anim", "inan": "Inan"},
|
||||
"Aspect": {"impf": "Imp", "perf": "Perf"},
|
||||
"Case": {
|
||||
"ablt": "Ins",
|
||||
"accs": "Acc",
|
||||
"datv": "Dat",
|
||||
"gen1": "Gen",
|
||||
"gen2": "Gen",
|
||||
"gent": "Gen",
|
||||
"loc2": "Loc",
|
||||
"loct": "Loc",
|
||||
"nomn": "Nom",
|
||||
"voct": "Voc",
|
||||
},
|
||||
"Degree": {"COMP": "Cmp", "Supr": "Sup"},
|
||||
"Gender": {"femn": "Fem", "masc": "Masc", "neut": "Neut"},
|
||||
"Mood": {"impr": "Imp", "indc": "Ind"},
|
||||
"Number": {"plur": "Plur", "sing": "Sing"},
|
||||
"NumForm": {"NUMB": "Digit"},
|
||||
"Person": {"1per": "1", "2per": "2", "3per": "3", "excl": "2", "incl": "1"},
|
||||
"Tense": {"futr": "Fut", "past": "Past", "pres": "Pres"},
|
||||
"Variant": {"ADJS": "Brev", "PRTS": "Brev"},
|
||||
"VerbForm": {
|
||||
"GRND": "Conv",
|
||||
"INFN": "Inf",
|
||||
"PRTF": "Part",
|
||||
"PRTS": "Part",
|
||||
"VERB": "Fin",
|
||||
},
|
||||
"Voice": {"actv": "Act", "pssv": "Pass"},
|
||||
"Abbr": {"Abbr": "Yes"},
|
||||
}
|
||||
pos = "X"
|
||||
morphology = dict()
|
||||
unmatched = set()
|
||||
grams = oc_tag.replace(" ", ",").split(",")
|
||||
for gram in grams:
|
||||
match = False
|
||||
for categ, gmap in sorted(gram_map.items()):
|
||||
if gram in gmap:
|
||||
match = True
|
||||
if categ == "_POS":
|
||||
pos = gmap[gram]
|
||||
else:
|
||||
morphology[categ] = gmap[gram]
|
||||
if not match:
|
||||
unmatched.add(gram)
|
||||
while len(unmatched) > 0:
|
||||
gram = unmatched.pop()
|
||||
if gram in ("Name", "Patr", "Surn", "Geox", "Orgn"):
|
||||
pos = "PROPN"
|
||||
elif gram == "Auxt":
|
||||
pos = "AUX"
|
||||
elif gram == "Pltm":
|
||||
morphology["Number"] = "Ptan"
|
||||
return pos, morphology
|
||||
if UkrainianLemmatizer._morph is None:
|
||||
UkrainianLemmatizer._morph = MorphAnalyzer(lang="uk")
|
||||
|
|
|
@ -29,7 +29,6 @@ from .lang.punctuation import TOKENIZER_INFIXES
|
|||
from .tokens import Doc
|
||||
from .lookups import load_lookups
|
||||
from .tokenizer import Tokenizer
|
||||
from .lemmatizer import Lemmatizer
|
||||
from .errors import Errors, Warnings
|
||||
from .schemas import ConfigSchema
|
||||
from .git_info import GIT_VERSION
|
||||
|
@ -87,22 +86,6 @@ def create_tokenizer() -> Callable[["Language"], Tokenizer]:
|
|||
return tokenizer_factory
|
||||
|
||||
|
||||
@registry.lemmatizers("spacy.Lemmatizer.v1")
|
||||
def create_lemmatizer() -> Callable[["Language"], "Lemmatizer"]:
|
||||
"""Registered function to create a lemmatizer. Returns a factory that takes
|
||||
the nlp object and returns a Lemmatizer instance with data loaded in from
|
||||
spacy-lookups-data, if the package is installed.
|
||||
"""
|
||||
# TODO: Will be replaced when the lemmatizer becomes a pipeline component
|
||||
tables = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"]
|
||||
|
||||
def lemmatizer_factory(nlp: "Language") -> "Lemmatizer":
|
||||
lookups = load_lookups(lang=nlp.lang, tables=tables, strict=False)
|
||||
return Lemmatizer(lookups=lookups)
|
||||
|
||||
return lemmatizer_factory
|
||||
|
||||
|
||||
class Language:
|
||||
"""A text-processing pipeline. Usually you'll load this once per process,
|
||||
and pass the instance around your application.
|
||||
|
@ -128,7 +111,6 @@ class Language:
|
|||
max_length: int = 10 ** 6,
|
||||
meta: Dict[str, Any] = {},
|
||||
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
|
||||
create_lemmatizer: Optional[Callable[["Language"], Callable]] = None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""Initialise a Language object.
|
||||
|
@ -146,8 +128,6 @@ class Language:
|
|||
100,000 characters in one text.
|
||||
create_tokenizer (Callable): Function that takes the nlp object and
|
||||
returns a tokenizer.
|
||||
create_lemmatizer (Callable): Function that takes the nlp object and
|
||||
returns a lemmatizer.
|
||||
|
||||
DOCS: https://spacy.io/api/language#init
|
||||
"""
|
||||
|
@ -166,13 +146,9 @@ class Language:
|
|||
|
||||
if vocab is True:
|
||||
vectors_name = meta.get("vectors", {}).get("name")
|
||||
if not create_lemmatizer:
|
||||
lemma_cfg = {"lemmatizer": self._config["nlp"]["lemmatizer"]}
|
||||
create_lemmatizer = registry.make_from_config(lemma_cfg)["lemmatizer"]
|
||||
vocab = create_vocab(
|
||||
self.lang,
|
||||
self.Defaults,
|
||||
lemmatizer=create_lemmatizer(self),
|
||||
vectors_name=vectors_name,
|
||||
load_data=self._config["nlp"]["load_vocab_data"],
|
||||
)
|
||||
|
@ -1451,7 +1427,6 @@ class Language:
|
|||
filled["components"] = orig_pipeline
|
||||
config["components"] = orig_pipeline
|
||||
create_tokenizer = resolved["nlp"]["tokenizer"]
|
||||
create_lemmatizer = resolved["nlp"]["lemmatizer"]
|
||||
before_creation = resolved["nlp"]["before_creation"]
|
||||
after_creation = resolved["nlp"]["after_creation"]
|
||||
after_pipeline_creation = resolved["nlp"]["after_pipeline_creation"]
|
||||
|
@ -1467,7 +1442,6 @@ class Language:
|
|||
nlp = lang_cls(
|
||||
vocab=vocab,
|
||||
create_tokenizer=create_tokenizer,
|
||||
create_lemmatizer=create_lemmatizer,
|
||||
)
|
||||
if after_creation is not None:
|
||||
nlp = after_creation(nlp)
|
||||
|
|
|
@ -1,145 +0,0 @@
|
|||
from typing import Optional, Callable, List, Dict
|
||||
|
||||
from .lookups import Lookups
|
||||
from .parts_of_speech import NAMES as UPOS_NAMES
|
||||
|
||||
|
||||
class Lemmatizer:
|
||||
"""
|
||||
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
|
||||
lookup tables.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lookups: Optional[Lookups] = None,
|
||||
is_base_form: Optional[Callable] = None,
|
||||
) -> None:
|
||||
"""Initialize a Lemmatizer.
|
||||
|
||||
lookups (Lookups): The lookups object containing the (optional) tables
|
||||
"lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup".
|
||||
"""
|
||||
self.lookups = lookups if lookups is not None else Lookups()
|
||||
self.is_base_form = is_base_form
|
||||
|
||||
def __call__(
|
||||
self, string: str, univ_pos: str, morphology: Optional[dict] = None
|
||||
) -> List[str]:
|
||||
"""Lemmatize a string.
|
||||
|
||||
string (str): The string to lemmatize, e.g. the token text.
|
||||
univ_pos (str / int): The token's universal part-of-speech tag.
|
||||
morphology (dict): The token's morphological features following the
|
||||
Universal Dependencies scheme.
|
||||
RETURNS (list): The available lemmas for the string.
|
||||
"""
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
if "lemma_rules" not in self.lookups:
|
||||
return [lookup_table.get(string, string)]
|
||||
if isinstance(univ_pos, int):
|
||||
univ_pos = UPOS_NAMES.get(univ_pos, "X")
|
||||
univ_pos = univ_pos.lower()
|
||||
if univ_pos in ("", "eol", "space"):
|
||||
return [string.lower()]
|
||||
# See Issue #435 for example of where this logic is requied.
|
||||
if callable(self.is_base_form) and self.is_base_form(univ_pos, morphology):
|
||||
return [string.lower()]
|
||||
index_table = self.lookups.get_table("lemma_index", {})
|
||||
exc_table = self.lookups.get_table("lemma_exc", {})
|
||||
rules_table = self.lookups.get_table("lemma_rules", {})
|
||||
if not any(
|
||||
(
|
||||
index_table.get(univ_pos),
|
||||
exc_table.get(univ_pos),
|
||||
rules_table.get(univ_pos),
|
||||
)
|
||||
):
|
||||
if univ_pos == "propn":
|
||||
return [string]
|
||||
else:
|
||||
return [string.lower()]
|
||||
lemmas = self.lemmatize(
|
||||
string,
|
||||
index_table.get(univ_pos, {}),
|
||||
exc_table.get(univ_pos, {}),
|
||||
rules_table.get(univ_pos, []),
|
||||
)
|
||||
return lemmas
|
||||
|
||||
def noun(self, string: str, morphology: Optional[dict] = None) -> List[str]:
|
||||
return self(string, "noun", morphology)
|
||||
|
||||
def verb(self, string: str, morphology: Optional[dict] = None) -> List[str]:
|
||||
return self(string, "verb", morphology)
|
||||
|
||||
def adj(self, string: str, morphology: Optional[dict] = None) -> List[str]:
|
||||
return self(string, "adj", morphology)
|
||||
|
||||
def det(self, string: str, morphology: Optional[dict] = None) -> List[str]:
|
||||
return self(string, "det", morphology)
|
||||
|
||||
def pron(self, string: str, morphology: Optional[dict] = None) -> List[str]:
|
||||
return self(string, "pron", morphology)
|
||||
|
||||
def adp(self, string: str, morphology: Optional[dict] = None) -> List[str]:
|
||||
return self(string, "adp", morphology)
|
||||
|
||||
def num(self, string: str, morphology: Optional[dict] = None) -> List[str]:
|
||||
return self(string, "num", morphology)
|
||||
|
||||
def punct(self, string: str, morphology: Optional[dict] = None) -> List[str]:
|
||||
return self(string, "punct", morphology)
|
||||
|
||||
def lookup(self, string: str, orth: Optional[int] = None) -> str:
|
||||
"""Look up a lemma in the table, if available. If no lemma is found,
|
||||
the original string is returned.
|
||||
|
||||
string (str): The original string.
|
||||
orth (int): Optional hash of the string to look up. If not set, the
|
||||
string will be used and hashed.
|
||||
RETURNS (str): The lemma if the string was found, otherwise the
|
||||
original string.
|
||||
"""
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
key = orth if orth is not None else string
|
||||
if key in lookup_table:
|
||||
return lookup_table[key]
|
||||
return string
|
||||
|
||||
def lemmatize(
|
||||
self,
|
||||
string: str,
|
||||
index: Dict[str, List[str]],
|
||||
exceptions: Dict[str, Dict[str, List[str]]],
|
||||
rules: Dict[str, List[List[str]]],
|
||||
) -> List[str]:
|
||||
orig = string
|
||||
string = string.lower()
|
||||
forms = []
|
||||
oov_forms = []
|
||||
for old, new in rules:
|
||||
if string.endswith(old):
|
||||
form = string[: len(string) - len(old)] + new
|
||||
if not form:
|
||||
pass
|
||||
elif form in index or not form.isalpha():
|
||||
forms.append(form)
|
||||
else:
|
||||
oov_forms.append(form)
|
||||
# Remove duplicates but preserve the ordering of applied "rules"
|
||||
forms = list(dict.fromkeys(forms))
|
||||
# Put exceptions at the front of the list, so they get priority.
|
||||
# This is a dodgy heuristic -- but it's the best we can do until we get
|
||||
# frequencies on this. We can at least prune out problematic exceptions,
|
||||
# if they shadow more frequent analyses.
|
||||
for form in exceptions.get(string, []):
|
||||
if form not in forms:
|
||||
forms.insert(0, form)
|
||||
if not forms:
|
||||
forms.extend(oov_forms)
|
||||
if not forms:
|
||||
forms.append(orig)
|
||||
return forms
|
304
spacy/lookups.py
304
spacy/lookups.py
|
@ -28,6 +28,8 @@ def load_lookups(
|
|||
# TODO: import spacy_lookups_data instead of going via entry points here?
|
||||
lookups = Lookups()
|
||||
if lang not in registry.lookups:
|
||||
if strict and len(tables) > 0:
|
||||
raise ValueError(Errors.E955.format(table=", ".join(tables), lang=lang))
|
||||
return lookups
|
||||
data = registry.lookups.get(lang)
|
||||
for table in tables:
|
||||
|
@ -41,152 +43,6 @@ def load_lookups(
|
|||
return lookups
|
||||
|
||||
|
||||
class Lookups:
|
||||
"""Container for large lookup tables and dictionaries, e.g. lemmatization
|
||||
data or tokenizer exception lists. Lookups are available via vocab.lookups,
|
||||
so they can be accessed before the pipeline components are applied (e.g.
|
||||
in the tokenizer and lemmatizer), as well as within the pipeline components
|
||||
via doc.vocab.lookups.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize the Lookups object.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#init
|
||||
"""
|
||||
self._tables = {}
|
||||
|
||||
def __contains__(self, name: str) -> bool:
|
||||
"""Check if the lookups contain a table of a given name. Delegates to
|
||||
Lookups.has_table.
|
||||
|
||||
name (str): Name of the table.
|
||||
RETURNS (bool): Whether a table of that name is in the lookups.
|
||||
"""
|
||||
return self.has_table(name)
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""RETURNS (int): The number of tables in the lookups."""
|
||||
return len(self._tables)
|
||||
|
||||
@property
|
||||
def tables(self) -> List[str]:
|
||||
"""RETURNS (List[str]): Names of all tables in the lookups."""
|
||||
return list(self._tables.keys())
|
||||
|
||||
def add_table(self, name: str, data: dict = SimpleFrozenDict()) -> "Table":
|
||||
"""Add a new table to the lookups. Raises an error if the table exists.
|
||||
|
||||
name (str): Unique name of table.
|
||||
data (dict): Optional data to add to the table.
|
||||
RETURNS (Table): The newly added table.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#add_table
|
||||
"""
|
||||
if name in self.tables:
|
||||
raise ValueError(Errors.E158.format(name=name))
|
||||
table = Table(name=name, data=data)
|
||||
self._tables[name] = table
|
||||
return table
|
||||
|
||||
def get_table(self, name: str, default: Any = UNSET) -> "Table":
|
||||
"""Get a table. Raises an error if the table doesn't exist and no
|
||||
default value is provided.
|
||||
|
||||
name (str): Name of the table.
|
||||
default (Any): Optional default value to return if table doesn't exist.
|
||||
RETURNS (Table): The table.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#get_table
|
||||
"""
|
||||
if name not in self._tables:
|
||||
if default == UNSET:
|
||||
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
|
||||
return default
|
||||
return self._tables[name]
|
||||
|
||||
def remove_table(self, name: str) -> "Table":
|
||||
"""Remove a table. Raises an error if the table doesn't exist.
|
||||
|
||||
name (str): Name of the table to remove.
|
||||
RETURNS (Table): The removed table.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#remove_table
|
||||
"""
|
||||
if name not in self._tables:
|
||||
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
|
||||
return self._tables.pop(name)
|
||||
|
||||
def has_table(self, name: str) -> bool:
|
||||
"""Check if the lookups contain a table of a given name.
|
||||
|
||||
name (str): Name of the table.
|
||||
RETURNS (bool): Whether a table of that name exists.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#has_table
|
||||
"""
|
||||
return name in self._tables
|
||||
|
||||
def to_bytes(self, **kwargs) -> bytes:
|
||||
"""Serialize the lookups to a bytestring.
|
||||
|
||||
RETURNS (bytes): The serialized Lookups.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#to_bytes
|
||||
"""
|
||||
return srsly.msgpack_dumps(self._tables)
|
||||
|
||||
def from_bytes(self, bytes_data: bytes, **kwargs) -> "Lookups":
|
||||
"""Load the lookups from a bytestring.
|
||||
|
||||
bytes_data (bytes): The data to load.
|
||||
RETURNS (Lookups): The loaded Lookups.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#from_bytes
|
||||
"""
|
||||
self._tables = {}
|
||||
for key, value in srsly.msgpack_loads(bytes_data).items():
|
||||
self._tables[key] = Table(key, value)
|
||||
return self
|
||||
|
||||
def to_disk(
|
||||
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
|
||||
) -> None:
|
||||
"""Save the lookups to a directory as lookups.bin. Expects a path to a
|
||||
directory, which will be created if it doesn't exist.
|
||||
|
||||
path (str / Path): The file path.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#to_disk
|
||||
"""
|
||||
if len(self._tables):
|
||||
path = ensure_path(path)
|
||||
if not path.exists():
|
||||
path.mkdir()
|
||||
filepath = path / filename
|
||||
with filepath.open("wb") as file_:
|
||||
file_.write(self.to_bytes())
|
||||
|
||||
def from_disk(
|
||||
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
|
||||
) -> "Lookups":
|
||||
"""Load lookups from a directory containing a lookups.bin. Will skip
|
||||
loading if the file doesn't exist.
|
||||
|
||||
path (str / Path): The directory path.
|
||||
RETURNS (Lookups): The loaded lookups.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#from_disk
|
||||
"""
|
||||
path = ensure_path(path)
|
||||
filepath = path / filename
|
||||
if filepath.exists():
|
||||
with filepath.open("rb") as file_:
|
||||
data = file_.read()
|
||||
return self.from_bytes(data)
|
||||
return self
|
||||
|
||||
|
||||
class Table(OrderedDict):
|
||||
"""A table in the lookups. Subclass of builtin dict that implements a
|
||||
slightly more consistent and unified API.
|
||||
|
@ -303,3 +159,159 @@ class Table(OrderedDict):
|
|||
self.clear()
|
||||
self.update(data)
|
||||
return self
|
||||
|
||||
|
||||
class Lookups:
|
||||
"""Container for large lookup tables and dictionaries, e.g. lemmatization
|
||||
data or tokenizer exception lists. Lookups are available via vocab.lookups,
|
||||
so they can be accessed before the pipeline components are applied (e.g.
|
||||
in the tokenizer and lemmatizer), as well as within the pipeline components
|
||||
via doc.vocab.lookups.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize the Lookups object.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#init
|
||||
"""
|
||||
self._tables = {}
|
||||
|
||||
def __contains__(self, name: str) -> bool:
|
||||
"""Check if the lookups contain a table of a given name. Delegates to
|
||||
Lookups.has_table.
|
||||
|
||||
name (str): Name of the table.
|
||||
RETURNS (bool): Whether a table of that name is in the lookups.
|
||||
"""
|
||||
return self.has_table(name)
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""RETURNS (int): The number of tables in the lookups."""
|
||||
return len(self._tables)
|
||||
|
||||
@property
|
||||
def tables(self) -> List[str]:
|
||||
"""RETURNS (List[str]): Names of all tables in the lookups."""
|
||||
return list(self._tables.keys())
|
||||
|
||||
def add_table(self, name: str, data: dict = SimpleFrozenDict()) -> Table:
|
||||
"""Add a new table to the lookups. Raises an error if the table exists.
|
||||
|
||||
name (str): Unique name of table.
|
||||
data (dict): Optional data to add to the table.
|
||||
RETURNS (Table): The newly added table.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#add_table
|
||||
"""
|
||||
if name in self.tables:
|
||||
raise ValueError(Errors.E158.format(name=name))
|
||||
table = Table(name=name, data=data)
|
||||
self._tables[name] = table
|
||||
return table
|
||||
|
||||
def set_table(self, name: str, table: Table) -> None:
|
||||
"""Set a table.
|
||||
|
||||
name (str): Name of the table to set.
|
||||
table (Table): The Table to set.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#set_table
|
||||
"""
|
||||
self._tables[name] = table
|
||||
|
||||
def get_table(self, name: str, default: Any = UNSET) -> Table:
|
||||
"""Get a table. Raises an error if the table doesn't exist and no
|
||||
default value is provided.
|
||||
|
||||
name (str): Name of the table.
|
||||
default (Any): Optional default value to return if table doesn't exist.
|
||||
RETURNS (Table): The table.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#get_table
|
||||
"""
|
||||
if name not in self._tables:
|
||||
if default == UNSET:
|
||||
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
|
||||
return default
|
||||
return self._tables[name]
|
||||
|
||||
def remove_table(self, name: str) -> Table:
|
||||
"""Remove a table. Raises an error if the table doesn't exist.
|
||||
|
||||
name (str): Name of the table to remove.
|
||||
RETURNS (Table): The removed table.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#remove_table
|
||||
"""
|
||||
if name not in self._tables:
|
||||
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
|
||||
return self._tables.pop(name)
|
||||
|
||||
def has_table(self, name: str) -> bool:
|
||||
"""Check if the lookups contain a table of a given name.
|
||||
|
||||
name (str): Name of the table.
|
||||
RETURNS (bool): Whether a table of that name exists.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#has_table
|
||||
"""
|
||||
return name in self._tables
|
||||
|
||||
def to_bytes(self, **kwargs) -> bytes:
|
||||
"""Serialize the lookups to a bytestring.
|
||||
|
||||
RETURNS (bytes): The serialized Lookups.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#to_bytes
|
||||
"""
|
||||
return srsly.msgpack_dumps(self._tables)
|
||||
|
||||
def from_bytes(self, bytes_data: bytes, **kwargs) -> "Lookups":
|
||||
"""Load the lookups from a bytestring.
|
||||
|
||||
bytes_data (bytes): The data to load.
|
||||
RETURNS (Lookups): The loaded Lookups.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#from_bytes
|
||||
"""
|
||||
self._tables = {}
|
||||
for key, value in srsly.msgpack_loads(bytes_data).items():
|
||||
self._tables[key] = Table(key, value)
|
||||
return self
|
||||
|
||||
def to_disk(
|
||||
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
|
||||
) -> None:
|
||||
"""Save the lookups to a directory as lookups.bin. Expects a path to a
|
||||
directory, which will be created if it doesn't exist.
|
||||
|
||||
path (str / Path): The file path.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#to_disk
|
||||
"""
|
||||
if len(self._tables):
|
||||
path = ensure_path(path)
|
||||
if not path.exists():
|
||||
path.mkdir()
|
||||
filepath = path / filename
|
||||
with filepath.open("wb") as file_:
|
||||
file_.write(self.to_bytes())
|
||||
|
||||
def from_disk(
|
||||
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
|
||||
) -> "Lookups":
|
||||
"""Load lookups from a directory containing a lookups.bin. Will skip
|
||||
loading if the file doesn't exist.
|
||||
|
||||
path (str / Path): The directory path.
|
||||
RETURNS (Lookups): The loaded lookups.
|
||||
|
||||
DOCS: https://spacy.io/api/lookups#from_disk
|
||||
"""
|
||||
path = ensure_path(path)
|
||||
filepath = path / filename
|
||||
if filepath.exists():
|
||||
with filepath.open("rb") as file_:
|
||||
data = file_.read()
|
||||
return self.from_bytes(data)
|
||||
return self
|
||||
|
|
|
@ -27,12 +27,6 @@ cdef class Morphology:
|
|||
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *
|
||||
cdef int insert(self, MorphAnalysisC tag) except -1
|
||||
|
||||
cdef int assign_untagged(self, TokenC* token) except -1
|
||||
cdef int assign_tag(self, TokenC* token, tag) except -1
|
||||
cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1
|
||||
|
||||
cdef int _assign_tag_from_exceptions(self, TokenC* token, int tag_id) except -1
|
||||
|
||||
|
||||
cdef int check_feature(const MorphAnalysisC* morph, attr_t feature) nogil
|
||||
cdef list list_features(const MorphAnalysisC* morph)
|
||||
|
|
|
@ -31,43 +31,15 @@ cdef class Morphology:
|
|||
VALUE_SEP = ","
|
||||
EMPTY_MORPH = "_" # not an empty string so that the PreshMap key is not 0
|
||||
|
||||
def __init__(self, StringStore strings, tag_map, lemmatizer, exc=None):
|
||||
def __init__(self, StringStore strings):
|
||||
self.mem = Pool()
|
||||
self.strings = strings
|
||||
self.tags = PreshMap()
|
||||
self.load_tag_map(tag_map)
|
||||
self.lemmatizer = lemmatizer
|
||||
|
||||
self._cache = PreshMapArray(self.n_tags)
|
||||
self._exc = {}
|
||||
if exc is not None:
|
||||
self.load_morph_exceptions(exc)
|
||||
|
||||
def load_tag_map(self, tag_map):
|
||||
self.tag_map = {}
|
||||
self.reverse_index = {}
|
||||
# Add special space symbol. We prefix with underscore, to make sure it
|
||||
# always sorts to the end.
|
||||
if '_SP' in tag_map:
|
||||
space_attrs = tag_map.get('_SP')
|
||||
else:
|
||||
space_attrs = tag_map.get('SP', {POS: SPACE})
|
||||
if '_SP' not in tag_map:
|
||||
self.strings.add('_SP')
|
||||
tag_map = dict(tag_map)
|
||||
tag_map['_SP'] = space_attrs
|
||||
for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())):
|
||||
attrs = self.normalize_attrs(attrs)
|
||||
self.add(attrs)
|
||||
self.tag_map[tag_str] = dict(attrs)
|
||||
self.reverse_index[self.strings.add(tag_str)] = i
|
||||
self.tag_names = tuple(sorted(self.tag_map.keys()))
|
||||
self.n_tags = len(self.tag_map)
|
||||
self._cache = PreshMapArray(self.n_tags)
|
||||
|
||||
def __reduce__(self):
|
||||
return (Morphology, (self.strings, self.tag_map, self.lemmatizer,
|
||||
self.exc), None, None)
|
||||
tags = set([self.get(self.strings[s]) for s in self.strings])
|
||||
tags -= set([""])
|
||||
return (unpickle_morphology, (self.strings, sorted(tags)), None, None)
|
||||
|
||||
def add(self, features):
|
||||
"""Insert a morphological analysis in the morphology table, if not
|
||||
|
@ -185,115 +157,6 @@ cdef class Morphology:
|
|||
else:
|
||||
return self.strings[tag.key]
|
||||
|
||||
def lemmatize(self, const univ_pos_t univ_pos, attr_t orth, morphology):
|
||||
if orth not in self.strings:
|
||||
return orth
|
||||
cdef unicode py_string = self.strings[orth]
|
||||
if self.lemmatizer is None:
|
||||
return self.strings.add(py_string.lower())
|
||||
cdef list lemma_strings
|
||||
cdef unicode lemma_string
|
||||
# Normalize features into a dict keyed by the field, to make life easier
|
||||
# for the lemmatizer. Handles string-to-int conversion too.
|
||||
string_feats = {}
|
||||
for key, value in morphology.items():
|
||||
if value is True:
|
||||
name, value = self.strings.as_string(key).split('_', 1)
|
||||
string_feats[name] = value
|
||||
else:
|
||||
string_feats[self.strings.as_string(key)] = self.strings.as_string(value)
|
||||
lemma_strings = self.lemmatizer(py_string, univ_pos, string_feats)
|
||||
lemma_string = lemma_strings[0]
|
||||
lemma = self.strings.add(lemma_string)
|
||||
return lemma
|
||||
|
||||
def add_special_case(self, unicode tag_str, unicode orth_str, attrs,
|
||||
force=False):
|
||||
"""Add a special-case rule to the morphological analyser. Tokens whose
|
||||
tag and orth match the rule will receive the specified properties.
|
||||
|
||||
tag (str): The part-of-speech tag to key the exception.
|
||||
orth (str): The word-form to key the exception.
|
||||
"""
|
||||
attrs = dict(attrs)
|
||||
attrs = self.normalize_attrs(attrs)
|
||||
self.add(attrs)
|
||||
attrs = intify_attrs(attrs, self.strings, _do_deprecated=True)
|
||||
self._exc[(tag_str, self.strings.add(orth_str))] = attrs
|
||||
|
||||
cdef int assign_untagged(self, TokenC* token) except -1:
|
||||
"""Set morphological attributes on a token without a POS tag. Uses
|
||||
the lemmatizer's lookup() method, which looks up the string in the
|
||||
table provided by the language data as lemma_lookup (if available).
|
||||
"""
|
||||
if token.lemma == 0:
|
||||
orth_str = self.strings[token.lex.orth]
|
||||
lemma = self.lemmatizer.lookup(orth_str, orth=token.lex.orth)
|
||||
token.lemma = self.strings.add(lemma)
|
||||
|
||||
cdef int assign_tag(self, TokenC* token, tag_str) except -1:
|
||||
cdef attr_t tag = self.strings.as_int(tag_str)
|
||||
if tag in self.reverse_index:
|
||||
tag_id = self.reverse_index[tag]
|
||||
self.assign_tag_id(token, tag_id)
|
||||
else:
|
||||
token.tag = tag
|
||||
|
||||
cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1:
|
||||
if tag_id > self.n_tags:
|
||||
raise ValueError(Errors.E014.format(tag=tag_id))
|
||||
# Ensure spaces get tagged as space.
|
||||
# It seems pretty arbitrary to put this logic here, but there's really
|
||||
# nowhere better. I guess the justification is that this is where the
|
||||
# specific word and the tag interact. Still, we should have a better
|
||||
# way to enforce this rule, or figure out why the statistical model fails.
|
||||
# Related to Issue #220
|
||||
if Lexeme.c_check_flag(token.lex, IS_SPACE):
|
||||
tag_id = self.reverse_index[self.strings.add('_SP')]
|
||||
tag_str = self.tag_names[tag_id]
|
||||
features = dict(self.tag_map.get(tag_str, {}))
|
||||
if features:
|
||||
pos = self.strings.as_int(features.pop(POS))
|
||||
else:
|
||||
pos = 0
|
||||
cdef attr_t lemma = <attr_t>self._cache.get(tag_id, token.lex.orth)
|
||||
if lemma == 0:
|
||||
# Ugh, self.lemmatize has opposite arg order from self.lemmatizer :(
|
||||
lemma = self.lemmatize(pos, token.lex.orth, features)
|
||||
self._cache.set(tag_id, token.lex.orth, <void*>lemma)
|
||||
token.lemma = lemma
|
||||
token.pos = <univ_pos_t>pos
|
||||
token.tag = self.strings[tag_str]
|
||||
token.morph = self.add(features)
|
||||
if (self.tag_names[tag_id], token.lex.orth) in self._exc:
|
||||
self._assign_tag_from_exceptions(token, tag_id)
|
||||
|
||||
cdef int _assign_tag_from_exceptions(self, TokenC* token, int tag_id) except -1:
|
||||
key = (self.tag_names[tag_id], token.lex.orth)
|
||||
cdef dict attrs
|
||||
attrs = self._exc[key]
|
||||
token.pos = attrs.get(POS, token.pos)
|
||||
token.lemma = attrs.get(LEMMA, token.lemma)
|
||||
|
||||
def load_morph_exceptions(self, dict morph_rules):
|
||||
self._exc = {}
|
||||
# Map (form, pos) to attributes
|
||||
for tag, exc in morph_rules.items():
|
||||
for orth, attrs in exc.items():
|
||||
attrs = self.normalize_attrs(attrs)
|
||||
self.add_special_case(self.strings.as_string(tag), self.strings.as_string(orth), attrs)
|
||||
|
||||
@property
|
||||
def exc(self):
|
||||
# generate the serializable exc in the MORPH_RULES format from the
|
||||
# internal tuple-key format
|
||||
morph_rules = {}
|
||||
for (tag, orth) in sorted(self._exc):
|
||||
if not tag in morph_rules:
|
||||
morph_rules[tag] = {}
|
||||
morph_rules[tag][self.strings[orth]] = self._exc[(tag, orth)]
|
||||
return morph_rules
|
||||
|
||||
@staticmethod
|
||||
def feats_to_dict(feats):
|
||||
if not feats or feats == Morphology.EMPTY_MORPH:
|
||||
|
@ -338,3 +201,9 @@ cdef int get_n_by_field(attr_t* results, const MorphAnalysisC* morph, attr_t fie
|
|||
results[n_results] = morph.features[i]
|
||||
n_results += 1
|
||||
return n_results
|
||||
|
||||
def unpickle_morphology(strings, tags):
|
||||
cdef Morphology morphology = Morphology(strings)
|
||||
for tag in tags:
|
||||
morphology.add(tag)
|
||||
return morphology
|
||||
|
|
|
@ -3,9 +3,10 @@ from .dep_parser import DependencyParser
|
|||
from .entity_linker import EntityLinker
|
||||
from .ner import EntityRecognizer
|
||||
from .entityruler import EntityRuler
|
||||
from .lemmatizer import Lemmatizer
|
||||
from .morphologizer import Morphologizer
|
||||
from .pipe import Pipe
|
||||
from spacy.pipeline.senter import SentenceRecognizer
|
||||
from .senter import SentenceRecognizer
|
||||
from .sentencizer import Sentencizer
|
||||
from .simple_ner import SimpleNER
|
||||
from .tagger import Tagger
|
||||
|
@ -20,6 +21,7 @@ __all__ = [
|
|||
"EntityRecognizer",
|
||||
"EntityRuler",
|
||||
"Morphologizer",
|
||||
"Lemmatizer",
|
||||
"Pipe",
|
||||
"SentenceRecognizer",
|
||||
"Sentencizer",
|
||||
|
|
330
spacy/pipeline/lemmatizer.py
Normal file
330
spacy/pipeline/lemmatizer.py
Normal file
|
@ -0,0 +1,330 @@
|
|||
from typing import Optional, List, Dict, Any
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .pipe import Pipe
|
||||
from ..errors import Errors
|
||||
from ..language import Language
|
||||
from ..lookups import Lookups, load_lookups
|
||||
from ..scorer import Scorer
|
||||
from ..tokens import Doc, Token
|
||||
from ..vocab import Vocab
|
||||
from .. import util
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={
|
||||
"model": None,
|
||||
"mode": "lookup",
|
||||
"lookups": None,
|
||||
"overwrite": False,
|
||||
},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
lookups: Optional[Lookups],
|
||||
overwrite: bool = False,
|
||||
):
|
||||
lookups = Lemmatizer.load_lookups(nlp.lang, mode, lookups)
|
||||
return Lemmatizer(
|
||||
nlp.vocab, model, name, mode=mode, lookups=lookups, overwrite=overwrite
|
||||
)
|
||||
|
||||
|
||||
class Lemmatizer(Pipe):
|
||||
"""
|
||||
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
|
||||
lookup tables.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def get_lookups_config(cls, mode: str) -> Dict:
|
||||
"""Returns the lookups configuration settings for a given mode for use
|
||||
in Lemmatizer.load_lookups.
|
||||
|
||||
mode (str): The lemmatizer mode.
|
||||
RETURNS (dict): The lookups configuration settings for this mode.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#get_lookups_config
|
||||
"""
|
||||
if mode == "lookup":
|
||||
return {
|
||||
"required_tables": ["lemma_lookup"],
|
||||
}
|
||||
elif mode == "rule":
|
||||
return {
|
||||
"required_tables": ["lemma_rules"],
|
||||
"optional_tables": ["lemma_exc", "lemma_index"],
|
||||
}
|
||||
return {}
|
||||
|
||||
@classmethod
|
||||
def load_lookups(cls, lang: str, mode: str, lookups: Optional[Lookups],) -> Lookups:
|
||||
"""Load and validate lookups tables. If the provided lookups is None,
|
||||
load the default lookups tables according to the language and mode
|
||||
settings. Confirm that all required tables for the language and mode
|
||||
are present.
|
||||
|
||||
lang (str): The language code.
|
||||
mode (str): The lemmatizer mode.
|
||||
lookups (Lookups): The provided lookups, may be None if the default
|
||||
lookups should be loaded.
|
||||
RETURNS (Lookups): The Lookups object.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#get_lookups_config
|
||||
"""
|
||||
config = cls.get_lookups_config(mode)
|
||||
required_tables = config.get("required_tables", [])
|
||||
optional_tables = config.get("optional_tables", [])
|
||||
if lookups is None:
|
||||
lookups = load_lookups(lang=lang, tables=required_tables)
|
||||
optional_lookups = load_lookups(
|
||||
lang=lang, tables=optional_tables, strict=False
|
||||
)
|
||||
for table in optional_lookups.tables:
|
||||
lookups.set_table(table, optional_lookups.get_table(table))
|
||||
for table in required_tables:
|
||||
if table not in lookups:
|
||||
raise ValueError(
|
||||
Errors.E1004.format(
|
||||
mode=mode, tables=required_tables, found=lookups.tables
|
||||
)
|
||||
)
|
||||
return lookups
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab: Vocab,
|
||||
model: Optional[Model],
|
||||
name: str = "lemmatizer",
|
||||
*,
|
||||
mode: str = "lookup",
|
||||
lookups: Optional[Lookups] = None,
|
||||
overwrite: bool = False,
|
||||
) -> None:
|
||||
"""Initialize a Lemmatizer.
|
||||
|
||||
vocab (Vocab): The vocab.
|
||||
model (Model): A model (not yet implemented).
|
||||
name (str): The component name. Defaults to "lemmatizer".
|
||||
mode (str): The lemmatizer mode: "lookup", "rule". Defaults to "lookup".
|
||||
lookups (Lookups): The lookups object containing the (optional) tables
|
||||
such as "lemma_rules", "lemma_index", "lemma_exc" and
|
||||
"lemma_lookup". Defaults to None
|
||||
overwrite (bool): Whether to overwrite existing lemmas. Defaults to
|
||||
`False`.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#init
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self._mode = mode
|
||||
self.lookups = lookups if lookups is not None else Lookups()
|
||||
self.overwrite = overwrite
|
||||
if self.mode == "lookup":
|
||||
self.lemmatize = self.lookup_lemmatize
|
||||
elif self.mode == "rule":
|
||||
self.lemmatize = self.rule_lemmatize
|
||||
else:
|
||||
try:
|
||||
self.lemmatize = getattr(self, f"{self.mode}_lemmatize")
|
||||
except AttributeError:
|
||||
raise ValueError(Errors.E1003.format(mode=mode))
|
||||
self.cache = {}
|
||||
|
||||
@property
|
||||
def mode(self):
|
||||
return self._mode
|
||||
|
||||
def __call__(self, doc: Doc) -> Doc:
|
||||
"""Apply the lemmatizer to one document.
|
||||
|
||||
doc (Doc): The Doc to process.
|
||||
RETURNS (Doc): The processed Doc.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#call
|
||||
"""
|
||||
for token in doc:
|
||||
if self.overwrite or token.lemma == 0:
|
||||
token.lemma_ = self.lemmatize(token)[0]
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, *, batch_size=128):
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
||||
stream (Iterable[Doc]): A stream of documents.
|
||||
batch_size (int): The number of documents to buffer.
|
||||
YIELDS (Doc): Processed documents in order.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#pipe
|
||||
"""
|
||||
for doc in stream:
|
||||
doc = self(doc)
|
||||
yield doc
|
||||
|
||||
def lookup_lemmatize(self, token: Token) -> List[str]:
|
||||
"""Lemmatize using a lookup-based approach.
|
||||
|
||||
token (Token): The token to lemmatize.
|
||||
RETURNS (list): The available lemmas for the string.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#lookup_lemmatize
|
||||
"""
|
||||
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
||||
result = lookup_table.get(token.text, token.text)
|
||||
if isinstance(result, str):
|
||||
result = [result]
|
||||
return result
|
||||
|
||||
def rule_lemmatize(self, token: Token) -> List[str]:
|
||||
"""Lemmatize using a rule-based approach.
|
||||
|
||||
token (Token): The token to lemmatize.
|
||||
RETURNS (list): The available lemmas for the string.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#rule_lemmatize
|
||||
"""
|
||||
cache_key = (token.orth, token.pos, token.morph)
|
||||
if cache_key in self.cache:
|
||||
return self.cache[cache_key]
|
||||
string = token.text
|
||||
univ_pos = token.pos_.lower()
|
||||
if univ_pos in ("", "eol", "space"):
|
||||
return [string.lower()]
|
||||
# See Issue #435 for example of where this logic is requied.
|
||||
if self.is_base_form(token):
|
||||
return [string.lower()]
|
||||
index_table = self.lookups.get_table("lemma_index", {})
|
||||
exc_table = self.lookups.get_table("lemma_exc", {})
|
||||
rules_table = self.lookups.get_table("lemma_rules", {})
|
||||
if not any(
|
||||
(
|
||||
index_table.get(univ_pos),
|
||||
exc_table.get(univ_pos),
|
||||
rules_table.get(univ_pos),
|
||||
)
|
||||
):
|
||||
if univ_pos == "propn":
|
||||
return [string]
|
||||
else:
|
||||
return [string.lower()]
|
||||
|
||||
index = index_table.get(univ_pos, {})
|
||||
exceptions = exc_table.get(univ_pos, {})
|
||||
rules = rules_table.get(univ_pos, {})
|
||||
orig = string
|
||||
string = string.lower()
|
||||
forms = []
|
||||
oov_forms = []
|
||||
for old, new in rules:
|
||||
if string.endswith(old):
|
||||
form = string[: len(string) - len(old)] + new
|
||||
if not form:
|
||||
pass
|
||||
elif form in index or not form.isalpha():
|
||||
forms.append(form)
|
||||
else:
|
||||
oov_forms.append(form)
|
||||
# Remove duplicates but preserve the ordering of applied "rules"
|
||||
forms = list(dict.fromkeys(forms))
|
||||
# Put exceptions at the front of the list, so they get priority.
|
||||
# This is a dodgy heuristic -- but it's the best we can do until we get
|
||||
# frequencies on this. We can at least prune out problematic exceptions,
|
||||
# if they shadow more frequent analyses.
|
||||
for form in exceptions.get(string, []):
|
||||
if form not in forms:
|
||||
forms.insert(0, form)
|
||||
if not forms:
|
||||
forms.extend(oov_forms)
|
||||
if not forms:
|
||||
forms.append(orig)
|
||||
self.cache[cache_key] = forms
|
||||
return forms
|
||||
|
||||
def is_base_form(self, token: Token) -> bool:
|
||||
"""Check whether the token is a base form that does not need further
|
||||
analysis for lemmatization.
|
||||
|
||||
token (Token): The token.
|
||||
RETURNS (bool): Whether the token is a base form.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#is_base_form
|
||||
"""
|
||||
return False
|
||||
|
||||
def score(self, examples, **kwargs) -> Dict[str, Any]:
|
||||
"""Score a batch of examples.
|
||||
|
||||
examples (Iterable[Example]): The examples to score.
|
||||
RETURNS (Dict[str, Any]): The scores.
|
||||
|
||||
DOCS: https://spacy.io/api/lemmatizer#score
|
||||
"""
|
||||
return Scorer.score_token_attr(examples, "lemma", **kwargs)
|
||||
|
||||
def to_disk(self, path, *, exclude=tuple()):
|
||||
"""Save the current state to a directory.
|
||||
|
||||
path (unicode or Path): A path to a directory, which will be created if
|
||||
it doesn't exist.
|
||||
exclude (list): String names of serialization fields to exclude.
|
||||
|
||||
DOCS: https://spacy.io/api/vocab#to_disk
|
||||
"""
|
||||
serialize = {}
|
||||
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
||||
serialize["lookups"] = lambda p: self.lookups.to_disk(p)
|
||||
util.to_disk(path, serialize, exclude)
|
||||
|
||||
def from_disk(self, path, *, exclude=tuple()):
|
||||
"""Loads state from a directory. Modifies the object in place and
|
||||
returns it.
|
||||
|
||||
path (unicode or Path): A path to a directory.
|
||||
exclude (list): String names of serialization fields to exclude.
|
||||
RETURNS (Vocab): The modified `Vocab` object.
|
||||
|
||||
DOCS: https://spacy.io/api/vocab#to_disk
|
||||
"""
|
||||
deserialize = {}
|
||||
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
|
||||
deserialize["lookups"] = lambda p: self.lookups.from_disk(p)
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
|
||||
def to_bytes(self, *, exclude=tuple()) -> bytes:
|
||||
"""Serialize the current state to a binary string.
|
||||
|
||||
exclude (list): String names of serialization fields to exclude.
|
||||
RETURNS (bytes): The serialized form of the `Vocab` object.
|
||||
|
||||
DOCS: https://spacy.io/api/vocab#to_bytes
|
||||
"""
|
||||
serialize = {}
|
||||
serialize["vocab"] = self.vocab.to_bytes
|
||||
serialize["lookups"] = self.lookups.to_bytes
|
||||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data: bytes, *, exclude=tuple()):
|
||||
"""Load state from a binary string.
|
||||
|
||||
bytes_data (bytes): The data to load from.
|
||||
exclude (list): String names of serialization fields to exclude.
|
||||
RETURNS (Vocab): The `Vocab` object.
|
||||
|
||||
DOCS: https://spacy.io/api/vocab#from_bytes
|
||||
"""
|
||||
deserialize = {}
|
||||
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)
|
||||
deserialize["lookups"] = lambda b: self.lookups.from_bytes(b)
|
||||
util.from_bytes(bytes_data, deserialize, exclude)
|
|
@ -39,12 +39,12 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
@Language.factory(
|
||||
"tagger",
|
||||
assigns=["token.tag"],
|
||||
default_config={"model": DEFAULT_TAGGER_MODEL, "set_morphology": False},
|
||||
scores=["tag_acc", "pos_acc", "lemma_acc"],
|
||||
default_config={"model": DEFAULT_TAGGER_MODEL},
|
||||
scores=["tag_acc"],
|
||||
default_score_weights={"tag_acc": 1.0},
|
||||
)
|
||||
def make_tagger(nlp: Language, name: str, model: Model, set_morphology: bool):
|
||||
return Tagger(nlp.vocab, model, name, set_morphology=set_morphology)
|
||||
def make_tagger(nlp: Language, name: str, model: Model):
|
||||
return Tagger(nlp.vocab, model, name)
|
||||
|
||||
|
||||
class Tagger(Pipe):
|
||||
|
@ -52,13 +52,14 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger
|
||||
"""
|
||||
def __init__(self, vocab, model, name="tagger", *, set_morphology=False):
|
||||
def __init__(self, vocab, model, name="tagger", *, labels=None):
|
||||
"""Initialize a part-of-speech tagger.
|
||||
|
||||
vocab (Vocab): The shared vocabulary.
|
||||
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
||||
name (str): The component instance name, used to add entries to the
|
||||
losses during training.
|
||||
labels (List): The set of labels. Defaults to None.
|
||||
set_morphology (bool): Whether to set morphological features.
|
||||
|
||||
DOCS: https://spacy.io/api/tagger#init
|
||||
|
@ -67,7 +68,7 @@ class Tagger(Pipe):
|
|||
self.model = model
|
||||
self.name = name
|
||||
self._rehearsal_model = None
|
||||
cfg = {"set_morphology": set_morphology}
|
||||
cfg = {"labels": labels or []}
|
||||
self.cfg = dict(sorted(cfg.items()))
|
||||
|
||||
@property
|
||||
|
@ -80,7 +81,7 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger#labels
|
||||
"""
|
||||
return tuple(self.vocab.morphology.tag_names)
|
||||
return tuple(self.cfg["labels"])
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Apply the pipe to a Doc.
|
||||
|
@ -150,9 +151,7 @@ class Tagger(Pipe):
|
|||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
cdef int idx = 0
|
||||
cdef Vocab vocab = self.vocab
|
||||
assign_morphology = self.cfg.get("set_morphology", True)
|
||||
for i, doc in enumerate(docs):
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, "get"):
|
||||
|
@ -160,15 +159,7 @@ class Tagger(Pipe):
|
|||
for j, tag_id in enumerate(doc_tag_ids):
|
||||
# Don't clobber preset POS tags
|
||||
if doc.c[j].tag == 0:
|
||||
if doc.c[j].pos == 0 and assign_morphology:
|
||||
# Don't clobber preset lemmas
|
||||
lemma = doc.c[j].lemma
|
||||
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
|
||||
if lemma != 0 and lemma != doc.c[j].lex.orth:
|
||||
doc.c[j].lemma = lemma
|
||||
else:
|
||||
doc.c[j].tag = self.vocab.strings[self.labels[tag_id]]
|
||||
idx += 1
|
||||
doc.c[j].tag = self.vocab.strings[self.labels[tag_id]]
|
||||
doc.is_tagged = True
|
||||
|
||||
def update(self, examples, *, drop=0., sgd=None, losses=None, set_annotations=False):
|
||||
|
@ -279,55 +270,26 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger#begin_training
|
||||
"""
|
||||
lemma_tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
|
||||
if not any(table in self.vocab.lookups for table in lemma_tables):
|
||||
warnings.warn(Warnings.W022)
|
||||
lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {})
|
||||
if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS:
|
||||
langs = ", ".join(util.LEXEME_NORM_LANGS)
|
||||
warnings.warn(Warnings.W033.format(model="part-of-speech tagger", langs=langs))
|
||||
orig_tag_map = dict(self.vocab.morphology.tag_map)
|
||||
new_tag_map = {}
|
||||
tags = set()
|
||||
for example in get_examples():
|
||||
try:
|
||||
y = example.y
|
||||
except AttributeError:
|
||||
raise TypeError(Errors.E978.format(name="Tagger", method="begin_training", types=type(example))) from None
|
||||
for token in y:
|
||||
tag = token.tag_
|
||||
if tag in orig_tag_map:
|
||||
new_tag_map[tag] = orig_tag_map[tag]
|
||||
else:
|
||||
new_tag_map[tag] = {POS: X}
|
||||
|
||||
cdef Vocab vocab = self.vocab
|
||||
if new_tag_map:
|
||||
if "_SP" in orig_tag_map:
|
||||
new_tag_map["_SP"] = orig_tag_map["_SP"]
|
||||
vocab.morphology.load_tag_map(new_tag_map)
|
||||
tags.add(token.tag_)
|
||||
for tag in sorted(tags):
|
||||
self.add_label(tag)
|
||||
self.set_output(len(self.labels))
|
||||
doc_sample = [Doc(self.vocab, words=["hello", "world"])]
|
||||
if pipeline is not None:
|
||||
for name, component in pipeline:
|
||||
if component is self:
|
||||
break
|
||||
if hasattr(component, "pipe"):
|
||||
doc_sample = list(component.pipe(doc_sample))
|
||||
else:
|
||||
doc_sample = [component(doc) for doc in doc_sample]
|
||||
self.model.initialize(X=doc_sample)
|
||||
# Get batch of example docs, example outputs to call begin_training().
|
||||
# This lets the model infer shapes.
|
||||
self.model.initialize()
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
return sgd
|
||||
|
||||
def add_label(self, label, values=None):
|
||||
def add_label(self, label):
|
||||
"""Add a new label to the pipe.
|
||||
|
||||
label (str): The label to add.
|
||||
values (Dict[int, str]): Optional values to map to the label, e.g. a
|
||||
tag map dictionary.
|
||||
RETURNS (int): 0 if label is already present, otherwise 1.
|
||||
|
||||
DOCS: https://spacy.io/api/tagger#add_label
|
||||
|
@ -336,22 +298,8 @@ class Tagger(Pipe):
|
|||
raise ValueError(Errors.E187)
|
||||
if label in self.labels:
|
||||
return 0
|
||||
if self.model.has_dim("nO"):
|
||||
# Here's how the model resizing will work, once the
|
||||
# neuron-to-tag mapping is no longer controlled by
|
||||
# the Morphology class, which sorts the tag names.
|
||||
# The sorting makes adding labels difficult.
|
||||
# smaller = self.model._layers[-1]
|
||||
# larger = Softmax(len(self.labels)+1, smaller.nI)
|
||||
# copy_array(larger.W[:smaller.nO], smaller.W)
|
||||
# copy_array(larger.b[:smaller.nO], smaller.b)
|
||||
# self.model._layers[-1] = larger
|
||||
raise ValueError(TempErrors.T003)
|
||||
tag_map = dict(self.vocab.morphology.tag_map)
|
||||
if values is None:
|
||||
values = {POS: "X"}
|
||||
tag_map[label] = values
|
||||
self.vocab.morphology.load_tag_map(tag_map)
|
||||
self.cfg["labels"].append(label)
|
||||
self.vocab.strings.add(label)
|
||||
return 1
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
|
@ -363,11 +311,7 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger#score
|
||||
"""
|
||||
scores = {}
|
||||
scores.update(Scorer.score_token_attr(examples, "tag", **kwargs))
|
||||
scores.update(Scorer.score_token_attr(examples, "pos", **kwargs))
|
||||
scores.update(Scorer.score_token_attr(examples, "lemma", **kwargs))
|
||||
return scores
|
||||
return Scorer.score_token_attr(examples, "tag", **kwargs)
|
||||
|
||||
def to_bytes(self, *, exclude=tuple()):
|
||||
"""Serialize the pipe to a bytestring.
|
||||
|
@ -381,10 +325,6 @@ class Tagger(Pipe):
|
|||
serialize["model"] = self.model.to_bytes
|
||||
serialize["vocab"] = self.vocab.to_bytes
|
||||
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
|
||||
tag_map = dict(sorted(self.vocab.morphology.tag_map.items()))
|
||||
serialize["tag_map"] = lambda: srsly.msgpack_dumps(tag_map)
|
||||
morph_rules = dict(self.vocab.morphology.exc)
|
||||
serialize["morph_rules"] = lambda: srsly.msgpack_dumps(morph_rules)
|
||||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
||||
|
@ -402,21 +342,8 @@ class Tagger(Pipe):
|
|||
except AttributeError:
|
||||
raise ValueError(Errors.E149) from None
|
||||
|
||||
def load_tag_map(b):
|
||||
tag_map = srsly.msgpack_loads(b)
|
||||
self.vocab.morphology.load_tag_map(tag_map)
|
||||
|
||||
def load_morph_rules(b):
|
||||
morph_rules = srsly.msgpack_loads(b)
|
||||
self.vocab.morphology.load_morph_exceptions(morph_rules)
|
||||
|
||||
self.vocab.morphology = Morphology(self.vocab.strings, dict(),
|
||||
lemmatizer=self.vocab.morphology.lemmatizer)
|
||||
|
||||
deserialize = {
|
||||
"vocab": lambda b: self.vocab.from_bytes(b),
|
||||
"tag_map": load_tag_map,
|
||||
"morph_rules": load_morph_rules,
|
||||
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
|
||||
"model": lambda b: load_model(b),
|
||||
}
|
||||
|
@ -431,12 +358,8 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger#to_disk
|
||||
"""
|
||||
tag_map = dict(sorted(self.vocab.morphology.tag_map.items()))
|
||||
morph_rules = dict(self.vocab.morphology.exc)
|
||||
serialize = {
|
||||
"vocab": lambda p: self.vocab.to_disk(p),
|
||||
"tag_map": lambda p: srsly.write_msgpack(p, tag_map),
|
||||
"morph_rules": lambda p: srsly.write_msgpack(p, morph_rules),
|
||||
"model": lambda p: self.model.to_disk(p),
|
||||
"cfg": lambda p: srsly.write_json(p, self.cfg),
|
||||
}
|
||||
|
@ -458,22 +381,9 @@ class Tagger(Pipe):
|
|||
except AttributeError:
|
||||
raise ValueError(Errors.E149) from None
|
||||
|
||||
def load_tag_map(p):
|
||||
tag_map = srsly.read_msgpack(p)
|
||||
self.vocab.morphology.load_tag_map(tag_map)
|
||||
|
||||
def load_morph_rules(p):
|
||||
morph_rules = srsly.read_msgpack(p)
|
||||
self.vocab.morphology.load_morph_exceptions(morph_rules)
|
||||
|
||||
self.vocab.morphology = Morphology(self.vocab.strings, dict(),
|
||||
lemmatizer=self.vocab.morphology.lemmatizer)
|
||||
|
||||
deserialize = {
|
||||
"vocab": lambda p: self.vocab.from_disk(p),
|
||||
"cfg": lambda p: self.cfg.update(deserialize_config(p)),
|
||||
"tag_map": load_tag_map,
|
||||
"morph_rules": load_morph_rules,
|
||||
"model": load_model,
|
||||
}
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
|
|
|
@ -220,7 +220,6 @@ class ConfigSchemaNlp(BaseModel):
|
|||
lang: StrictStr = Field(..., title="The base language to use")
|
||||
pipeline: List[StrictStr] = Field(..., title="The pipeline component names in order")
|
||||
tokenizer: Callable = Field(..., title="The tokenizer to use")
|
||||
lemmatizer: Callable = Field(..., title="The lemmatizer to use")
|
||||
load_vocab_data: StrictBool = Field(..., title="Whether to load additional vocab data from spacy-lookups-data")
|
||||
before_creation: Optional[Callable[[Type["Language"]], Type["Language"]]] = Field(..., title="Optional callback to modify Language class before initialization")
|
||||
after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed")
|
||||
|
|
|
@ -201,7 +201,7 @@ def ru_tokenizer():
|
|||
@pytest.fixture
|
||||
def ru_lemmatizer():
|
||||
pytest.importorskip("pymorphy2")
|
||||
return get_lang_class("ru")().vocab.morphology.lemmatizer
|
||||
return get_lang_class("ru")().add_pipe("lemmatizer")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
|
|
|
@ -1,21 +1,12 @@
|
|||
import pytest
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.tokens import Doc
|
||||
from spacy.lemmatizer import Lemmatizer
|
||||
from spacy.lookups import Lookups
|
||||
from spacy import util
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def lemmatizer():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"dogs": "dog", "boxen": "box", "mice": "mouse"})
|
||||
return Lemmatizer(lookups)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vocab(lemmatizer):
|
||||
return Vocab(lemmatizer=lemmatizer)
|
||||
def vocab():
|
||||
return Vocab()
|
||||
|
||||
|
||||
def test_empty_doc(vocab):
|
||||
|
@ -30,14 +21,6 @@ def test_single_word(vocab):
|
|||
assert doc.text == "a"
|
||||
|
||||
|
||||
def test_lookup_lemmatization(vocab):
|
||||
doc = Doc(vocab, words=["dogs", "dogses"])
|
||||
assert doc[0].text == "dogs"
|
||||
assert doc[0].lemma_ == "dog"
|
||||
assert doc[1].text == "dogses"
|
||||
assert doc[1].lemma_ == "dogses"
|
||||
|
||||
|
||||
def test_create_from_words_and_text(vocab):
|
||||
# no whitespace in words
|
||||
words = ["'", "dogs", "'", "run"]
|
||||
|
|
|
@ -1,23 +1,17 @@
|
|||
import pytest
|
||||
from spacy.symbols import POS, PRON, VERB
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def i_has(en_tokenizer):
|
||||
doc = en_tokenizer("I has")
|
||||
tag_map = {
|
||||
"PRP": {POS: PRON, "PronType": "prs"},
|
||||
"VBZ": {
|
||||
POS: VERB,
|
||||
"VerbForm": "fin",
|
||||
"Tense": "pres",
|
||||
"Number": "sing",
|
||||
"Person": "three",
|
||||
},
|
||||
doc[0].morph_ = {"PronType": "prs"}
|
||||
doc[1].morph_ = {
|
||||
"VerbForm": "fin",
|
||||
"Tense": "pres",
|
||||
"Number": "sing",
|
||||
"Person": "three",
|
||||
}
|
||||
en_tokenizer.vocab.morphology.load_tag_map(tag_map)
|
||||
doc[0].tag_ = "PRP"
|
||||
doc[1].tag_ = "VBZ"
|
||||
|
||||
return doc
|
||||
|
||||
|
||||
|
|
|
@ -124,7 +124,6 @@ def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
|
|||
assert doc[0].text == "The players"
|
||||
assert doc[0].tag_ == "NN"
|
||||
assert doc[0].pos_ == "NOUN"
|
||||
assert doc[0].lemma_ == "The players"
|
||||
doc = get_doc(
|
||||
tokens.vocab,
|
||||
words=[t.text for t in tokens],
|
||||
|
@ -143,11 +142,9 @@ def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
|
|||
assert doc[0].text == "The players"
|
||||
assert doc[0].tag_ == "NN"
|
||||
assert doc[0].pos_ == "NOUN"
|
||||
assert doc[0].lemma_ == "The players"
|
||||
assert doc[1].text == "start ."
|
||||
assert doc[1].tag_ == "VBZ"
|
||||
assert doc[1].pos_ == "VERB"
|
||||
assert doc[1].lemma_ == "start ."
|
||||
|
||||
|
||||
def test_doc_retokenize_spans_merge_heads(en_tokenizer):
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
from spacy.symbols import POS, PRON, VERB, DET, NOUN, PUNCT
|
||||
from ...util import get_doc
|
||||
|
||||
|
||||
def test_en_tagger_load_morph_exc(en_tokenizer):
|
||||
text = "I like his style."
|
||||
tags = ["PRP", "VBP", "PRP$", "NN", "."]
|
||||
tag_map = {
|
||||
"PRP": {POS: PRON},
|
||||
"VBP": {POS: VERB},
|
||||
"PRP$": {POS: DET},
|
||||
"NN": {POS: NOUN},
|
||||
".": {POS: PUNCT},
|
||||
}
|
||||
morph_exc = {"VBP": {"like": {"lemma": "luck"}}}
|
||||
en_tokenizer.vocab.morphology.load_tag_map(tag_map)
|
||||
en_tokenizer.vocab.morphology.load_morph_exceptions(morph_exc)
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], tags=tags)
|
||||
assert doc[1].tag_ == "VBP"
|
||||
assert doc[1].lemma_ == "luck"
|
|
@ -3,15 +3,16 @@ import pytest
|
|||
from ...util import get_doc
|
||||
|
||||
|
||||
@pytest.mark.xfail(reason="TODO: investigate why lemmatizer fails here")
|
||||
def test_ru_doc_lemmatization(ru_tokenizer):
|
||||
def test_ru_doc_lemmatization(ru_lemmatizer):
|
||||
words = ["мама", "мыла", "раму"]
|
||||
tags = [
|
||||
"NOUN__Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing",
|
||||
"VERB__Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
|
||||
"NOUN__Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
|
||||
pos = ["NOUN", "VERB", "NOUN"]
|
||||
morphs = [
|
||||
"Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing",
|
||||
"Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
|
||||
"Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
|
||||
]
|
||||
doc = get_doc(ru_tokenizer.vocab, words=words, tags=tags)
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
|
||||
doc = ru_lemmatizer(doc)
|
||||
lemmas = [token.lemma_ for token in doc]
|
||||
assert lemmas == ["мама", "мыть", "рама"]
|
||||
|
||||
|
@ -27,43 +28,51 @@ def test_ru_doc_lemmatization(ru_tokenizer):
|
|||
],
|
||||
)
|
||||
def test_ru_lemmatizer_noun_lemmas(ru_lemmatizer, text, lemmas):
|
||||
assert sorted(ru_lemmatizer.noun(text)) == lemmas
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"])
|
||||
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
||||
assert sorted(result_lemmas) == lemmas
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text,pos,morphology,lemma",
|
||||
"text,pos,morph,lemma",
|
||||
[
|
||||
("рой", "NOUN", None, "рой"),
|
||||
("рой", "VERB", None, "рыть"),
|
||||
("клей", "NOUN", None, "клей"),
|
||||
("клей", "VERB", None, "клеить"),
|
||||
("три", "NUM", None, "три"),
|
||||
("кос", "NOUN", {"Number": "Sing"}, "кос"),
|
||||
("кос", "NOUN", {"Number": "Plur"}, "коса"),
|
||||
("кос", "ADJ", None, "косой"),
|
||||
("потом", "NOUN", None, "пот"),
|
||||
("потом", "ADV", None, "потом"),
|
||||
("рой", "NOUN", "", "рой"),
|
||||
("рой", "VERB", "", "рыть"),
|
||||
("клей", "NOUN", "", "клей"),
|
||||
("клей", "VERB", "", "клеить"),
|
||||
("три", "NUM", "", "три"),
|
||||
("кос", "NOUN", "Number=Sing", "кос"),
|
||||
("кос", "NOUN", "Number=Plur", "коса"),
|
||||
("кос", "ADJ", "", "косой"),
|
||||
("потом", "NOUN", "", "пот"),
|
||||
("потом", "ADV", "", "потом"),
|
||||
],
|
||||
)
|
||||
def test_ru_lemmatizer_works_with_different_pos_homonyms(
|
||||
ru_lemmatizer, text, pos, morphology, lemma
|
||||
ru_lemmatizer, text, pos, morph, lemma
|
||||
):
|
||||
assert ru_lemmatizer(text, pos, morphology) == [lemma]
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=[pos], morphs=[morph])
|
||||
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
||||
assert result_lemmas == [lemma]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text,morphology,lemma",
|
||||
"text,morph,lemma",
|
||||
[
|
||||
("гвоздики", {"Gender": "Fem"}, "гвоздика"),
|
||||
("гвоздики", {"Gender": "Masc"}, "гвоздик"),
|
||||
("вина", {"Gender": "Fem"}, "вина"),
|
||||
("вина", {"Gender": "Neut"}, "вино"),
|
||||
("гвоздики", "Gender=Fem", "гвоздика"),
|
||||
("гвоздики", "Gender=Masc", "гвоздик"),
|
||||
("вина", "Gender=Fem", "вина"),
|
||||
("вина", "Gender=Neut", "вино"),
|
||||
],
|
||||
)
|
||||
def test_ru_lemmatizer_works_with_noun_homonyms(ru_lemmatizer, text, morphology, lemma):
|
||||
assert ru_lemmatizer.noun(text, morphology) == [lemma]
|
||||
def test_ru_lemmatizer_works_with_noun_homonyms(ru_lemmatizer, text, morph, lemma):
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"], morphs=[morph])
|
||||
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
||||
assert result_lemmas == [lemma]
|
||||
|
||||
|
||||
def test_ru_lemmatizer_punct(ru_lemmatizer):
|
||||
assert ru_lemmatizer.punct("«") == ['"']
|
||||
assert ru_lemmatizer.punct("»") == ['"']
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=["«"], pos=["PUNCT"])
|
||||
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=["»"], pos=["PUNCT"])
|
||||
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
|
||||
|
|
34
spacy/tests/lang/test_lemmatizers.py
Normal file
34
spacy/tests/lang/test_lemmatizers.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
import pytest
|
||||
from spacy import registry
|
||||
from spacy.lookups import Lookups
|
||||
from spacy.util import get_lang_class
|
||||
|
||||
|
||||
# fmt: off
|
||||
# Only include languages with no external dependencies
|
||||
# excluded: ru, uk
|
||||
# excluded for custom tables: pl
|
||||
LANGUAGES = ["el", "en", "fr", "nl"]
|
||||
# fmt: on
|
||||
|
||||
|
||||
@pytest.mark.parametrize("lang", LANGUAGES)
|
||||
def test_lemmatizer_initialize(lang, capfd):
|
||||
@registry.assets("lemmatizer_init_lookups")
|
||||
def lemmatizer_init_lookups():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"cope": "cope"})
|
||||
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
|
||||
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
|
||||
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
|
||||
return lookups
|
||||
|
||||
"""Test that languages can be initialized."""
|
||||
nlp = get_lang_class(lang)()
|
||||
nlp.add_pipe(
|
||||
"lemmatizer", config={"lookups": {"@assets": "lemmatizer_init_lookups"}}
|
||||
)
|
||||
# Check for stray print statements (see #3342)
|
||||
doc = nlp("test") # noqa: F841
|
||||
captured = capfd.readouterr()
|
||||
assert not captured.out
|
|
@ -1,14 +1,11 @@
|
|||
import pytest
|
||||
from spacy.morphology import Morphology
|
||||
from spacy.strings import StringStore, get_string_id
|
||||
from spacy.lemmatizer import Lemmatizer
|
||||
from spacy.lookups import Lookups
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def morphology():
|
||||
lemmatizer = Lemmatizer(Lookups())
|
||||
return Morphology(StringStore(), {}, lemmatizer)
|
||||
return Morphology(StringStore())
|
||||
|
||||
|
||||
def test_init(morphology):
|
||||
|
|
|
@ -2,21 +2,18 @@ import pytest
|
|||
import pickle
|
||||
from spacy.morphology import Morphology
|
||||
from spacy.strings import StringStore
|
||||
from spacy.lemmatizer import Lemmatizer
|
||||
from spacy.lookups import Lookups
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def morphology():
|
||||
tag_map = {"A": {"POS": "X"}, "B": {"POS": "NOUN"}}
|
||||
exc = {"A": {"a": {"POS": "VERB"}}}
|
||||
lemmatizer = Lemmatizer(Lookups())
|
||||
return Morphology(StringStore(), tag_map, lemmatizer, exc=exc)
|
||||
morphology = Morphology(StringStore())
|
||||
morphology.add("Feat1=Val1|Feat2=Val2")
|
||||
morphology.add("Feat3=Val3|Feat4=Val4")
|
||||
return morphology
|
||||
|
||||
|
||||
def test_morphology_pickle_roundtrip(morphology):
|
||||
b = pickle.dumps(morphology)
|
||||
reloaded_morphology = pickle.loads(b)
|
||||
|
||||
assert morphology.tag_map == reloaded_morphology.tag_map
|
||||
assert morphology.exc == reloaded_morphology.exc
|
||||
assert reloaded_morphology.get(morphology.strings["Feat1=Val1|Feat2=Val2"]) == "Feat1=Val1|Feat2=Val2"
|
||||
assert reloaded_morphology.get(morphology.strings["Feat3=Val3|Feat4=Val4"]) == "Feat3=Val3|Feat4=Val4"
|
||||
|
|
|
@ -82,10 +82,10 @@ def test_parser_merge_pp(en_tokenizer):
|
|||
text = "A phrase with another phrase occurs"
|
||||
heads = [1, 4, -1, 1, -2, 0]
|
||||
deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT"]
|
||||
tags = ["DT", "NN", "IN", "DT", "NN", "VBZ"]
|
||||
pos = ["DET", "NOUN", "ADP", "DET", "NOUN", "VERB"]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], deps=deps, heads=heads, tags=tags
|
||||
tokens.vocab, words=[t.text for t in tokens], deps=deps, heads=heads, pos=pos,
|
||||
)
|
||||
with doc.retokenize() as retokenizer:
|
||||
for np in doc.noun_chunks:
|
||||
|
|
109
spacy/tests/pipeline/test_lemmatizer.py
Normal file
109
spacy/tests/pipeline/test_lemmatizer.py
Normal file
|
@ -0,0 +1,109 @@
|
|||
import pytest
|
||||
|
||||
from spacy import util, registry
|
||||
from spacy.lang.en import English
|
||||
from spacy.lookups import Lookups, load_lookups
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def nlp():
|
||||
return English()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def lemmatizer(nlp):
|
||||
@registry.assets("cope_lookups")
|
||||
def cope_lookups():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"cope": "cope"})
|
||||
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
|
||||
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
|
||||
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
|
||||
return lookups
|
||||
|
||||
lemmatizer = nlp.add_pipe(
|
||||
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}}
|
||||
)
|
||||
return lemmatizer
|
||||
|
||||
|
||||
def test_lemmatizer_init(nlp):
|
||||
@registry.assets("cope_lookups")
|
||||
def cope_lookups():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"cope": "cope"})
|
||||
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
|
||||
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
|
||||
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
|
||||
return lookups
|
||||
|
||||
lemmatizer = nlp.add_pipe(
|
||||
"lemmatizer", config={"mode": "lookup", "lookups": {"@assets": "cope_lookups"}}
|
||||
)
|
||||
assert isinstance(lemmatizer.lookups, Lookups)
|
||||
assert lemmatizer.mode == "lookup"
|
||||
# replace any tables from spacy-lookups-data
|
||||
lemmatizer.lookups = Lookups()
|
||||
doc = nlp("coping")
|
||||
# lookup with no tables sets text as lemma
|
||||
assert doc[0].lemma_ == "coping"
|
||||
|
||||
nlp.remove_pipe("lemmatizer")
|
||||
|
||||
@registry.assets("empty_lookups")
|
||||
def empty_lookups():
|
||||
return Lookups()
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
nlp.add_pipe(
|
||||
"lemmatizer",
|
||||
config={"mode": "lookup", "lookups": {"@assets": "empty_lookups"}},
|
||||
)
|
||||
|
||||
|
||||
def test_lemmatizer_config(nlp, lemmatizer):
|
||||
doc = nlp.make_doc("coping")
|
||||
doc[0].pos_ = "VERB"
|
||||
assert doc[0].lemma_ == ""
|
||||
doc = lemmatizer(doc)
|
||||
assert doc[0].text == "coping"
|
||||
assert doc[0].lemma_ == "cope"
|
||||
|
||||
doc = nlp.make_doc("coping")
|
||||
doc[0].pos_ = "VERB"
|
||||
assert doc[0].lemma_ == ""
|
||||
doc = lemmatizer(doc)
|
||||
assert doc[0].text == "coping"
|
||||
assert doc[0].lemma_ == "cope"
|
||||
|
||||
|
||||
def test_lemmatizer_serialize(nlp, lemmatizer):
|
||||
@registry.assets("cope_lookups")
|
||||
def cope_lookups():
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_lookup", {"cope": "cope"})
|
||||
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
|
||||
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
|
||||
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
|
||||
return lookups
|
||||
|
||||
nlp2 = English()
|
||||
lemmatizer2 = nlp2.add_pipe(
|
||||
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}}
|
||||
)
|
||||
lemmatizer2.from_bytes(lemmatizer.to_bytes())
|
||||
assert lemmatizer.to_bytes() == lemmatizer2.to_bytes()
|
||||
assert lemmatizer.lookups.tables == lemmatizer2.lookups.tables
|
||||
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
nlp.to_disk(tmp_dir)
|
||||
nlp2 = util.load_model_from_path(tmp_dir)
|
||||
doc2 = nlp2.make_doc("coping")
|
||||
doc2[0].pos_ = "VERB"
|
||||
assert doc2[0].lemma_ == ""
|
||||
doc2 = lemmatizer(doc2)
|
||||
assert doc2[0].text == "coping"
|
||||
assert doc2[0].lemma_ == "cope"
|
|
@ -23,13 +23,12 @@ def test_tagger_begin_training_tag_map():
|
|||
nlp = Language()
|
||||
tagger = nlp.add_pipe("tagger")
|
||||
orig_tag_count = len(tagger.labels)
|
||||
tagger.add_label("A", {"POS": "NOUN"})
|
||||
tagger.add_label("A")
|
||||
nlp.begin_training()
|
||||
assert nlp.vocab.morphology.tag_map["A"] == {POS: NOUN}
|
||||
assert orig_tag_count + 1 == len(nlp.get_pipe("tagger").labels)
|
||||
|
||||
|
||||
TAG_MAP = {"N": {"pos": "NOUN"}, "V": {"pos": "VERB"}, "J": {"pos": "ADJ"}}
|
||||
TAGS = ("N", "V", "J")
|
||||
|
||||
MORPH_RULES = {"V": {"like": {"lemma": "luck"}}}
|
||||
|
||||
|
@ -42,15 +41,12 @@ TRAIN_DATA = [
|
|||
def test_overfitting_IO():
|
||||
# Simple test to try and quickly overfit the tagger - ensuring the ML models work correctly
|
||||
nlp = English()
|
||||
nlp.vocab.morphology.load_tag_map(TAG_MAP)
|
||||
nlp.vocab.morphology.load_morph_exceptions(MORPH_RULES)
|
||||
tagger = nlp.add_pipe("tagger", config={"set_morphology": True})
|
||||
nlp.vocab.morphology.load_tag_map(TAG_MAP)
|
||||
tagger = nlp.add_pipe("tagger")
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
for tag, values in TAG_MAP.items():
|
||||
tagger.add_label(tag, values)
|
||||
for tag in TAGS:
|
||||
tagger.add_label(tag)
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
for i in range(50):
|
||||
|
@ -65,7 +61,6 @@ def test_overfitting_IO():
|
|||
assert doc[1].tag_ is "V"
|
||||
assert doc[2].tag_ is "J"
|
||||
assert doc[3].tag_ is "N"
|
||||
assert doc[1].lemma_ == "luck"
|
||||
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
|
@ -76,4 +71,3 @@ def test_overfitting_IO():
|
|||
assert doc2[1].tag_ is "V"
|
||||
assert doc2[2].tag_ is "J"
|
||||
assert doc2[3].tag_ is "N"
|
||||
assert doc[1].lemma_ == "luck"
|
||||
|
|
|
@ -8,10 +8,8 @@ from spacy.attrs import IS_PUNCT, ORTH, LOWER
|
|||
from spacy.symbols import POS, VERB
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.lang.en import English
|
||||
from spacy.lemmatizer import Lemmatizer
|
||||
from spacy.lookups import Lookups
|
||||
from spacy.tokens import Doc, Span
|
||||
from spacy.lang.en.lemmatizer import is_base_form
|
||||
|
||||
from ..util import get_doc, make_tempdir
|
||||
|
||||
|
@ -157,16 +155,15 @@ def test_issue590(en_vocab):
|
|||
assert len(matches) == 2
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Old vocab-based lemmatization")
|
||||
def test_issue595():
|
||||
"""Test lemmatization of base forms"""
|
||||
words = ["Do", "n't", "feed", "the", "dog"]
|
||||
tag_map = {"VB": {POS: VERB, "VerbForm": "inf"}}
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_rules", {"verb": [["ed", "e"]]})
|
||||
lookups.add_table("lemma_index", {"verb": {}})
|
||||
lookups.add_table("lemma_exc", {"verb": {}})
|
||||
lemmatizer = Lemmatizer(lookups, is_base_form=is_base_form)
|
||||
vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map)
|
||||
vocab = Vocab()
|
||||
doc = Doc(vocab, words=words)
|
||||
doc[2].tag_ = "VB"
|
||||
assert doc[2].text == "feed"
|
||||
|
@ -389,6 +386,7 @@ def test_issue891(en_tokenizer, text):
|
|||
assert tokens[1].text == "/"
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Old vocab-based lemmatization")
|
||||
@pytest.mark.parametrize(
|
||||
"text,tag,lemma",
|
||||
[("anus", "NN", "anus"), ("princess", "NN", "princess"), ("inner", "JJ", "inner")],
|
||||
|
|
|
@ -6,7 +6,6 @@ from spacy.lang.en import English
|
|||
from spacy.lang.lex_attrs import LEX_ATTRS
|
||||
from spacy.matcher import Matcher
|
||||
from spacy.tokenizer import Tokenizer
|
||||
from spacy.lemmatizer import Lemmatizer
|
||||
from spacy.lookups import Lookups
|
||||
from spacy.symbols import ORTH, LEMMA, POS, VERB
|
||||
|
||||
|
@ -57,6 +56,7 @@ def test_issue1242():
|
|||
assert len(docs[1]) == 1
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="v3 no longer supports LEMMA/POS in tokenizer special cases")
|
||||
def test_issue1250():
|
||||
"""Test cached special cases."""
|
||||
special_case = [{ORTH: "reimbur", LEMMA: "reimburse", POS: "VERB"}]
|
||||
|
@ -87,20 +87,6 @@ def test_issue1375():
|
|||
assert doc[1].nbor(1).text == "2"
|
||||
|
||||
|
||||
def test_issue1387():
|
||||
tag_map = {"VBG": {POS: VERB, "VerbForm": "part"}}
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
|
||||
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
|
||||
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
|
||||
lemmatizer = Lemmatizer(lookups)
|
||||
vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map)
|
||||
doc = Doc(vocab, words=["coping"])
|
||||
doc[0].tag_ = "VBG"
|
||||
assert doc[0].text == "coping"
|
||||
assert doc[0].lemma_ == "cope"
|
||||
|
||||
|
||||
def test_issue1434():
|
||||
"""Test matches occur when optional element at end of short doc."""
|
||||
pattern = [{"ORTH": "Hello"}, {"IS_ALPHA": True, "OP": "?"}]
|
||||
|
|
|
@ -130,8 +130,6 @@ def test_issue1727():
|
|||
vectors = Vectors(data=data, keys=["I", "am", "Matt"])
|
||||
tagger = nlp.create_pipe("tagger")
|
||||
tagger.add_label("PRP")
|
||||
with pytest.warns(UserWarning):
|
||||
tagger.begin_training()
|
||||
assert tagger.cfg.get("pretrained_dims", 0) == 0
|
||||
tagger.vocab.vectors = vectors
|
||||
with make_tempdir() as path:
|
||||
|
|
|
@ -19,8 +19,8 @@ def test_issue2564():
|
|||
"""Test the tagger sets is_tagged correctly when used via Language.pipe."""
|
||||
nlp = Language()
|
||||
tagger = nlp.add_pipe("tagger")
|
||||
with pytest.warns(UserWarning):
|
||||
tagger.begin_training() # initialise weights
|
||||
tagger.add_label("A")
|
||||
tagger.begin_training()
|
||||
doc = nlp("hello world")
|
||||
assert doc.is_tagged
|
||||
docs = nlp.pipe(["hello", "world"])
|
||||
|
|
|
@ -241,11 +241,11 @@ def test_issue3449():
|
|||
assert t3[5].text == "I"
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue3456():
|
||||
# this crashed because of a padding error in layer.ops.unflatten in thinc
|
||||
nlp = English()
|
||||
nlp.add_pipe("tagger")
|
||||
tagger = nlp.add_pipe("tagger")
|
||||
tagger.add_label("A")
|
||||
nlp.begin_training()
|
||||
list(nlp.pipe(["hi", ""]))
|
||||
|
||||
|
|
|
@ -149,13 +149,15 @@ def test_issue3540(en_vocab):
|
|||
gold_text = ["I", "live", "in", "NewYork", "right", "now"]
|
||||
assert [token.text for token in doc] == gold_text
|
||||
gold_lemma = ["I", "live", "in", "NewYork", "right", "now"]
|
||||
for i, lemma in enumerate(gold_lemma):
|
||||
doc[i].lemma_ = lemma
|
||||
assert [token.lemma_ for token in doc] == gold_lemma
|
||||
vectors_1 = [token.vector for token in doc]
|
||||
assert len(vectors_1) == len(doc)
|
||||
|
||||
with doc.retokenize() as retokenizer:
|
||||
heads = [(doc[3], 1), doc[2]]
|
||||
attrs = {"POS": ["PROPN", "PROPN"], "DEP": ["pobj", "compound"]}
|
||||
attrs = {"POS": ["PROPN", "PROPN"], "LEMMA": ["New", "York"], "DEP": ["pobj", "compound"]}
|
||||
retokenizer.split(doc[3], ["New", "York"], heads=heads, attrs=attrs)
|
||||
|
||||
gold_text = ["I", "live", "in", "New", "York", "right", "now"]
|
||||
|
|
|
@ -271,6 +271,7 @@ def test_issue4267():
|
|||
assert token.ent_iob == 2
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="lemmatizer lookups no longer in vocab")
|
||||
def test_issue4272():
|
||||
"""Test that lookup table can be accessed from Token.lemma if no POS tags
|
||||
are available."""
|
||||
|
|
|
@ -62,8 +62,7 @@ def tagger():
|
|||
# need to add model for two reasons:
|
||||
# 1. no model leads to error in serialization,
|
||||
# 2. the affected line is the one for model serialization
|
||||
with pytest.warns(UserWarning):
|
||||
tagger.begin_training(pipeline=nlp.pipeline)
|
||||
tagger.begin_training(pipeline=nlp.pipeline)
|
||||
return tagger
|
||||
|
||||
|
||||
|
|
|
@ -44,8 +44,8 @@ def blank_parser(en_vocab):
|
|||
def taggers(en_vocab):
|
||||
cfg = {"model": DEFAULT_TAGGER_MODEL}
|
||||
model = registry.make_from_config(cfg, validate=True)["model"]
|
||||
tagger1 = Tagger(en_vocab, model, set_morphology=True)
|
||||
tagger2 = Tagger(en_vocab, model, set_morphology=True)
|
||||
tagger1 = Tagger(en_vocab, model)
|
||||
tagger2 = Tagger(en_vocab, model)
|
||||
return tagger1, tagger2
|
||||
|
||||
|
||||
|
@ -125,8 +125,8 @@ def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
|
|||
tagger2.to_disk(file_path2)
|
||||
cfg = {"model": DEFAULT_TAGGER_MODEL}
|
||||
model = registry.make_from_config(cfg, validate=True)["model"]
|
||||
tagger1_d = Tagger(en_vocab, model, set_morphology=True).from_disk(file_path1)
|
||||
tagger2_d = Tagger(en_vocab, model, set_morphology=True).from_disk(file_path2)
|
||||
tagger1_d = Tagger(en_vocab, model).from_disk(file_path1)
|
||||
tagger2_d = Tagger(en_vocab, model).from_disk(file_path2)
|
||||
assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
|
||||
|
||||
|
||||
|
|
|
@ -8,7 +8,6 @@ from ..util import make_tempdir
|
|||
|
||||
test_strings = [([], []), (["rats", "are", "cute"], ["i", "like", "rats"])]
|
||||
test_strings_attrs = [(["rats", "are", "cute"], "Hello")]
|
||||
default_strings = ("_SP", "POS=SPACE")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text", ["rat"])
|
||||
|
@ -34,10 +33,8 @@ def test_serialize_vocab_roundtrip_bytes(strings1, strings2):
|
|||
assert vocab1.to_bytes() == vocab1_b
|
||||
new_vocab1 = Vocab().from_bytes(vocab1_b)
|
||||
assert new_vocab1.to_bytes() == vocab1_b
|
||||
assert len(new_vocab1.strings) == len(strings1) + 2 # adds _SP and POS=SPACE
|
||||
assert sorted([s for s in new_vocab1.strings]) == sorted(
|
||||
strings1 + list(default_strings)
|
||||
)
|
||||
assert len(new_vocab1.strings) == len(strings1)
|
||||
assert sorted([s for s in new_vocab1.strings]) == sorted(strings1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("strings1,strings2", test_strings)
|
||||
|
@ -52,16 +49,12 @@ def test_serialize_vocab_roundtrip_disk(strings1, strings2):
|
|||
vocab1_d = Vocab().from_disk(file_path1)
|
||||
vocab2_d = Vocab().from_disk(file_path2)
|
||||
# check strings rather than lexemes, which are only reloaded on demand
|
||||
assert strings1 == [s for s in vocab1_d.strings if s not in default_strings]
|
||||
assert strings2 == [s for s in vocab2_d.strings if s not in default_strings]
|
||||
assert strings1 == [s for s in vocab1_d.strings]
|
||||
assert strings2 == [s for s in vocab2_d.strings]
|
||||
if strings1 == strings2:
|
||||
assert [s for s in vocab1_d.strings if s not in default_strings] == [
|
||||
s for s in vocab2_d.strings if s not in default_strings
|
||||
]
|
||||
assert [s for s in vocab1_d.strings] == [s for s in vocab2_d.strings]
|
||||
else:
|
||||
assert [s for s in vocab1_d.strings if s not in default_strings] != [
|
||||
s for s in vocab2_d.strings if s not in default_strings
|
||||
]
|
||||
assert [s for s in vocab1_d.strings] != [s for s in vocab2_d.strings]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
|
||||
|
@ -80,7 +73,7 @@ def test_deserialize_vocab_seen_entries(strings, lex_attr):
|
|||
# Reported in #2153
|
||||
vocab = Vocab(strings=strings)
|
||||
vocab.from_bytes(vocab.to_bytes())
|
||||
assert len(vocab.strings) == len(strings) + 2 # adds _SP and POS=SPACE
|
||||
assert len(vocab.strings) == len(strings)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
|
||||
|
|
|
@ -1,64 +0,0 @@
|
|||
import pytest
|
||||
from spacy.tokens import Doc
|
||||
from spacy.language import Language
|
||||
from spacy.lookups import Lookups
|
||||
from spacy.lemmatizer import Lemmatizer
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="We probably don't want to support this anymore in v3?")
|
||||
def test_lemmatizer_reflects_lookups_changes():
|
||||
"""Test for an issue that'd cause lookups available in a model loaded from
|
||||
disk to not be reflected in the lemmatizer."""
|
||||
nlp = Language()
|
||||
assert Doc(nlp.vocab, words=["foo"])[0].lemma_ == "foo"
|
||||
table = nlp.vocab.lookups.add_table("lemma_lookup")
|
||||
table["foo"] = "bar"
|
||||
assert Doc(nlp.vocab, words=["foo"])[0].lemma_ == "bar"
|
||||
table = nlp.vocab.lookups.get_table("lemma_lookup")
|
||||
table["hello"] = "world"
|
||||
# The update to the table should be reflected in the lemmatizer
|
||||
assert Doc(nlp.vocab, words=["hello"])[0].lemma_ == "world"
|
||||
new_nlp = Language()
|
||||
table = new_nlp.vocab.lookups.add_table("lemma_lookup")
|
||||
table["hello"] = "hi"
|
||||
assert Doc(new_nlp.vocab, words=["hello"])[0].lemma_ == "hi"
|
||||
nlp_bytes = nlp.to_bytes()
|
||||
new_nlp.from_bytes(nlp_bytes)
|
||||
# Make sure we have the previously saved lookup table
|
||||
assert "lemma_lookup" in new_nlp.vocab.lookups
|
||||
assert len(new_nlp.vocab.lookups.get_table("lemma_lookup")) == 2
|
||||
assert new_nlp.vocab.lookups.get_table("lemma_lookup")["hello"] == "world"
|
||||
assert Doc(new_nlp.vocab, words=["foo"])[0].lemma_ == "bar"
|
||||
assert Doc(new_nlp.vocab, words=["hello"])[0].lemma_ == "world"
|
||||
|
||||
|
||||
def test_tagger_warns_no_lookups():
|
||||
nlp = Language()
|
||||
nlp.vocab.lookups = Lookups()
|
||||
assert not len(nlp.vocab.lookups)
|
||||
tagger = nlp.add_pipe("tagger")
|
||||
with pytest.warns(UserWarning):
|
||||
tagger.begin_training()
|
||||
with pytest.warns(UserWarning):
|
||||
nlp.begin_training()
|
||||
nlp.vocab.lookups.add_table("lemma_lookup")
|
||||
nlp.vocab.lookups.add_table("lexeme_norm")
|
||||
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
|
||||
with pytest.warns(None) as record:
|
||||
nlp.begin_training()
|
||||
assert not record.list
|
||||
|
||||
|
||||
def test_lemmatizer_without_is_base_form_implementation():
|
||||
# Norwegian example from #5658
|
||||
lookups = Lookups()
|
||||
lookups.add_table("lemma_rules", {"noun": []})
|
||||
lookups.add_table("lemma_index", {"noun": {}})
|
||||
lookups.add_table("lemma_exc", {"noun": {"formuesskatten": ["formuesskatt"]}})
|
||||
|
||||
lemmatizer = Lemmatizer(lookups, is_base_form=None)
|
||||
assert lemmatizer(
|
||||
"Formuesskatten",
|
||||
"noun",
|
||||
{"Definite": "def", "Gender": "masc", "Number": "sing"},
|
||||
) == ["formuesskatt"]
|
|
@ -112,16 +112,15 @@ def test_tokenizer_validate_special_case(tokenizer, text, tokens):
|
|||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text,tokens", [("lorem", [{"orth": "lo", "tag": "NN"}, {"orth": "rem"}])]
|
||||
"text,tokens", [("lorem", [{"orth": "lo", "norm": "LO"}, {"orth": "rem"}])]
|
||||
)
|
||||
def test_tokenizer_add_special_case_tag(text, tokens):
|
||||
vocab = Vocab(tag_map={"NN": {"pos": "NOUN"}})
|
||||
vocab = Vocab()
|
||||
tokenizer = Tokenizer(vocab, {}, None, None, None)
|
||||
tokenizer.add_special_case(text, tokens)
|
||||
doc = tokenizer(text)
|
||||
assert doc[0].text == tokens[0]["orth"]
|
||||
assert doc[0].tag_ == tokens[0]["tag"]
|
||||
assert doc[0].pos_ == "NOUN"
|
||||
assert doc[0].norm_ == tokens[0]["norm"]
|
||||
assert doc[1].text == tokens[1]["orth"]
|
||||
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ from .span cimport Span
|
|||
from .token cimport Token
|
||||
from ..lexeme cimport Lexeme, EMPTY_LEXEME
|
||||
from ..structs cimport LexemeC, TokenC
|
||||
from ..attrs cimport TAG, MORPH
|
||||
from ..attrs cimport MORPH
|
||||
from ..vocab cimport Vocab
|
||||
|
||||
from .underscore import is_writable_attr
|
||||
|
@ -365,8 +365,6 @@ def _split(Doc doc, int token_index, orths, heads, attrs):
|
|||
doc[token_index + i]._.set(ext_attr_key, ext_attr_value)
|
||||
# NB: We need to call get_string_id here because only the keys are
|
||||
# "intified" (since we support "KEY": [value, value] syntax here).
|
||||
elif attr_name == TAG:
|
||||
doc.vocab.morphology.assign_tag(token, get_string_id(attr_value))
|
||||
else:
|
||||
# Set attributes on both token and lexeme to take care of token
|
||||
# attribute vs. lexical attribute without having to enumerate
|
||||
|
@ -431,8 +429,6 @@ def set_token_attrs(Token py_token, attrs):
|
|||
if attr_name == "_": # Set extension attributes
|
||||
for ext_attr_key, ext_attr_value in attr_value.items():
|
||||
py_token._.set(ext_attr_key, ext_attr_value)
|
||||
elif attr_name == TAG:
|
||||
doc.vocab.morphology.assign_tag(token, attr_value)
|
||||
else:
|
||||
# Set attributes on both token and lexeme to take care of token
|
||||
# attribute vs. lexical attribute without having to enumerate
|
||||
|
|
|
@ -832,13 +832,6 @@ cdef class Doc:
|
|||
rel_head_index=abs_head_index-i
|
||||
)
|
||||
)
|
||||
# Do TAG first. This lets subsequent loop override stuff like POS, LEMMA
|
||||
if TAG in attrs:
|
||||
col = attrs.index(TAG)
|
||||
for i in range(length):
|
||||
value = values[col * stride + i]
|
||||
if value != 0:
|
||||
self.vocab.morphology.assign_tag(&tokens[i], value)
|
||||
# Verify ENT_IOB are proper integers
|
||||
if ENT_IOB in attrs:
|
||||
iob_strings = Token.iob_strings()
|
||||
|
@ -857,12 +850,11 @@ cdef class Doc:
|
|||
for i in range(length):
|
||||
token = &self.c[i]
|
||||
for j in range(n_attrs):
|
||||
if attr_ids[j] != TAG:
|
||||
value = values[j * stride + i]
|
||||
if attr_ids[j] == MORPH:
|
||||
# add morph to morphology table
|
||||
self.vocab.morphology.add(self.vocab.strings[value])
|
||||
Token.set_struct_attr(token, attr_ids[j], value)
|
||||
value = values[j * stride + i]
|
||||
if attr_ids[j] == MORPH:
|
||||
# add morph to morphology table
|
||||
self.vocab.morphology.add(self.vocab.strings[value])
|
||||
Token.set_struct_attr(token, attr_ids[j], value)
|
||||
# Set flags
|
||||
self.is_parsed = bool(self.is_parsed or HEAD in attrs)
|
||||
self.is_tagged = bool(self.is_tagged or TAG in attrs or POS in attrs)
|
||||
|
|
|
@ -332,11 +332,7 @@ cdef class Token:
|
|||
inflectional suffixes.
|
||||
"""
|
||||
def __get__(self):
|
||||
if self.c.lemma == 0:
|
||||
lemma_ = self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
|
||||
return self.vocab.strings[lemma_]
|
||||
else:
|
||||
return self.c.lemma
|
||||
return self.c.lemma
|
||||
|
||||
def __set__(self, attr_t lemma):
|
||||
self.c.lemma = lemma
|
||||
|
@ -355,7 +351,7 @@ cdef class Token:
|
|||
return self.c.tag
|
||||
|
||||
def __set__(self, attr_t tag):
|
||||
self.vocab.morphology.assign_tag(self.c, tag)
|
||||
self.c.tag = tag
|
||||
|
||||
property dep:
|
||||
"""RETURNS (uint64): ID of syntactic dependency label."""
|
||||
|
@ -888,10 +884,7 @@ cdef class Token:
|
|||
with no inflectional suffixes.
|
||||
"""
|
||||
def __get__(self):
|
||||
if self.c.lemma == 0:
|
||||
return self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
|
||||
else:
|
||||
return self.vocab.strings[self.c.lemma]
|
||||
return self.vocab.strings[self.c.lemma]
|
||||
|
||||
def __set__(self, unicode lemma_):
|
||||
self.c.lemma = self.vocab.strings.add(lemma_)
|
||||
|
|
|
@ -9,11 +9,10 @@ from .lexeme cimport EMPTY_LEXEME, OOV_RANK
|
|||
from .lexeme cimport Lexeme
|
||||
from .typedefs cimport attr_t
|
||||
from .tokens.token cimport Token
|
||||
from .attrs cimport LANG, ORTH, TAG, POS
|
||||
from .attrs cimport LANG, ORTH
|
||||
|
||||
from .compat import copy_reg
|
||||
from .errors import Errors
|
||||
from .lemmatizer import Lemmatizer
|
||||
from .attrs import intify_attrs, NORM, IS_STOP
|
||||
from .vectors import Vectors
|
||||
from .util import registry
|
||||
|
@ -23,7 +22,7 @@ from .lang.norm_exceptions import BASE_NORMS
|
|||
from .lang.lex_attrs import LEX_ATTRS, is_stop, get_lang
|
||||
|
||||
|
||||
def create_vocab(lang, defaults, lemmatizer=None, vectors_name=None, load_data=True):
|
||||
def create_vocab(lang, defaults, vectors_name=None, load_data=True):
|
||||
# If the spacy-lookups-data package is installed, we pre-populate the lookups
|
||||
# with lexeme data, if available
|
||||
if load_data:
|
||||
|
@ -43,7 +42,6 @@ def create_vocab(lang, defaults, lemmatizer=None, vectors_name=None, load_data=T
|
|||
)
|
||||
return Vocab(
|
||||
lex_attr_getters=lex_attrs,
|
||||
lemmatizer=lemmatizer,
|
||||
lookups=lookups,
|
||||
writing_system=defaults.writing_system,
|
||||
get_noun_chunks=defaults.syntax_iterators.get("noun_chunks"),
|
||||
|
@ -58,17 +56,13 @@ cdef class Vocab:
|
|||
|
||||
DOCS: https://spacy.io/api/vocab
|
||||
"""
|
||||
def __init__(self, lex_attr_getters=None, lemmatizer=None,
|
||||
strings=tuple(), lookups=None, tag_map={},
|
||||
def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None,
|
||||
oov_prob=-20., vectors_name=None, writing_system={},
|
||||
get_noun_chunks=None, **deprecated_kwargs):
|
||||
"""Create the vocabulary.
|
||||
|
||||
lex_attr_getters (dict): A dictionary mapping attribute IDs to
|
||||
functions to compute them. Defaults to `None`.
|
||||
tag_map (dict): Dictionary mapping fine-grained tags to coarse-grained
|
||||
parts-of-speech, and optionally morphological attributes.
|
||||
lemmatizer (object): A lemmatizer. Defaults to `None`.
|
||||
strings (StringStore): StringStore that maps strings to integers, and
|
||||
vice versa.
|
||||
lookups (Lookups): Container for large lookup tables and dictionaries.
|
||||
|
@ -78,8 +72,6 @@ cdef class Vocab:
|
|||
lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
|
||||
if lookups in (None, True, False):
|
||||
lookups = Lookups()
|
||||
if lemmatizer in (None, True, False):
|
||||
lemmatizer = Lemmatizer(lookups)
|
||||
self.cfg = {'oov_prob': oov_prob}
|
||||
self.mem = Pool()
|
||||
self._by_orth = PreshMap()
|
||||
|
@ -89,7 +81,7 @@ cdef class Vocab:
|
|||
for string in strings:
|
||||
_ = self[string]
|
||||
self.lex_attr_getters = lex_attr_getters
|
||||
self.morphology = Morphology(self.strings, tag_map, lemmatizer)
|
||||
self.morphology = Morphology(self.strings)
|
||||
self.vectors = Vectors(name=vectors_name)
|
||||
self.lookups = lookups
|
||||
self.writing_system = writing_system
|
||||
|
@ -268,12 +260,6 @@ cdef class Vocab:
|
|||
# Set the special tokens up to have arbitrary attributes
|
||||
lex = <LexemeC*>self.get_by_orth(self.mem, props[ORTH])
|
||||
token.lex = lex
|
||||
if TAG in props:
|
||||
self.morphology.assign_tag(token, props[TAG])
|
||||
elif POS in props:
|
||||
# Don't allow POS to be set without TAG -- this causes problems,
|
||||
# see #1773
|
||||
props.pop(POS)
|
||||
for attr_id, value in props.items():
|
||||
Token.set_struct_attr(token, attr_id, value)
|
||||
# NORM is the only one that overlaps between the two
|
||||
|
|
|
@ -1,102 +1,263 @@
|
|||
---
|
||||
title: Lemmatizer
|
||||
teaser: Assign the base forms of words
|
||||
tag: class
|
||||
source: spacy/lemmatizer.py
|
||||
source: spacy/pipeline/lemmatizer.py
|
||||
new: 3
|
||||
teaser: 'Pipeline component for lemmatization'
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: lemmatizer
|
||||
api_trainable: false
|
||||
---
|
||||
|
||||
<!-- TODO: rewrite once it's converted to pipe -->
|
||||
## Config and implementation
|
||||
|
||||
The `Lemmatizer` supports simple part-of-speech-sensitive suffix rules and
|
||||
lookup tables.
|
||||
The default config is defined by the pipeline component factory and describes
|
||||
how the component should be configured. You can override its settings via the
|
||||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||||
[`config.cfg` for training](/usage/training#config).
|
||||
|
||||
For examples of the lookups data formats used by the lookup and rule-based
|
||||
lemmatizers, see the
|
||||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) repo.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> config = {"mode": "rule"}
|
||||
> nlp.add_pipe("lemmatizer", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Type | Description | Default |
|
||||
| ----------- | ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------- |
|
||||
| `mode` | str | The lemmatizer mode, e.g. "lookup" or "rule". | `"lookup"` |
|
||||
| `lookups` | [`Lookups`](/api/lookups) | The lookups object containing the tables such as "lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup". If `None`, default tables are loaded from `spacy-lookups-data`. | `None` |
|
||||
| `overwrite` | bool | Whether to overwrite existing lemmas. | `False` |
|
||||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | **Not yet implemented:** the model to use. | `None` |
|
||||
|
||||
```python
|
||||
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/lemmatizer.py
|
||||
```
|
||||
|
||||
## Lemmatizer.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
Initialize a `Lemmatizer`. Typically, this happens under the hood within spaCy
|
||||
when a `Language` subclass and its `Vocab` is initialized.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.lemmatizer import Lemmatizer
|
||||
> from spacy.lookups import Lookups
|
||||
> lookups = Lookups()
|
||||
> lookups.add_table("lemma_rules", {"noun": [["s", ""]]})
|
||||
> lemmatizer = Lemmatizer(lookups)
|
||||
> ```
|
||||
> # Construction via add_pipe with default model
|
||||
> lemmatizer = nlp.add_pipe("lemmatizer")
|
||||
>
|
||||
> For examples of the data format, see the
|
||||
> [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) repo.
|
||||
> # Construction via add_pipe with custom settings
|
||||
> config = {"mode": "rule", overwrite=True}
|
||||
> lemmatizer = nlp.add_pipe("lemmatizer", config=config)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------------------------------- | ------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `lookups` <Tag variant="new">2.2</Tag> | [`Lookups`](/api/lookups) | The lookups object containing the (optional) tables `"lemma_rules"`, `"lemma_index"`, `"lemma_exc"` and `"lemma_lookup"`. |
|
||||
Create a new pipeline instance. In your application, you would normally use a
|
||||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | ------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | [`Vocab`](/api/vocab) | The vocab. |
|
||||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | A model (not yet implemented). |
|
||||
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
||||
| _keyword-only_ | | |
|
||||
| mode | str | The lemmatizer mode, e.g. "lookup" or "rule". Defaults to "lookup". |
|
||||
| lookups | [`Lookups`](/api/lookups) | A lookups object containing the tables such as "lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup". Defaults to `None`. |
|
||||
| overwrite | bool | Whether to overwrite existing lemmas. |
|
||||
|
||||
## Lemmatizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
Lemmatize a string.
|
||||
Apply the pipe to one document. The document is modified in place, and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.lemmatizer import Lemmatizer
|
||||
> from spacy.lookups import Lookups
|
||||
> lookups = Lookups()
|
||||
> lookups.add_table("lemma_rules", {"noun": [["s", ""]]})
|
||||
> lemmatizer = Lemmatizer(lookups)
|
||||
> lemmas = lemmatizer("ducks", "NOUN")
|
||||
> assert lemmas == ["duck"]
|
||||
> doc = nlp("This is a sentence.")
|
||||
> lemmatizer = nlp.add_pipe("lemmatizer")
|
||||
> # This usually happens under the hood
|
||||
> processed = lemmatizer(doc)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | ------------- | -------------------------------------------------------------------------------------------------------- |
|
||||
| `string` | str | The string to lemmatize, e.g. the token text. |
|
||||
| `univ_pos` | str / int | The token's universal part-of-speech tag. |
|
||||
| `morphology` | dict / `None` | Morphological features following the [Universal Dependencies](http://universaldependencies.org/) scheme. |
|
||||
| **RETURNS** | list | The available lemmas for the string. |
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ------------------------ |
|
||||
| `doc` | `Doc` | The document to process. |
|
||||
| **RETURNS** | `Doc` | The processed document. |
|
||||
|
||||
## Lemmatizer.lookup {#lookup tag="method" new="2"}
|
||||
## Lemmatizer.pipe {#pipe tag="method"}
|
||||
|
||||
Look up a lemma in the lookup table, if available. If no lemma is found, the
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> lemmatizer = nlp.add_pipe("lemmatizer")
|
||||
> for doc in lemmatizer.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | --------------- | ------------------------------------------------------ |
|
||||
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
||||
| _keyword-only_ | | |
|
||||
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
||||
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
||||
|
||||
## Lemmatizer.lookup_lemmatize {#lookup_lemmatize tag="method"}
|
||||
|
||||
Lemmatize a token using a lookup-based approach. If no lemma is found, the
|
||||
original string is returned. Languages can provide a
|
||||
[lookup table](/usage/adding-languages#lemmatizer) via the `Lookups`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> lookups = Lookups()
|
||||
> lookups.add_table("lemma_lookup", {"going": "go"})
|
||||
> assert lemmatizer.lookup("going") == "go"
|
||||
> ```
|
||||
| Name | Type | Description |
|
||||
| ----------- | --------------------- | ------------------------------------- |
|
||||
| `token` | [`Token`](/api/token) | The token to lemmatize. |
|
||||
| **RETURNS** | `List[str]` | A list containing one or more lemmas. |
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---- | ----------------------------------------------------------------------------------------------------------- |
|
||||
| `string` | str | The string to look up. |
|
||||
| `orth` | int | Optional hash of the string to look up. If not set, the string will be used and hashed. Defaults to `None`. |
|
||||
| **RETURNS** | str | The lemma if the string was found, otherwise the original string. |
|
||||
## Lemmatizer.rule_lemmatize {#rule_lemmatize tag="method"}
|
||||
|
||||
Lemmatize a token using a rule-based approach. Typically relies on POS tags.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | --------------------- | ------------------------------------- |
|
||||
| `token` | [`Token`](/api/token) | The token to lemmatize. |
|
||||
| **RETURNS** | `List[str]` | A list containing one or more lemmas. |
|
||||
|
||||
## Lemmatizer.is_base_form {#is_base_form tag="method"}
|
||||
|
||||
Check whether we're dealing with an uninflected paradigm, so we can avoid
|
||||
lemmatization entirely.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | --------------------- | ------------------------------------------------------------------------------------------------------- |
|
||||
| `token` | [`Token`](/api/token) | The token to analyze. |
|
||||
| **RETURNS** | bool | Whether the token's attributes (e.g., part-of-speech tag, morphological features) describe a base form. |
|
||||
|
||||
## Lemmatizer.get_lookups_config {#get_lookups_config tag="classmethod"}
|
||||
|
||||
Returns the lookups configuration settings for a given mode for use in
|
||||
[`Lemmatizer.load_lookups`](#load_lookups).
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---- | ------------------------------------------------- |
|
||||
| `mode` | str | The lemmatizer mode. |
|
||||
| **RETURNS** | dict | The lookups configuration settings for this mode. |
|
||||
|
||||
## Lemmatizer.load_lookups {#load_lookups tag="classmethod"}
|
||||
|
||||
Load and validate lookups tables. If the provided lookups is `None`, load the
|
||||
default lookups tables according to the language and mode settings. Confirm that
|
||||
all required tables for the language and mode are present.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------------------- | ---------------------------------------------------------------------------- |
|
||||
| `lang` | str | The language. |
|
||||
| `mode` | str | The lemmatizer mode. |
|
||||
| `lookups` | [`Lookups`](/api/lookups) | The provided lookups, may be `None` if the default lookups should be loaded. |
|
||||
| **RETURNS** | [`Lookups`](/api/lookups) | The lookups object. |
|
||||
|
||||
## Lemmatizer.to_disk {#to_disk tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> pos = "verb"
|
||||
> morph = {"VerbForm": "inf"}
|
||||
> is_base_form = lemmatizer.is_base_form(pos, morph)
|
||||
> assert is_base_form == True
|
||||
> lemmatizer = nlp.add_pipe("lemmatizer")
|
||||
> lemmatizer.to_disk("/path/to/lemmatizer")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | --------- | --------------------------------------------------------------------------------------- |
|
||||
| `univ_pos` | str / int | The token's universal part-of-speech tag. |
|
||||
| `morphology` | dict | The token's morphological features. |
|
||||
| **RETURNS** | bool | Whether the token's part-of-speech tag and morphological features describe a base form. |
|
||||
| Name | Type | Description |
|
||||
| -------------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||||
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||||
| _keyword-only_ | | |
|
||||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
|
||||
## Lemmatizer.from_disk {#from_disk tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> lemmatizer = nlp.add_pipe("lemmatizer")
|
||||
> lemmatizer.from_disk("/path/to/lemmatizer")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | --------------- | -------------------------------------------------------------------------- |
|
||||
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||||
| _keyword-only_ | | |
|
||||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | `Lemmatizer` | The modified `Lemmatizer` object. |
|
||||
|
||||
## Lemmatizer.to_bytes {#to_bytes tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> lemmatizer = nlp.add_pipe("lemmatizer")
|
||||
> lemmatizer_bytes = lemmatizer.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring.
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | | |
|
||||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | bytes | The serialized form of the `Lemmatizer` object. |
|
||||
|
||||
## Lemmatizer.from_bytes {#from_bytes tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> lemmatizer_bytes = lemmatizer.to_bytes()
|
||||
> lemmatizer = nlp.add_pipe("lemmatizer")
|
||||
> lemmatizer.from_bytes(lemmatizer_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
||||
| `bytes_data` | bytes | The data to load from. |
|
||||
| _keyword-only_ | | |
|
||||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | `Lemmatizer` | The `Lemmatizer` object. |
|
||||
|
||||
## Lemmatizer.mode {#mode tag="property"}
|
||||
|
||||
The lemmatizer mode.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | -------------------- |
|
||||
| **RETURNS** | `str` | The lemmatizer mode. |
|
||||
|
||||
## Attributes {#attributes}
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------------------------------- | ------------------------- | --------------------------------------------------------------- |
|
||||
| `lookups` <Tag variant="new">2.2</Tag> | [`Lookups`](/api/lookups) | The lookups object containing the rules and data, if available. |
|
||||
| Name | Type | Description |
|
||||
| --------- | --------------------------------- | ------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `lookups` | [`Lookups`](/api/lookups) | The lookups object. |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = lemmatizer.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| --------- | ---------------------------------------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `lookups` | The lookups. You usually don't want to exclude this. |
|
||||
|
|
|
@ -11,22 +11,19 @@ this class.
|
|||
|
||||
## Morphology.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
Create a Morphology object using the tag map, lemmatizer and exceptions.
|
||||
Create a Morphology object.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.morphology import Morphology
|
||||
>
|
||||
> morphology = Morphology(strings, tag_map, lemmatizer)
|
||||
> morphology = Morphology(strings)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | ----------------- | ---------------------------------------------------------------------------------------------------------- |
|
||||
| `strings` | `StringStore` | The string store. |
|
||||
| `tag_map` | `Dict[str, Dict]` | The tag map. |
|
||||
| `lemmatizer` | `Lemmatizer` | The lemmatizer. |
|
||||
| `exc` | `Dict[str, Dict]` | A dictionary of exceptions in the format `{tag: {orth: {"POS": "X", "Feat1": "Val1, "Feat2": "Val2", ...}` |
|
||||
| Name | Type | Description |
|
||||
| --------- | ------------- | ----------------- |
|
||||
| `strings` | `StringStore` | The string store. |
|
||||
|
||||
## Morphology.add {#add tag="method"}
|
||||
|
||||
|
@ -62,52 +59,6 @@ Get the FEATS string for the hash of the morphological analysis.
|
|||
| ------- | ---- | --------------------------------------- |
|
||||
| `morph` | int | The hash of the morphological analysis. |
|
||||
|
||||
## Morphology.load_tag_map {#load_tag_map tag="method"}
|
||||
|
||||
Replace the current tag map with the provided tag map.
|
||||
|
||||
| Name | Type | Description |
|
||||
| --------- | ----------------- | ------------ |
|
||||
| `tag_map` | `Dict[str, Dict]` | The tag map. |
|
||||
|
||||
## Morphology.load_morph_exceptions {#load_morph_exceptions tag="method"}
|
||||
|
||||
Replace the current morphological exceptions with the provided exceptions.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------- | ----------------- | ----------------------------- |
|
||||
| `morph_rules` | `Dict[str, Dict]` | The morphological exceptions. |
|
||||
|
||||
## Morphology.add_special_case {#add_special_case tag="method"}
|
||||
|
||||
Add a special-case rule to the morphological analyzer. Tokens whose tag and orth
|
||||
match the rule will receive the specified properties.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> attrs = {"POS": "DET", "Definite": "Def"}
|
||||
> morphology.add_special_case("DT", "the", attrs)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ---------- | ---- | ---------------------------------------------- |
|
||||
| `tag_str` | str | The fine-grained tag. |
|
||||
| `orth_str` | str | The token text. |
|
||||
| `attrs` | dict | The features to assign for this token and tag. |
|
||||
|
||||
## Morphology.exc {#exc tag="property"}
|
||||
|
||||
The current morphological exceptions.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ---------- | ---- | --------------------------------------------------- |
|
||||
| **YIELDS** | dict | The current dictionary of morphological exceptions. |
|
||||
|
||||
## Morphology.lemmatize {#lemmatize tag="method"}
|
||||
|
||||
TODO
|
||||
|
||||
## Morphology.feats_to_dict {#feats_to_dict tag="staticmethod"}
|
||||
|
||||
Convert a string FEATS representation to a dictionary of features and values in
|
||||
|
|
|
@ -47,7 +47,7 @@ https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/tagger.pyx
|
|||
>
|
||||
> # Construction via create_pipe with custom model
|
||||
> config = {"model": {"@architectures": "my_tagger"}}
|
||||
> parser = nlp.add_pipe("tagger", config=config)
|
||||
> tagger = nlp.add_pipe("tagger", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy.pipeline import Tagger
|
||||
|
@ -285,16 +285,14 @@ Add a new label to the pipe.
|
|||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.symbols import POS
|
||||
> tagger = nlp.add_pipe("tagger")
|
||||
> tagger.add_label("MY_LABEL", {POS: "NOUN"})
|
||||
> tagger.add_label("MY_LABEL")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---------------- | --------------------------------------------------------------- |
|
||||
| `label` | str | The label to add. |
|
||||
| `values` | `Dict[int, str]` | Optional values to map to the label, e.g. a tag map dictionary. |
|
||||
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---- | --------------------------------------------------- |
|
||||
| `label` | str | The label to add. |
|
||||
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
|
||||
|
||||
## Tagger.to_disk {#to_disk tag="method"}
|
||||
|
||||
|
@ -369,9 +367,7 @@ Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|||
|
||||
## Tagger.labels {#labels tag="property"}
|
||||
|
||||
The labels currently added to the component. Note that even for a blank
|
||||
component, this will always include the built-in coarse-grained part-of-speech
|
||||
tags by default, e.g. `VERB`, `NOUN` and so on.
|
||||
The labels currently added to the component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
|
@ -396,9 +392,8 @@ serialization by passing in the string names via the `exclude` argument.
|
|||
> data = tagger.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| --------- | ------------------------------------------------------------------------------------------ |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||||
| `tag_map` | The [tag map](/usage/adding-languages#tag-map) mapping fine-grained to coarse-grained tag. |
|
||||
| Name | Description |
|
||||
| ------- | -------------------------------------------------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||||
|
|
|
@ -24,8 +24,6 @@ Create the vocabulary.
|
|||
| Name | Type | Description |
|
||||
| -------------------------------------------- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `lex_attr_getters` | dict | A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`. |
|
||||
| `tag_map` | dict | A dictionary mapping fine-grained tags to coarse-grained parts-of-speech, and optionally morphological attributes. |
|
||||
| `lemmatizer` | object | A lemmatizer. Defaults to `None`. |
|
||||
| `strings` | `StringStore` / list | A [`StringStore`](/api/stringstore) that maps strings to hash values, and vice versa, or a list of strings. |
|
||||
| `lookups` | `Lookups` | A [`Lookups`](/api/lookups) that stores the `lemma_\*`, `lexeme_norm` and other large lookup tables. Defaults to `None`. |
|
||||
| `lookups_extra` <Tag variant="new">2.3</Tag> | `Lookups` | A [`Lookups`](/api/lookups) that stores the optional `lexeme_cluster`/`lexeme_prob`/`lexeme_sentiment`/`lexeme_settings` lookup tables. Defaults to `None`. |
|
||||
|
|
Loading…
Reference in New Issue
Block a user