Add Lemmatizer and simplify related components (#5848)

* Add Lemmatizer and simplify related components

* Add `Lemmatizer` pipe with `lookup` and `rule` modes using the
`Lookups` tables.
* Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma)
* Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer,
or morph rules)
* Remove lemmatizer from `Vocab`
* Adjust many many tests

Differences:

* No default lookup lemmas
* No special treatment of TAG in `from_array` and similar required
* Easier to modify labels in a `Tagger`
* No extra strings added from morphology / tag map

* Fix test

* Initial fix for Lemmatizer config/serialization

* Adjust init test to be more generic

* Adjust init test to force empty Lookups

* Add simple cache to rule-based lemmatizer

* Convert language-specific lemmatizers

Convert language-specific lemmatizers to component lemmatizers. Remove
previous lemmatizer class.

* Fix French and Polish lemmatizers

* Remove outdated UPOS conversions

* Update Russian lemmatizer init in tests

* Add minimal init/run tests for custom lemmatizers

* Add option to overwrite existing lemmas

* Update mode setting, lookup loading, and caching

* Make `mode` an immutable property
* Only enforce strict `load_lookups` for known supported modes
* Move caching into individual `_lemmatize` methods

* Implement strict when lang is not found in lookups

* Fix tables/lookups in make_lemmatizer

* Reallow provided lookups and allow for stricter checks

* Add lookups asset to all Lemmatizer pipe tests

* Rename lookups in lemmatizer init test

* Clean up merge

* Refactor lookup table loading

* Add helper from `load_lemmatizer_lookups` that loads required and
optional lookups tables based on settings provided by a config.

Additional slight refactor of lookups:

* Add `Lookups.set_table` to set a table from a provided `Table`
* Reorder class definitions to be able to specify type as `Table`

* Move registry assets into test methods

* Refactor lookups tables config

Use class methods within `Lemmatizer` to provide the config for
particular modes and to load the lookups from a config.

* Add pipe and score to lemmatizer

* Simplify Tagger.score

* Add missing import

* Clean up imports and auto-format

* Remove unused kwarg

* Tidy up and auto-format

* Update docstrings for Lemmatizer

Update docstrings for Lemmatizer.

Additionally modify `is_base_form` API to take `Token` instead of
individual features.

* Update docstrings

* Remove tag map values from Tagger.add_label

* Update API docs

* Fix relative link in Lemmatizer API docs
This commit is contained in:
Adriane Boyd 2020-08-07 15:27:13 +02:00 committed by GitHub
parent 1d01d89b79
commit e962784531
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
59 changed files with 1439 additions and 1609 deletions

View File

@ -19,9 +19,6 @@ after_pipeline_creation = null
[nlp.tokenizer]
@tokenizers = "spacy.Tokenizer.v1"
[nlp.lemmatizer]
@lemmatizers = "spacy.Lemmatizer.v1"
[components]
# Training hyper-parameters and additional features.

View File

@ -510,7 +510,7 @@ class Errors:
E952 = ("The section '{name}' is not a valid section in the provided config.")
E953 = ("Mismatched IDs received by the Tok2Vec listener: {id1} vs. {id2}")
E954 = ("The Tok2Vec listener did not receive a valid input.")
E955 = ("Can't find table '{table}' for language '{lang}' in spacy-lookups-data.")
E955 = ("Can't find table(s) '{table}' for language '{lang}' in spacy-lookups-data.")
E956 = ("Can't find component '{name}' in [components] block in the config. "
"Available components: {opts}")
E957 = ("Writing directly to Language.factories isn't needed anymore in "
@ -633,6 +633,11 @@ class Errors:
E1001 = ("Target token outside of matched span for match with tokens "
"'{span}' and offset '{index}' matched by patterns '{patterns}'.")
E1002 = ("Span index out of range.")
E1003 = ("Unsupported lemmatizer mode '{mode}'.")
E1004 = ("Missing lemmatizer table(s) found for lemmatizer mode '{mode}'. "
"Required tables '{tables}', found '{found}'. If you are not "
"providing custom lookups, make sure you have the package "
"spacy-lookups-data installed.")
@add_codes

View File

@ -1,38 +1,17 @@
from typing import Callable
from thinc.api import Config
from typing import Optional
from thinc.api import Model
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .lemmatizer import GreekLemmatizer
from .syntax_iterators import SYNTAX_ITERATORS
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from ...lookups import load_lookups
from .lemmatizer import GreekLemmatizer
from ...lookups import Lookups
from ...language import Language
from ...util import registry
DEFAULT_CONFIG = """
[nlp]
[nlp.lemmatizer]
@lemmatizers = "spacy.el.GreekLemmatizer"
"""
@registry.lemmatizers("spacy.el.GreekLemmatizer")
def create_lemmatizer() -> Callable[[Language], GreekLemmatizer]:
tables = ["lemma_index", "lemma_exc", "lemma_rules"]
def lemmatizer_factory(nlp: Language) -> GreekLemmatizer:
lookups = load_lookups(lang=nlp.lang, tables=tables)
return GreekLemmatizer(lookups=lookups)
return lemmatizer_factory
class GreekDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG)
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
suffixes = TOKENIZER_SUFFIXES
@ -47,4 +26,22 @@ class Greek(Language):
Defaults = GreekDefaults
@Greek.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={"model": None, "mode": "rule", "lookups": None},
scores=["lemma_acc"],
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
lookups: Optional[Lookups],
):
lookups = GreekLemmatizer.load_lookups(nlp.lang, mode, lookups)
return GreekLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
__all__ = ["Greek"]

View File

@ -1,6 +1,7 @@
from typing import Dict, List
from typing import List
from ...lemmatizer import Lemmatizer
from ...pipeline import Lemmatizer
from ...tokens import Token
class GreekLemmatizer(Lemmatizer):
@ -14,13 +15,27 @@ class GreekLemmatizer(Lemmatizer):
not applicable for Greek language.
"""
def lemmatize(
self,
string: str,
index: Dict[str, List[str]],
exceptions: Dict[str, Dict[str, List[str]]],
rules: Dict[str, List[List[str]]],
) -> List[str]:
def rule_lemmatize(self, token: Token) -> List[str]:
"""Lemmatize using a rule-based approach.
token (Token): The token to lemmatize.
RETURNS (list): The available lemmas for the string.
"""
cache_key = (token.lower, token.pos)
if cache_key in self.cache:
return self.cache[cache_key]
string = token.text
univ_pos = token.pos_.lower()
if univ_pos in ("", "eol", "space"):
return [string.lower()]
index_table = self.lookups.get_table("lemma_index", {})
exc_table = self.lookups.get_table("lemma_exc", {})
rules_table = self.lookups.get_table("lemma_rules", {})
index = index_table.get(univ_pos, {})
exceptions = exc_table.get(univ_pos, {})
rules = rules_table.get(univ_pos, {})
string = string.lower()
forms = []
if string in index:
@ -42,4 +57,6 @@ class GreekLemmatizer(Lemmatizer):
forms.extend(oov_forms)
if not forms:
forms.append(string)
return list(set(forms))
forms = list(set(forms))
self.cache[cache_key] = forms
return forms

View File

@ -1,39 +1,18 @@
from typing import Callable
from thinc.api import Config
from typing import Optional
from thinc.api import Model
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .syntax_iterators import SYNTAX_ITERATORS
from .lemmatizer import is_base_form
from .punctuation import TOKENIZER_INFIXES
from .lemmatizer import EnglishLemmatizer
from ...language import Language
from ...lemmatizer import Lemmatizer
from ...lookups import load_lookups
from ...util import registry
DEFAULT_CONFIG = """
[nlp]
[nlp.lemmatizer]
@lemmatizers = "spacy.en.EnglishLemmatizer"
"""
@registry.lemmatizers("spacy.en.EnglishLemmatizer")
def create_lemmatizer() -> Callable[[Language], Lemmatizer]:
tables = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"]
def lemmatizer_factory(nlp: Language) -> Lemmatizer:
lookups = load_lookups(lang=nlp.lang, tables=tables)
return Lemmatizer(lookups=lookups, is_base_form=is_base_form)
return lemmatizer_factory
from ...lookups import Lookups
class EnglishDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG)
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
infixes = TOKENIZER_INFIXES
lex_attr_getters = LEX_ATTRS
@ -46,4 +25,22 @@ class English(Language):
Defaults = EnglishDefaults
@English.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={"model": None, "mode": "rule", "lookups": None},
scores=["lemma_acc"],
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
lookups: Optional[Lookups],
):
lookups = EnglishLemmatizer.load_lookups(nlp.lang, mode, lookups)
return EnglishLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
__all__ = ["English"]

View File

@ -1,36 +1,43 @@
from typing import Optional
from ...pipeline import Lemmatizer
from ...tokens import Token
def is_base_form(univ_pos: str, morphology: Optional[dict] = None) -> bool:
"""
Check whether we're dealing with an uninflected paradigm, so we can
avoid lemmatization entirely.
univ_pos (unicode / int): The token's universal part-of-speech tag.
morphology (dict): The token's morphological features following the
Universal Dependencies scheme.
class EnglishLemmatizer(Lemmatizer):
"""English lemmatizer. Only overrides is_base_form.
"""
if morphology is None:
morphology = {}
if univ_pos == "noun" and morphology.get("Number") == "sing":
return True
elif univ_pos == "verb" and morphology.get("VerbForm") == "inf":
return True
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
# morphology
elif univ_pos == "verb" and (
morphology.get("VerbForm") == "fin"
and morphology.get("Tense") == "pres"
and morphology.get("Number") is None
):
return True
elif univ_pos == "adj" and morphology.get("Degree") == "pos":
return True
elif morphology.get("VerbForm") == "inf":
return True
elif morphology.get("VerbForm") == "none":
return True
elif morphology.get("Degree") == "pos":
return True
else:
return False
def is_base_form(self, token: Token) -> bool:
"""
Check whether we're dealing with an uninflected paradigm, so we can
avoid lemmatization entirely.
univ_pos (unicode / int): The token's universal part-of-speech tag.
morphology (dict): The token's morphological features following the
Universal Dependencies scheme.
"""
univ_pos = token.pos_.lower()
morphology = token.morph.to_dict()
if univ_pos == "noun" and morphology.get("Number") == "Sing":
return True
elif univ_pos == "verb" and morphology.get("VerbForm") == "Inf":
return True
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
# morphology
elif univ_pos == "verb" and (
morphology.get("VerbForm") == "Fin"
and morphology.get("Tense") == "Pres"
and morphology.get("Number") is None
):
return True
elif univ_pos == "adj" and morphology.get("Degree") == "Pos":
return True
elif morphology.get("VerbForm") == "Inf":
return True
elif morphology.get("VerbForm") == "None":
return True
elif morphology.get("Degree") == "Pos":
return True
else:
return False

View File

@ -1,5 +1,6 @@
from typing import Callable
from thinc.api import Config
from typing import Optional
from thinc.api import Model
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS, TOKEN_MATCH
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
@ -7,33 +8,12 @@ from .punctuation import TOKENIZER_SUFFIXES
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .syntax_iterators import SYNTAX_ITERATORS
from .lemmatizer import FrenchLemmatizer, is_base_form
from ...lookups import load_lookups
from .lemmatizer import FrenchLemmatizer
from ...lookups import Lookups
from ...language import Language
from ...util import registry
DEFAULT_CONFIG = """
[nlp]
[nlp.lemmatizer]
@lemmatizers = "spacy.fr.FrenchLemmatizer"
"""
@registry.lemmatizers("spacy.fr.FrenchLemmatizer")
def create_lemmatizer() -> Callable[[Language], FrenchLemmatizer]:
tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
def lemmatizer_factory(nlp: Language) -> FrenchLemmatizer:
lookups = load_lookups(lang=nlp.lang, tables=tables)
return FrenchLemmatizer(lookups=lookups, is_base_form=is_base_form)
return lemmatizer_factory
class FrenchDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG)
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
infixes = TOKENIZER_INFIXES
@ -49,4 +29,22 @@ class French(Language):
Defaults = FrenchDefaults
@French.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={"model": None, "mode": "rule", "lookups": None},
scores=["lemma_acc"],
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
lookups: Optional[Lookups],
):
lookups = FrenchLemmatizer.load_lookups(nlp.lang, mode, lookups)
return FrenchLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
__all__ = ["French"]

View File

@ -1,8 +1,7 @@
from typing import Optional, List, Dict
from typing import List, Dict
from ...lemmatizer import Lemmatizer
from ...symbols import POS, NOUN, VERB, ADJ, ADV, PRON, DET, AUX, PUNCT, ADP
from ...symbols import SCONJ, CCONJ
from ...pipeline import Lemmatizer
from ...tokens import Token
class FrenchLemmatizer(Lemmatizer):
@ -15,65 +14,55 @@ class FrenchLemmatizer(Lemmatizer):
the lookup table.
"""
def __call__(
self, string: str, univ_pos: str, morphology: Optional[dict] = None
) -> List[str]:
lookup_table = self.lookups.get_table("lemma_lookup", {})
if "lemma_rules" not in self.lookups:
return [lookup_table.get(string, string)]
if univ_pos in (NOUN, "NOUN", "noun"):
univ_pos = "noun"
elif univ_pos in (VERB, "VERB", "verb"):
univ_pos = "verb"
elif univ_pos in (ADJ, "ADJ", "adj"):
univ_pos = "adj"
elif univ_pos in (ADP, "ADP", "adp"):
univ_pos = "adp"
elif univ_pos in (ADV, "ADV", "adv"):
univ_pos = "adv"
elif univ_pos in (AUX, "AUX", "aux"):
univ_pos = "aux"
elif univ_pos in (CCONJ, "CCONJ", "cconj"):
univ_pos = "cconj"
elif univ_pos in (DET, "DET", "det"):
univ_pos = "det"
elif univ_pos in (PRON, "PRON", "pron"):
univ_pos = "pron"
elif univ_pos in (PUNCT, "PUNCT", "punct"):
univ_pos = "punct"
elif univ_pos in (SCONJ, "SCONJ", "sconj"):
univ_pos = "sconj"
@classmethod
def get_lookups_config(cls, mode: str) -> Dict:
if mode == "rule":
return {
"required_tables": [
"lemma_lookup",
"lemma_rules",
"lemma_exc",
"lemma_index",
],
"optional_tables": [],
}
else:
return [self.lookup(string)]
return super().get_lookups_config(mode)
def rule_lemmatize(self, token: Token) -> List[str]:
cache_key = (token.orth, token.pos)
if cache_key in self.cache:
return self.cache[cache_key]
string = token.text
univ_pos = token.pos_.lower()
if univ_pos in ("", "eol", "space"):
return [string.lower()]
elif "lemma_rules" not in self.lookups or univ_pos not in (
"noun",
"verb",
"adj",
"adp",
"adv",
"aux",
"cconj",
"det",
"pron",
"punct",
"sconj",
):
return self.lookup_lemmatize(token)
index_table = self.lookups.get_table("lemma_index", {})
exc_table = self.lookups.get_table("lemma_exc", {})
rules_table = self.lookups.get_table("lemma_rules", {})
lemmas = self.lemmatize(
string,
index_table.get(univ_pos, {}),
exc_table.get(univ_pos, {}),
rules_table.get(univ_pos, []),
)
return lemmas
def lookup(self, string: str, orth: Optional[int] = None) -> str:
lookup_table = self.lookups.get_table("lemma_lookup", {})
if orth is not None and orth in lookup_table:
return lookup_table[orth][0]
return string
def lemmatize(
self,
string: str,
index: Dict[str, List[str]],
exceptions: Dict[str, Dict[str, List[str]]],
rules: Dict[str, List[List[str]]],
) -> List[str]:
lookup_table = self.lookups.get_table("lemma_lookup", {})
index = index_table.get(univ_pos, {})
exceptions = exc_table.get(univ_pos, {})
rules = rules_table.get(univ_pos, [])
string = string.lower()
forms = []
if string in index:
forms.append(string)
self.cache[cache_key] = forms
return forms
forms.extend(exceptions.get(string, []))
oov_forms = []
@ -90,45 +79,9 @@ class FrenchLemmatizer(Lemmatizer):
if not forms:
forms.extend(oov_forms)
if not forms and string in lookup_table.keys():
forms.append(lookup_table[string][0])
forms.append(self.lookup_lemmatize(token)[0])
if not forms:
forms.append(string)
return list(set(forms))
def is_base_form(univ_pos: str, morphology: Optional[dict] = None) -> bool:
"""
Check whether we're dealing with an uninflected paradigm, so we can
avoid lemmatization entirely.
"""
morphology = {} if morphology is None else morphology
others = [
key
for key in morphology
if key not in (POS, "Number", "POS", "VerbForm", "Tense")
]
if univ_pos == "noun" and morphology.get("Number") == "sing":
return True
elif univ_pos == "verb" and morphology.get("VerbForm") == "inf":
return True
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
# morphology
elif univ_pos == "verb" and (
morphology.get("VerbForm") == "fin"
and morphology.get("Tense") == "pres"
and morphology.get("Number") is None
and not others
):
return True
elif univ_pos == "adj" and morphology.get("Degree") == "pos":
return True
elif "VerbForm=inf" in morphology:
return True
elif "VerbForm=none" in morphology:
return True
elif "Number=sing" in morphology:
return True
elif "Degree=pos" in morphology:
return True
else:
return False
forms = list(set(forms))
self.cache[cache_key] = forms
return forms

View File

@ -38,8 +38,6 @@ def create_tokenizer(split_mode: Optional[str] = None):
class JapaneseTokenizer(DummyTokenizer):
def __init__(self, nlp: Language, split_mode: Optional[str] = None) -> None:
self.vocab = nlp.vocab
# TODO: is this the right way to do it?
self.vocab.morphology.load_tag_map(TAG_MAP)
self.split_mode = split_mode
self.tokenizer = try_sudachi_import(self.split_mode)

View File

@ -7,6 +7,7 @@ from .lex_attrs import LEX_ATTRS
from ...language import Language
from ...tokens import Doc
from ...compat import copy_reg
from ...symbols import POS
from ...util import DummyTokenizer, registry
@ -29,8 +30,6 @@ def create_tokenizer():
class KoreanTokenizer(DummyTokenizer):
def __init__(self, nlp: Optional[Language] = None):
self.vocab = nlp.vocab
# TODO: is this the right way to do it?
self.vocab.morphology.load_tag_map(TAG_MAP)
MeCab = try_mecab_import()
self.mecab_tokenizer = MeCab("-F%f[0],%f[7]")
@ -44,6 +43,7 @@ class KoreanTokenizer(DummyTokenizer):
for token, dtoken in zip(doc, dtokens):
first_tag, sep, eomi_tags = dtoken["tag"].partition("+")
token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미)
token.pos = TAG_MAP[token.tag_][POS]
token.lemma_ = dtoken["lemma"]
doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens]
return doc

View File

@ -1,5 +1,6 @@
from typing import Callable
from thinc.api import Config
from typing import Optional
from thinc.api import Model
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
@ -7,32 +8,11 @@ from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
from .punctuation import TOKENIZER_SUFFIXES
from .lemmatizer import DutchLemmatizer
from ...lookups import load_lookups
from ...lookups import Lookups
from ...language import Language
from ...util import registry
DEFAULT_CONFIG = """
[nlp]
[nlp.lemmatizer]
@lemmatizers = "spacy.nl.DutchLemmatizer"
"""
@registry.lemmatizers("spacy.nl.DutchLemmatizer")
def create_lemmatizer() -> Callable[[Language], DutchLemmatizer]:
tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
def lemmatizer_factory(nlp: Language) -> DutchLemmatizer:
lookups = load_lookups(lang=nlp.lang, tables=tables)
return DutchLemmatizer(lookups=lookups)
return lemmatizer_factory
class DutchDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG)
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
infixes = TOKENIZER_INFIXES
@ -46,4 +26,22 @@ class Dutch(Language):
Defaults = DutchDefaults
@Dutch.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={"model": None, "mode": "rule", "lookups": None},
scores=["lemma_acc"],
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
lookups: Optional[Lookups],
):
lookups = DutchLemmatizer.load_lookups(nlp.lang, mode, lookups)
return DutchLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
__all__ = ["Dutch"]

View File

@ -1,44 +1,34 @@
from typing import Optional, List, Dict, Tuple
from typing import List, Dict
from ...lemmatizer import Lemmatizer
from ...symbols import NOUN, VERB, ADJ, NUM, DET, PRON, ADP, AUX, ADV
from ...pipeline import Lemmatizer
from ...tokens import Token
class DutchLemmatizer(Lemmatizer):
# Note: CGN does not distinguish AUX verbs, so we treat AUX as VERB.
univ_pos_name_variants = {
NOUN: "noun",
"NOUN": "noun",
"noun": "noun",
VERB: "verb",
"VERB": "verb",
"verb": "verb",
AUX: "verb",
"AUX": "verb",
"aux": "verb",
ADJ: "adj",
"ADJ": "adj",
"adj": "adj",
ADV: "adv",
"ADV": "adv",
"adv": "adv",
PRON: "pron",
"PRON": "pron",
"pron": "pron",
DET: "det",
"DET": "det",
"det": "det",
ADP: "adp",
"ADP": "adp",
"adp": "adp",
NUM: "num",
"NUM": "num",
"num": "num",
}
@classmethod
def get_lookups_config(cls, mode: str) -> Dict:
if mode == "rule":
return {
"required_tables": [
"lemma_lookup",
"lemma_rules",
"lemma_exc",
"lemma_index",
],
}
else:
return super().get_lookups_config(mode)
def __call__(
self, string: str, univ_pos: str, morphology: Optional[dict] = None
) -> List[str]:
def lookup_lemmatize(self, token: Token) -> List[str]:
"""Overrides parent method so that a lowercased version of the string
is used to search the lookup table. This is necessary because our
lookup table consists entirely of lowercase keys."""
lookup_table = self.lookups.get_table("lemma_lookup", {})
string = token.text.lower()
return [lookup_table.get(string, string)]
# Note: CGN does not distinguish AUX verbs, so we treat AUX as VERB.
def rule_lemmatize(self, token: Token) -> List[str]:
# Difference 1: self.rules is assumed to be non-None, so no
# 'is None' check required.
# String lowercased from the get-go. All lemmatization results in
@ -46,74 +36,61 @@ class DutchLemmatizer(Lemmatizer):
# any problems, and it keeps the exceptions indexes small. If this
# creates problems for proper nouns, we can introduce a check for
# univ_pos == "PROPN".
string = string.lower()
try:
univ_pos = self.univ_pos_name_variants[univ_pos]
except KeyError:
# Because PROPN not in self.univ_pos_name_variants, proper names
# are not lemmatized. They are lowercased, however.
return [string]
# if string in self.lemma_index.get(univ_pos)
cache_key = (token.lower, token.pos)
if cache_key in self.cache:
return self.cache[cache_key]
string = token.text
univ_pos = token.pos_.lower()
if univ_pos in ("", "eol", "space"):
forms = [string.lower()]
self.cache[cache_key] = forms
return forms
index_table = self.lookups.get_table("lemma_index", {})
exc_table = self.lookups.get_table("lemma_exc", {})
rules_table = self.lookups.get_table("lemma_rules", {})
index = index_table.get(univ_pos, {})
exceptions = exc_table.get(univ_pos, {})
rules = rules_table.get(univ_pos, {})
string = string.lower()
if univ_pos not in (
"noun",
"verb",
"aux",
"adj",
"adv",
"pron",
"det",
"adp",
"num",
):
forms = [string]
self.cache[cache_key] = forms
return forms
lemma_index = index_table.get(univ_pos, {})
# string is already lemma
if string in lemma_index:
return [string]
forms = [string]
self.cache[cache_key] = forms
return forms
exc_table = self.lookups.get_table("lemma_exc", {})
exceptions = exc_table.get(univ_pos, {})
# string is irregular token contained in exceptions index.
try:
lemma = exceptions[string]
return [lemma[0]]
forms = [exceptions[string][0]]
self.cache[cache_key] = forms
return forms
except KeyError:
pass
# string corresponds to key in lookup table
lookup_table = self.lookups.get_table("lemma_lookup", {})
looked_up_lemma = lookup_table.get(string)
if looked_up_lemma and looked_up_lemma in lemma_index:
return [looked_up_lemma]
forms = [looked_up_lemma]
self.cache[cache_key] = forms
return forms
rules_table = self.lookups.get_table("lemma_rules", {})
forms, is_known = self.lemmatize(
string, lemma_index, exceptions, rules_table.get(univ_pos, [])
)
# Back-off through remaining return value candidates.
if forms:
if is_known:
return forms
else:
for form in forms:
if form in exceptions:
return [form]
if looked_up_lemma:
return [looked_up_lemma]
else:
return forms
elif looked_up_lemma:
return [looked_up_lemma]
else:
return [string]
# Overrides parent method so that a lowercased version of the string is
# used to search the lookup table. This is necessary because our lookup
# table consists entirely of lowercase keys.
def lookup(self, string: str, orth: Optional[int] = None) -> str:
lookup_table = self.lookups.get_table("lemma_lookup", {})
string = string.lower()
if orth is not None:
return lookup_table.get(orth, string)
else:
return lookup_table.get(string, string)
# Reimplemented to focus more on application of suffix rules and to return
# as early as possible.
def lemmatize(
self,
string: str,
index: Dict[str, List[str]],
exceptions: Dict[str, Dict[str, List[str]]],
rules: Dict[str, List[List[str]]],
) -> Tuple[List[str], bool]:
# returns (forms, is_known: bool)
oov_forms = []
for old, new in rules:
if string.endswith(old):
@ -121,7 +98,31 @@ class DutchLemmatizer(Lemmatizer):
if not form:
pass
elif form in index:
return [form], True # True = Is known (is lemma)
forms = [form]
self.cache[cache_key] = forms
return forms
else:
oov_forms.append(form)
return list(set(oov_forms)), False
forms = list(set(oov_forms))
# Back-off through remaining return value candidates.
if forms:
for form in forms:
if form in exceptions:
forms = [form]
self.cache[cache_key] = forms
return forms
if looked_up_lemma:
forms = [looked_up_lemma]
self.cache[cache_key] = forms
return forms
else:
self.cache[cache_key] = forms
return forms
elif looked_up_lemma:
forms = [looked_up_lemma]
self.cache[cache_key] = forms
return forms
else:
forms = [string]
self.cache[cache_key] = forms
return forms

View File

@ -1,5 +1,6 @@
from typing import Callable
from thinc.api import Config
from typing import Optional
from thinc.api import Model
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
from .punctuation import TOKENIZER_SUFFIXES
@ -7,42 +8,16 @@ from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .lemmatizer import PolishLemmatizer
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...lookups import load_lookups
from ...lookups import Lookups
from ...language import Language
from ...util import registry
DEFAULT_CONFIG = """
[nlp]
[nlp.lemmatizer]
@lemmatizers = "spacy.pl.PolishLemmatizer"
"""
TOKENIZER_EXCEPTIONS = {
exc: val for exc, val in BASE_EXCEPTIONS.items() if not exc.endswith(".")
}
@registry.lemmatizers("spacy.pl.PolishLemmatizer")
def create_lemmatizer() -> Callable[[Language], PolishLemmatizer]:
# fmt: off
tables = [
"lemma_lookup_adj", "lemma_lookup_adp", "lemma_lookup_adv",
"lemma_lookup_aux", "lemma_lookup_noun", "lemma_lookup_num",
"lemma_lookup_part", "lemma_lookup_pron", "lemma_lookup_verb"
]
# fmt: on
def lemmatizer_factory(nlp: Language) -> PolishLemmatizer:
lookups = load_lookups(lang=nlp.lang, tables=tables)
return PolishLemmatizer(lookups=lookups)
return lemmatizer_factory
class PolishDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG)
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
infixes = TOKENIZER_INFIXES
@ -56,4 +31,22 @@ class Polish(Language):
Defaults = PolishDefaults
@Polish.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={"model": None, "mode": "lookup", "lookups": None},
scores=["lemma_acc"],
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
lookups: Optional[Lookups],
):
lookups = PolishLemmatizer.load_lookups(nlp.lang, mode, lookups)
return PolishLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
__all__ = ["Polish"]

View File

@ -1,7 +1,7 @@
from typing import Optional, List, Dict
from typing import List, Dict
from ...lemmatizer import Lemmatizer
from ...parts_of_speech import NAMES
from ...pipeline import Lemmatizer
from ...tokens import Token
class PolishLemmatizer(Lemmatizer):
@ -9,12 +9,30 @@ class PolishLemmatizer(Lemmatizer):
# dictionary (morfeusz.sgjp.pl/en) by Institute of Computer Science PAS.
# It utilizes some prefix based improvements for verb and adjectives
# lemmatization, as well as case-sensitive lemmatization for nouns.
def __call__(
self, string: str, univ_pos: str, morphology: Optional[dict] = None
) -> List[str]:
if isinstance(univ_pos, int):
univ_pos = NAMES.get(univ_pos, "X")
univ_pos = univ_pos.upper()
@classmethod
def get_lookups_config(cls, mode: str) -> Dict:
if mode == "lookup":
return {
"required_tables": [
"lemma_lookup_adj",
"lemma_lookup_adp",
"lemma_lookup_adv",
"lemma_lookup_aux",
"lemma_lookup_noun",
"lemma_lookup_num",
"lemma_lookup_part",
"lemma_lookup_pron",
"lemma_lookup_verb",
]
}
else:
return super().get_lookups_config(mode)
def lookup_lemmatize(self, token: Token) -> List[str]:
string = token.text
univ_pos = token.pos_
morphology = token.morph.to_dict()
lookup_pos = univ_pos.lower()
if univ_pos == "PROPN":
lookup_pos = "noun"
@ -71,15 +89,3 @@ class PolishLemmatizer(Lemmatizer):
return [lookup_table[string]]
return [string.lower()]
return [lookup_table.get(string, string)]
def lookup(self, string: str, orth: Optional[int] = None) -> str:
return string.lower()
def lemmatize(
self,
string: str,
index: Dict[str, List[str]],
exceptions: Dict[str, Dict[str, List[str]]],
rules: Dict[str, List[List[str]]],
) -> List[str]:
raise NotImplementedError

View File

@ -1,32 +1,16 @@
from typing import Callable
from thinc.api import Config
from typing import Optional
from thinc.api import Model
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .lex_attrs import LEX_ATTRS
from .lemmatizer import RussianLemmatizer
from ...util import registry
from ...language import Language
DEFAULT_CONFIG = """
[nlp]
[nlp.lemmatizer]
@lemmatizers = "spacy.ru.RussianLemmatizer"
"""
@registry.lemmatizers("spacy.ru.RussianLemmatizer")
def create_lemmatizer() -> Callable[[Language], RussianLemmatizer]:
def lemmatizer_factory(nlp: Language) -> RussianLemmatizer:
return RussianLemmatizer()
return lemmatizer_factory
from ...lookups import Lookups
class RussianDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG)
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS
@ -37,4 +21,21 @@ class Russian(Language):
Defaults = RussianDefaults
@Russian.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={"model": None, "mode": "pymorphy2", "lookups": None},
scores=["lemma_acc"],
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
lookups: Optional[Lookups],
):
return RussianLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
__all__ = ["Russian"]

View File

@ -1,8 +1,12 @@
from typing import Optional, Tuple, Dict, List
from typing import Optional, List, Dict, Tuple
from thinc.api import Model
from ...symbols import ADJ, DET, NOUN, NUM, PRON, PROPN, PUNCT, VERB, POS
from ...lemmatizer import Lemmatizer
from ...lookups import Lookups
from ...pipeline import Lemmatizer
from ...symbols import POS
from ...tokens import Token
from ...vocab import Vocab
PUNCT_RULES = {"«": '"', "»": '"'}
@ -11,8 +15,17 @@ PUNCT_RULES = {"«": '"', "»": '"'}
class RussianLemmatizer(Lemmatizer):
_morph = None
def __init__(self, lookups: Optional[Lookups] = None) -> None:
super(RussianLemmatizer, self).__init__(lookups)
def __init__(
self,
vocab: Vocab,
model: Optional[Model],
name: str = "lemmatizer",
*,
mode: str = "pymorphy2",
lookups: Optional[Lookups] = None,
) -> None:
super().__init__(vocab, model, name, mode=mode, lookups=lookups)
try:
from pymorphy2 import MorphAnalyzer
except ImportError:
@ -25,10 +38,10 @@ class RussianLemmatizer(Lemmatizer):
if RussianLemmatizer._morph is None:
RussianLemmatizer._morph = MorphAnalyzer()
def __call__(
self, string: str, univ_pos: str, morphology: Optional[dict] = None
) -> List[str]:
univ_pos = self.normalize_univ_pos(univ_pos)
def pymorphy2_lemmatize(self, token: Token) -> List[str]:
string = token.text
univ_pos = token.pos_
morphology = token.morph.to_dict()
if univ_pos == "PUNCT":
return [PUNCT_RULES.get(string, string)]
if univ_pos not in ("ADJ", "DET", "NOUN", "NUM", "PRON", "PROPN", "VERB"):
@ -81,25 +94,8 @@ class RussianLemmatizer(Lemmatizer):
return [string.lower()]
return list(set([analysis.normal_form for analysis in filtered_analyses]))
@staticmethod
def normalize_univ_pos(univ_pos: str) -> Optional[str]:
if isinstance(univ_pos, str):
return univ_pos.upper()
symbols_to_str = {
ADJ: "ADJ",
DET: "DET",
NOUN: "NOUN",
NUM: "NUM",
PRON: "PRON",
PROPN: "PROPN",
PUNCT: "PUNCT",
VERB: "VERB",
}
if univ_pos in symbols_to_str:
return symbols_to_str[univ_pos]
return None
def lookup(self, string: str, orth: Optional[int] = None) -> str:
def lookup_lemmatize(self, token: Token) -> List[str]:
string = token.text
analyses = self._morph.parse(string)
if len(analyses) == 1:
return analyses[0].normal_form

View File

@ -1,32 +1,16 @@
from typing import Callable
from thinc.api import Config
from typing import Optional
from thinc.api import Model
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from ...util import registry
from ...language import Language
from .lemmatizer import UkrainianLemmatizer
DEFAULT_CONFIG = """
[nlp]
[nlp.lemmatizer]
@lemmatizers = "spacy.uk.UkrainianLemmatizer"
"""
@registry.lemmatizers("spacy.uk.UkrainianLemmatizer")
def create_ukrainian_lemmatizer() -> Callable[[Language], UkrainianLemmatizer]:
def lemmatizer_factory(nlp: Language) -> UkrainianLemmatizer:
return UkrainianLemmatizer()
return lemmatizer_factory
from ...language import Language
from ...lookups import Lookups
class UkrainianDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG)
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS
@ -37,4 +21,21 @@ class Ukrainian(Language):
Defaults = UkrainianDefaults
@Ukrainian.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={"model": None, "mode": "pymorphy2", "lookups": None},
scores=["lemma_acc"],
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
lookups: Optional[Lookups],
):
return UkrainianLemmatizer(nlp.vocab, model, name, mode=mode, lookups=lookups)
__all__ = ["Ukrainian"]

View File

@ -1,187 +1,30 @@
from typing import Optional, List, Tuple, Dict
from typing import Optional
from ...symbols import ADJ, DET, NOUN, NUM, PRON, PROPN, PUNCT, VERB, POS
from thinc.api import Model
from ..ru.lemmatizer import RussianLemmatizer
from ...lookups import Lookups
from ...lemmatizer import Lemmatizer
from ...vocab import Vocab
PUNCT_RULES = {"«": '"', "»": '"'}
class UkrainianLemmatizer(Lemmatizer):
_morph = None
def __init__(self, lookups: Optional[Lookups] = None) -> None:
super(UkrainianLemmatizer, self).__init__(lookups)
class UkrainianLemmatizer(RussianLemmatizer):
def __init__(
self,
vocab: Vocab,
model: Optional[Model],
name: str = "lemmatizer",
*,
mode: str = "pymorphy2",
lookups: Optional[Lookups] = None,
) -> None:
super().__init__(vocab, model, name, mode=mode, lookups=lookups)
try:
from pymorphy2 import MorphAnalyzer
if UkrainianLemmatizer._morph is None:
UkrainianLemmatizer._morph = MorphAnalyzer(lang="uk")
except (ImportError, TypeError):
except ImportError:
raise ImportError(
"The Ukrainian lemmatizer requires the pymorphy2 library and "
'dictionaries: try to fix it with "pip uninstall pymorphy2" and'
'"pip install git+https://github.com/kmike/pymorphy2.git pymorphy2-dicts-uk"'
) from None
def __call__(
self, string: str, univ_pos: str, morphology: Optional[dict] = None
) -> List[str]:
univ_pos = self.normalize_univ_pos(univ_pos)
if univ_pos == "PUNCT":
return [PUNCT_RULES.get(string, string)]
if univ_pos not in ("ADJ", "DET", "NOUN", "NUM", "PRON", "PROPN", "VERB"):
# Skip unchangeable pos
return [string.lower()]
analyses = self._morph.parse(string)
filtered_analyses = []
for analysis in analyses:
if not analysis.is_known:
# Skip suggested parse variant for unknown word for pymorphy
continue
analysis_pos, _ = oc2ud(str(analysis.tag))
if analysis_pos == univ_pos or (
analysis_pos in ("NOUN", "PROPN") and univ_pos in ("NOUN", "PROPN")
):
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
if morphology is None or (len(morphology) == 1 and POS in morphology):
return list(set([analysis.normal_form for analysis in filtered_analyses]))
if univ_pos in ("ADJ", "DET", "NOUN", "PROPN"):
features_to_compare = ["Case", "Number", "Gender"]
elif univ_pos == "NUM":
features_to_compare = ["Case", "Gender"]
elif univ_pos == "PRON":
features_to_compare = ["Case", "Number", "Gender", "Person"]
else: # VERB
features_to_compare = [
"Aspect",
"Gender",
"Mood",
"Number",
"Tense",
"VerbForm",
"Voice",
]
analyses, filtered_analyses = filtered_analyses, []
for analysis in analyses:
_, analysis_morph = oc2ud(str(analysis.tag))
for feature in features_to_compare:
if (
feature in morphology
and feature in analysis_morph
and morphology[feature].lower() != analysis_morph[feature].lower()
):
break
else:
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
return list(set([analysis.normal_form for analysis in filtered_analyses]))
@staticmethod
def normalize_univ_pos(univ_pos: str) -> Optional[str]:
if isinstance(univ_pos, str):
return univ_pos.upper()
symbols_to_str = {
ADJ: "ADJ",
DET: "DET",
NOUN: "NOUN",
NUM: "NUM",
PRON: "PRON",
PROPN: "PROPN",
PUNCT: "PUNCT",
VERB: "VERB",
}
if univ_pos in symbols_to_str:
return symbols_to_str[univ_pos]
return None
def lookup(self, string: str, orth: Optional[int] = None) -> str:
analyses = self._morph.parse(string)
if len(analyses) == 1:
return analyses[0].normal_form
return string
def oc2ud(oc_tag: str) -> Tuple[str, Dict[str, str]]:
gram_map = {
"_POS": {
"ADJF": "ADJ",
"ADJS": "ADJ",
"ADVB": "ADV",
"Apro": "DET",
"COMP": "ADJ", # Can also be an ADV - unchangeable
"CONJ": "CCONJ", # Can also be a SCONJ - both unchangeable ones
"GRND": "VERB",
"INFN": "VERB",
"INTJ": "INTJ",
"NOUN": "NOUN",
"NPRO": "PRON",
"NUMR": "NUM",
"NUMB": "NUM",
"PNCT": "PUNCT",
"PRCL": "PART",
"PREP": "ADP",
"PRTF": "VERB",
"PRTS": "VERB",
"VERB": "VERB",
},
"Animacy": {"anim": "Anim", "inan": "Inan"},
"Aspect": {"impf": "Imp", "perf": "Perf"},
"Case": {
"ablt": "Ins",
"accs": "Acc",
"datv": "Dat",
"gen1": "Gen",
"gen2": "Gen",
"gent": "Gen",
"loc2": "Loc",
"loct": "Loc",
"nomn": "Nom",
"voct": "Voc",
},
"Degree": {"COMP": "Cmp", "Supr": "Sup"},
"Gender": {"femn": "Fem", "masc": "Masc", "neut": "Neut"},
"Mood": {"impr": "Imp", "indc": "Ind"},
"Number": {"plur": "Plur", "sing": "Sing"},
"NumForm": {"NUMB": "Digit"},
"Person": {"1per": "1", "2per": "2", "3per": "3", "excl": "2", "incl": "1"},
"Tense": {"futr": "Fut", "past": "Past", "pres": "Pres"},
"Variant": {"ADJS": "Brev", "PRTS": "Brev"},
"VerbForm": {
"GRND": "Conv",
"INFN": "Inf",
"PRTF": "Part",
"PRTS": "Part",
"VERB": "Fin",
},
"Voice": {"actv": "Act", "pssv": "Pass"},
"Abbr": {"Abbr": "Yes"},
}
pos = "X"
morphology = dict()
unmatched = set()
grams = oc_tag.replace(" ", ",").split(",")
for gram in grams:
match = False
for categ, gmap in sorted(gram_map.items()):
if gram in gmap:
match = True
if categ == "_POS":
pos = gmap[gram]
else:
morphology[categ] = gmap[gram]
if not match:
unmatched.add(gram)
while len(unmatched) > 0:
gram = unmatched.pop()
if gram in ("Name", "Patr", "Surn", "Geox", "Orgn"):
pos = "PROPN"
elif gram == "Auxt":
pos = "AUX"
elif gram == "Pltm":
morphology["Number"] = "Ptan"
return pos, morphology
if UkrainianLemmatizer._morph is None:
UkrainianLemmatizer._morph = MorphAnalyzer(lang="uk")

View File

@ -29,7 +29,6 @@ from .lang.punctuation import TOKENIZER_INFIXES
from .tokens import Doc
from .lookups import load_lookups
from .tokenizer import Tokenizer
from .lemmatizer import Lemmatizer
from .errors import Errors, Warnings
from .schemas import ConfigSchema
from .git_info import GIT_VERSION
@ -87,22 +86,6 @@ def create_tokenizer() -> Callable[["Language"], Tokenizer]:
return tokenizer_factory
@registry.lemmatizers("spacy.Lemmatizer.v1")
def create_lemmatizer() -> Callable[["Language"], "Lemmatizer"]:
"""Registered function to create a lemmatizer. Returns a factory that takes
the nlp object and returns a Lemmatizer instance with data loaded in from
spacy-lookups-data, if the package is installed.
"""
# TODO: Will be replaced when the lemmatizer becomes a pipeline component
tables = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"]
def lemmatizer_factory(nlp: "Language") -> "Lemmatizer":
lookups = load_lookups(lang=nlp.lang, tables=tables, strict=False)
return Lemmatizer(lookups=lookups)
return lemmatizer_factory
class Language:
"""A text-processing pipeline. Usually you'll load this once per process,
and pass the instance around your application.
@ -128,7 +111,6 @@ class Language:
max_length: int = 10 ** 6,
meta: Dict[str, Any] = {},
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
create_lemmatizer: Optional[Callable[["Language"], Callable]] = None,
**kwargs,
) -> None:
"""Initialise a Language object.
@ -146,8 +128,6 @@ class Language:
100,000 characters in one text.
create_tokenizer (Callable): Function that takes the nlp object and
returns a tokenizer.
create_lemmatizer (Callable): Function that takes the nlp object and
returns a lemmatizer.
DOCS: https://spacy.io/api/language#init
"""
@ -166,13 +146,9 @@ class Language:
if vocab is True:
vectors_name = meta.get("vectors", {}).get("name")
if not create_lemmatizer:
lemma_cfg = {"lemmatizer": self._config["nlp"]["lemmatizer"]}
create_lemmatizer = registry.make_from_config(lemma_cfg)["lemmatizer"]
vocab = create_vocab(
self.lang,
self.Defaults,
lemmatizer=create_lemmatizer(self),
vectors_name=vectors_name,
load_data=self._config["nlp"]["load_vocab_data"],
)
@ -1451,7 +1427,6 @@ class Language:
filled["components"] = orig_pipeline
config["components"] = orig_pipeline
create_tokenizer = resolved["nlp"]["tokenizer"]
create_lemmatizer = resolved["nlp"]["lemmatizer"]
before_creation = resolved["nlp"]["before_creation"]
after_creation = resolved["nlp"]["after_creation"]
after_pipeline_creation = resolved["nlp"]["after_pipeline_creation"]
@ -1467,7 +1442,6 @@ class Language:
nlp = lang_cls(
vocab=vocab,
create_tokenizer=create_tokenizer,
create_lemmatizer=create_lemmatizer,
)
if after_creation is not None:
nlp = after_creation(nlp)

View File

@ -1,145 +0,0 @@
from typing import Optional, Callable, List, Dict
from .lookups import Lookups
from .parts_of_speech import NAMES as UPOS_NAMES
class Lemmatizer:
"""
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
lookup tables.
DOCS: https://spacy.io/api/lemmatizer
"""
def __init__(
self,
lookups: Optional[Lookups] = None,
is_base_form: Optional[Callable] = None,
) -> None:
"""Initialize a Lemmatizer.
lookups (Lookups): The lookups object containing the (optional) tables
"lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup".
"""
self.lookups = lookups if lookups is not None else Lookups()
self.is_base_form = is_base_form
def __call__(
self, string: str, univ_pos: str, morphology: Optional[dict] = None
) -> List[str]:
"""Lemmatize a string.
string (str): The string to lemmatize, e.g. the token text.
univ_pos (str / int): The token's universal part-of-speech tag.
morphology (dict): The token's morphological features following the
Universal Dependencies scheme.
RETURNS (list): The available lemmas for the string.
"""
lookup_table = self.lookups.get_table("lemma_lookup", {})
if "lemma_rules" not in self.lookups:
return [lookup_table.get(string, string)]
if isinstance(univ_pos, int):
univ_pos = UPOS_NAMES.get(univ_pos, "X")
univ_pos = univ_pos.lower()
if univ_pos in ("", "eol", "space"):
return [string.lower()]
# See Issue #435 for example of where this logic is requied.
if callable(self.is_base_form) and self.is_base_form(univ_pos, morphology):
return [string.lower()]
index_table = self.lookups.get_table("lemma_index", {})
exc_table = self.lookups.get_table("lemma_exc", {})
rules_table = self.lookups.get_table("lemma_rules", {})
if not any(
(
index_table.get(univ_pos),
exc_table.get(univ_pos),
rules_table.get(univ_pos),
)
):
if univ_pos == "propn":
return [string]
else:
return [string.lower()]
lemmas = self.lemmatize(
string,
index_table.get(univ_pos, {}),
exc_table.get(univ_pos, {}),
rules_table.get(univ_pos, []),
)
return lemmas
def noun(self, string: str, morphology: Optional[dict] = None) -> List[str]:
return self(string, "noun", morphology)
def verb(self, string: str, morphology: Optional[dict] = None) -> List[str]:
return self(string, "verb", morphology)
def adj(self, string: str, morphology: Optional[dict] = None) -> List[str]:
return self(string, "adj", morphology)
def det(self, string: str, morphology: Optional[dict] = None) -> List[str]:
return self(string, "det", morphology)
def pron(self, string: str, morphology: Optional[dict] = None) -> List[str]:
return self(string, "pron", morphology)
def adp(self, string: str, morphology: Optional[dict] = None) -> List[str]:
return self(string, "adp", morphology)
def num(self, string: str, morphology: Optional[dict] = None) -> List[str]:
return self(string, "num", morphology)
def punct(self, string: str, morphology: Optional[dict] = None) -> List[str]:
return self(string, "punct", morphology)
def lookup(self, string: str, orth: Optional[int] = None) -> str:
"""Look up a lemma in the table, if available. If no lemma is found,
the original string is returned.
string (str): The original string.
orth (int): Optional hash of the string to look up. If not set, the
string will be used and hashed.
RETURNS (str): The lemma if the string was found, otherwise the
original string.
"""
lookup_table = self.lookups.get_table("lemma_lookup", {})
key = orth if orth is not None else string
if key in lookup_table:
return lookup_table[key]
return string
def lemmatize(
self,
string: str,
index: Dict[str, List[str]],
exceptions: Dict[str, Dict[str, List[str]]],
rules: Dict[str, List[List[str]]],
) -> List[str]:
orig = string
string = string.lower()
forms = []
oov_forms = []
for old, new in rules:
if string.endswith(old):
form = string[: len(string) - len(old)] + new
if not form:
pass
elif form in index or not form.isalpha():
forms.append(form)
else:
oov_forms.append(form)
# Remove duplicates but preserve the ordering of applied "rules"
forms = list(dict.fromkeys(forms))
# Put exceptions at the front of the list, so they get priority.
# This is a dodgy heuristic -- but it's the best we can do until we get
# frequencies on this. We can at least prune out problematic exceptions,
# if they shadow more frequent analyses.
for form in exceptions.get(string, []):
if form not in forms:
forms.insert(0, form)
if not forms:
forms.extend(oov_forms)
if not forms:
forms.append(orig)
return forms

View File

@ -28,6 +28,8 @@ def load_lookups(
# TODO: import spacy_lookups_data instead of going via entry points here?
lookups = Lookups()
if lang not in registry.lookups:
if strict and len(tables) > 0:
raise ValueError(Errors.E955.format(table=", ".join(tables), lang=lang))
return lookups
data = registry.lookups.get(lang)
for table in tables:
@ -41,152 +43,6 @@ def load_lookups(
return lookups
class Lookups:
"""Container for large lookup tables and dictionaries, e.g. lemmatization
data or tokenizer exception lists. Lookups are available via vocab.lookups,
so they can be accessed before the pipeline components are applied (e.g.
in the tokenizer and lemmatizer), as well as within the pipeline components
via doc.vocab.lookups.
"""
def __init__(self) -> None:
"""Initialize the Lookups object.
DOCS: https://spacy.io/api/lookups#init
"""
self._tables = {}
def __contains__(self, name: str) -> bool:
"""Check if the lookups contain a table of a given name. Delegates to
Lookups.has_table.
name (str): Name of the table.
RETURNS (bool): Whether a table of that name is in the lookups.
"""
return self.has_table(name)
def __len__(self) -> int:
"""RETURNS (int): The number of tables in the lookups."""
return len(self._tables)
@property
def tables(self) -> List[str]:
"""RETURNS (List[str]): Names of all tables in the lookups."""
return list(self._tables.keys())
def add_table(self, name: str, data: dict = SimpleFrozenDict()) -> "Table":
"""Add a new table to the lookups. Raises an error if the table exists.
name (str): Unique name of table.
data (dict): Optional data to add to the table.
RETURNS (Table): The newly added table.
DOCS: https://spacy.io/api/lookups#add_table
"""
if name in self.tables:
raise ValueError(Errors.E158.format(name=name))
table = Table(name=name, data=data)
self._tables[name] = table
return table
def get_table(self, name: str, default: Any = UNSET) -> "Table":
"""Get a table. Raises an error if the table doesn't exist and no
default value is provided.
name (str): Name of the table.
default (Any): Optional default value to return if table doesn't exist.
RETURNS (Table): The table.
DOCS: https://spacy.io/api/lookups#get_table
"""
if name not in self._tables:
if default == UNSET:
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
return default
return self._tables[name]
def remove_table(self, name: str) -> "Table":
"""Remove a table. Raises an error if the table doesn't exist.
name (str): Name of the table to remove.
RETURNS (Table): The removed table.
DOCS: https://spacy.io/api/lookups#remove_table
"""
if name not in self._tables:
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
return self._tables.pop(name)
def has_table(self, name: str) -> bool:
"""Check if the lookups contain a table of a given name.
name (str): Name of the table.
RETURNS (bool): Whether a table of that name exists.
DOCS: https://spacy.io/api/lookups#has_table
"""
return name in self._tables
def to_bytes(self, **kwargs) -> bytes:
"""Serialize the lookups to a bytestring.
RETURNS (bytes): The serialized Lookups.
DOCS: https://spacy.io/api/lookups#to_bytes
"""
return srsly.msgpack_dumps(self._tables)
def from_bytes(self, bytes_data: bytes, **kwargs) -> "Lookups":
"""Load the lookups from a bytestring.
bytes_data (bytes): The data to load.
RETURNS (Lookups): The loaded Lookups.
DOCS: https://spacy.io/api/lookups#from_bytes
"""
self._tables = {}
for key, value in srsly.msgpack_loads(bytes_data).items():
self._tables[key] = Table(key, value)
return self
def to_disk(
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
) -> None:
"""Save the lookups to a directory as lookups.bin. Expects a path to a
directory, which will be created if it doesn't exist.
path (str / Path): The file path.
DOCS: https://spacy.io/api/lookups#to_disk
"""
if len(self._tables):
path = ensure_path(path)
if not path.exists():
path.mkdir()
filepath = path / filename
with filepath.open("wb") as file_:
file_.write(self.to_bytes())
def from_disk(
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
) -> "Lookups":
"""Load lookups from a directory containing a lookups.bin. Will skip
loading if the file doesn't exist.
path (str / Path): The directory path.
RETURNS (Lookups): The loaded lookups.
DOCS: https://spacy.io/api/lookups#from_disk
"""
path = ensure_path(path)
filepath = path / filename
if filepath.exists():
with filepath.open("rb") as file_:
data = file_.read()
return self.from_bytes(data)
return self
class Table(OrderedDict):
"""A table in the lookups. Subclass of builtin dict that implements a
slightly more consistent and unified API.
@ -303,3 +159,159 @@ class Table(OrderedDict):
self.clear()
self.update(data)
return self
class Lookups:
"""Container for large lookup tables and dictionaries, e.g. lemmatization
data or tokenizer exception lists. Lookups are available via vocab.lookups,
so they can be accessed before the pipeline components are applied (e.g.
in the tokenizer and lemmatizer), as well as within the pipeline components
via doc.vocab.lookups.
"""
def __init__(self) -> None:
"""Initialize the Lookups object.
DOCS: https://spacy.io/api/lookups#init
"""
self._tables = {}
def __contains__(self, name: str) -> bool:
"""Check if the lookups contain a table of a given name. Delegates to
Lookups.has_table.
name (str): Name of the table.
RETURNS (bool): Whether a table of that name is in the lookups.
"""
return self.has_table(name)
def __len__(self) -> int:
"""RETURNS (int): The number of tables in the lookups."""
return len(self._tables)
@property
def tables(self) -> List[str]:
"""RETURNS (List[str]): Names of all tables in the lookups."""
return list(self._tables.keys())
def add_table(self, name: str, data: dict = SimpleFrozenDict()) -> Table:
"""Add a new table to the lookups. Raises an error if the table exists.
name (str): Unique name of table.
data (dict): Optional data to add to the table.
RETURNS (Table): The newly added table.
DOCS: https://spacy.io/api/lookups#add_table
"""
if name in self.tables:
raise ValueError(Errors.E158.format(name=name))
table = Table(name=name, data=data)
self._tables[name] = table
return table
def set_table(self, name: str, table: Table) -> None:
"""Set a table.
name (str): Name of the table to set.
table (Table): The Table to set.
DOCS: https://spacy.io/api/lookups#set_table
"""
self._tables[name] = table
def get_table(self, name: str, default: Any = UNSET) -> Table:
"""Get a table. Raises an error if the table doesn't exist and no
default value is provided.
name (str): Name of the table.
default (Any): Optional default value to return if table doesn't exist.
RETURNS (Table): The table.
DOCS: https://spacy.io/api/lookups#get_table
"""
if name not in self._tables:
if default == UNSET:
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
return default
return self._tables[name]
def remove_table(self, name: str) -> Table:
"""Remove a table. Raises an error if the table doesn't exist.
name (str): Name of the table to remove.
RETURNS (Table): The removed table.
DOCS: https://spacy.io/api/lookups#remove_table
"""
if name not in self._tables:
raise KeyError(Errors.E159.format(name=name, tables=self.tables))
return self._tables.pop(name)
def has_table(self, name: str) -> bool:
"""Check if the lookups contain a table of a given name.
name (str): Name of the table.
RETURNS (bool): Whether a table of that name exists.
DOCS: https://spacy.io/api/lookups#has_table
"""
return name in self._tables
def to_bytes(self, **kwargs) -> bytes:
"""Serialize the lookups to a bytestring.
RETURNS (bytes): The serialized Lookups.
DOCS: https://spacy.io/api/lookups#to_bytes
"""
return srsly.msgpack_dumps(self._tables)
def from_bytes(self, bytes_data: bytes, **kwargs) -> "Lookups":
"""Load the lookups from a bytestring.
bytes_data (bytes): The data to load.
RETURNS (Lookups): The loaded Lookups.
DOCS: https://spacy.io/api/lookups#from_bytes
"""
self._tables = {}
for key, value in srsly.msgpack_loads(bytes_data).items():
self._tables[key] = Table(key, value)
return self
def to_disk(
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
) -> None:
"""Save the lookups to a directory as lookups.bin. Expects a path to a
directory, which will be created if it doesn't exist.
path (str / Path): The file path.
DOCS: https://spacy.io/api/lookups#to_disk
"""
if len(self._tables):
path = ensure_path(path)
if not path.exists():
path.mkdir()
filepath = path / filename
with filepath.open("wb") as file_:
file_.write(self.to_bytes())
def from_disk(
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
) -> "Lookups":
"""Load lookups from a directory containing a lookups.bin. Will skip
loading if the file doesn't exist.
path (str / Path): The directory path.
RETURNS (Lookups): The loaded lookups.
DOCS: https://spacy.io/api/lookups#from_disk
"""
path = ensure_path(path)
filepath = path / filename
if filepath.exists():
with filepath.open("rb") as file_:
data = file_.read()
return self.from_bytes(data)
return self

View File

@ -27,12 +27,6 @@ cdef class Morphology:
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *
cdef int insert(self, MorphAnalysisC tag) except -1
cdef int assign_untagged(self, TokenC* token) except -1
cdef int assign_tag(self, TokenC* token, tag) except -1
cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1
cdef int _assign_tag_from_exceptions(self, TokenC* token, int tag_id) except -1
cdef int check_feature(const MorphAnalysisC* morph, attr_t feature) nogil
cdef list list_features(const MorphAnalysisC* morph)

View File

@ -31,43 +31,15 @@ cdef class Morphology:
VALUE_SEP = ","
EMPTY_MORPH = "_" # not an empty string so that the PreshMap key is not 0
def __init__(self, StringStore strings, tag_map, lemmatizer, exc=None):
def __init__(self, StringStore strings):
self.mem = Pool()
self.strings = strings
self.tags = PreshMap()
self.load_tag_map(tag_map)
self.lemmatizer = lemmatizer
self._cache = PreshMapArray(self.n_tags)
self._exc = {}
if exc is not None:
self.load_morph_exceptions(exc)
def load_tag_map(self, tag_map):
self.tag_map = {}
self.reverse_index = {}
# Add special space symbol. We prefix with underscore, to make sure it
# always sorts to the end.
if '_SP' in tag_map:
space_attrs = tag_map.get('_SP')
else:
space_attrs = tag_map.get('SP', {POS: SPACE})
if '_SP' not in tag_map:
self.strings.add('_SP')
tag_map = dict(tag_map)
tag_map['_SP'] = space_attrs
for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())):
attrs = self.normalize_attrs(attrs)
self.add(attrs)
self.tag_map[tag_str] = dict(attrs)
self.reverse_index[self.strings.add(tag_str)] = i
self.tag_names = tuple(sorted(self.tag_map.keys()))
self.n_tags = len(self.tag_map)
self._cache = PreshMapArray(self.n_tags)
def __reduce__(self):
return (Morphology, (self.strings, self.tag_map, self.lemmatizer,
self.exc), None, None)
tags = set([self.get(self.strings[s]) for s in self.strings])
tags -= set([""])
return (unpickle_morphology, (self.strings, sorted(tags)), None, None)
def add(self, features):
"""Insert a morphological analysis in the morphology table, if not
@ -185,115 +157,6 @@ cdef class Morphology:
else:
return self.strings[tag.key]
def lemmatize(self, const univ_pos_t univ_pos, attr_t orth, morphology):
if orth not in self.strings:
return orth
cdef unicode py_string = self.strings[orth]
if self.lemmatizer is None:
return self.strings.add(py_string.lower())
cdef list lemma_strings
cdef unicode lemma_string
# Normalize features into a dict keyed by the field, to make life easier
# for the lemmatizer. Handles string-to-int conversion too.
string_feats = {}
for key, value in morphology.items():
if value is True:
name, value = self.strings.as_string(key).split('_', 1)
string_feats[name] = value
else:
string_feats[self.strings.as_string(key)] = self.strings.as_string(value)
lemma_strings = self.lemmatizer(py_string, univ_pos, string_feats)
lemma_string = lemma_strings[0]
lemma = self.strings.add(lemma_string)
return lemma
def add_special_case(self, unicode tag_str, unicode orth_str, attrs,
force=False):
"""Add a special-case rule to the morphological analyser. Tokens whose
tag and orth match the rule will receive the specified properties.
tag (str): The part-of-speech tag to key the exception.
orth (str): The word-form to key the exception.
"""
attrs = dict(attrs)
attrs = self.normalize_attrs(attrs)
self.add(attrs)
attrs = intify_attrs(attrs, self.strings, _do_deprecated=True)
self._exc[(tag_str, self.strings.add(orth_str))] = attrs
cdef int assign_untagged(self, TokenC* token) except -1:
"""Set morphological attributes on a token without a POS tag. Uses
the lemmatizer's lookup() method, which looks up the string in the
table provided by the language data as lemma_lookup (if available).
"""
if token.lemma == 0:
orth_str = self.strings[token.lex.orth]
lemma = self.lemmatizer.lookup(orth_str, orth=token.lex.orth)
token.lemma = self.strings.add(lemma)
cdef int assign_tag(self, TokenC* token, tag_str) except -1:
cdef attr_t tag = self.strings.as_int(tag_str)
if tag in self.reverse_index:
tag_id = self.reverse_index[tag]
self.assign_tag_id(token, tag_id)
else:
token.tag = tag
cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1:
if tag_id > self.n_tags:
raise ValueError(Errors.E014.format(tag=tag_id))
# Ensure spaces get tagged as space.
# It seems pretty arbitrary to put this logic here, but there's really
# nowhere better. I guess the justification is that this is where the
# specific word and the tag interact. Still, we should have a better
# way to enforce this rule, or figure out why the statistical model fails.
# Related to Issue #220
if Lexeme.c_check_flag(token.lex, IS_SPACE):
tag_id = self.reverse_index[self.strings.add('_SP')]
tag_str = self.tag_names[tag_id]
features = dict(self.tag_map.get(tag_str, {}))
if features:
pos = self.strings.as_int(features.pop(POS))
else:
pos = 0
cdef attr_t lemma = <attr_t>self._cache.get(tag_id, token.lex.orth)
if lemma == 0:
# Ugh, self.lemmatize has opposite arg order from self.lemmatizer :(
lemma = self.lemmatize(pos, token.lex.orth, features)
self._cache.set(tag_id, token.lex.orth, <void*>lemma)
token.lemma = lemma
token.pos = <univ_pos_t>pos
token.tag = self.strings[tag_str]
token.morph = self.add(features)
if (self.tag_names[tag_id], token.lex.orth) in self._exc:
self._assign_tag_from_exceptions(token, tag_id)
cdef int _assign_tag_from_exceptions(self, TokenC* token, int tag_id) except -1:
key = (self.tag_names[tag_id], token.lex.orth)
cdef dict attrs
attrs = self._exc[key]
token.pos = attrs.get(POS, token.pos)
token.lemma = attrs.get(LEMMA, token.lemma)
def load_morph_exceptions(self, dict morph_rules):
self._exc = {}
# Map (form, pos) to attributes
for tag, exc in morph_rules.items():
for orth, attrs in exc.items():
attrs = self.normalize_attrs(attrs)
self.add_special_case(self.strings.as_string(tag), self.strings.as_string(orth), attrs)
@property
def exc(self):
# generate the serializable exc in the MORPH_RULES format from the
# internal tuple-key format
morph_rules = {}
for (tag, orth) in sorted(self._exc):
if not tag in morph_rules:
morph_rules[tag] = {}
morph_rules[tag][self.strings[orth]] = self._exc[(tag, orth)]
return morph_rules
@staticmethod
def feats_to_dict(feats):
if not feats or feats == Morphology.EMPTY_MORPH:
@ -338,3 +201,9 @@ cdef int get_n_by_field(attr_t* results, const MorphAnalysisC* morph, attr_t fie
results[n_results] = morph.features[i]
n_results += 1
return n_results
def unpickle_morphology(strings, tags):
cdef Morphology morphology = Morphology(strings)
for tag in tags:
morphology.add(tag)
return morphology

View File

@ -3,9 +3,10 @@ from .dep_parser import DependencyParser
from .entity_linker import EntityLinker
from .ner import EntityRecognizer
from .entityruler import EntityRuler
from .lemmatizer import Lemmatizer
from .morphologizer import Morphologizer
from .pipe import Pipe
from spacy.pipeline.senter import SentenceRecognizer
from .senter import SentenceRecognizer
from .sentencizer import Sentencizer
from .simple_ner import SimpleNER
from .tagger import Tagger
@ -20,6 +21,7 @@ __all__ = [
"EntityRecognizer",
"EntityRuler",
"Morphologizer",
"Lemmatizer",
"Pipe",
"SentenceRecognizer",
"Sentencizer",

View File

@ -0,0 +1,330 @@
from typing import Optional, List, Dict, Any
from thinc.api import Model
from .pipe import Pipe
from ..errors import Errors
from ..language import Language
from ..lookups import Lookups, load_lookups
from ..scorer import Scorer
from ..tokens import Doc, Token
from ..vocab import Vocab
from .. import util
@Language.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "lookup",
"lookups": None,
"overwrite": False,
},
scores=["lemma_acc"],
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
lookups: Optional[Lookups],
overwrite: bool = False,
):
lookups = Lemmatizer.load_lookups(nlp.lang, mode, lookups)
return Lemmatizer(
nlp.vocab, model, name, mode=mode, lookups=lookups, overwrite=overwrite
)
class Lemmatizer(Pipe):
"""
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
lookup tables.
DOCS: https://spacy.io/api/lemmatizer
"""
@classmethod
def get_lookups_config(cls, mode: str) -> Dict:
"""Returns the lookups configuration settings for a given mode for use
in Lemmatizer.load_lookups.
mode (str): The lemmatizer mode.
RETURNS (dict): The lookups configuration settings for this mode.
DOCS: https://spacy.io/api/lemmatizer#get_lookups_config
"""
if mode == "lookup":
return {
"required_tables": ["lemma_lookup"],
}
elif mode == "rule":
return {
"required_tables": ["lemma_rules"],
"optional_tables": ["lemma_exc", "lemma_index"],
}
return {}
@classmethod
def load_lookups(cls, lang: str, mode: str, lookups: Optional[Lookups],) -> Lookups:
"""Load and validate lookups tables. If the provided lookups is None,
load the default lookups tables according to the language and mode
settings. Confirm that all required tables for the language and mode
are present.
lang (str): The language code.
mode (str): The lemmatizer mode.
lookups (Lookups): The provided lookups, may be None if the default
lookups should be loaded.
RETURNS (Lookups): The Lookups object.
DOCS: https://spacy.io/api/lemmatizer#get_lookups_config
"""
config = cls.get_lookups_config(mode)
required_tables = config.get("required_tables", [])
optional_tables = config.get("optional_tables", [])
if lookups is None:
lookups = load_lookups(lang=lang, tables=required_tables)
optional_lookups = load_lookups(
lang=lang, tables=optional_tables, strict=False
)
for table in optional_lookups.tables:
lookups.set_table(table, optional_lookups.get_table(table))
for table in required_tables:
if table not in lookups:
raise ValueError(
Errors.E1004.format(
mode=mode, tables=required_tables, found=lookups.tables
)
)
return lookups
def __init__(
self,
vocab: Vocab,
model: Optional[Model],
name: str = "lemmatizer",
*,
mode: str = "lookup",
lookups: Optional[Lookups] = None,
overwrite: bool = False,
) -> None:
"""Initialize a Lemmatizer.
vocab (Vocab): The vocab.
model (Model): A model (not yet implemented).
name (str): The component name. Defaults to "lemmatizer".
mode (str): The lemmatizer mode: "lookup", "rule". Defaults to "lookup".
lookups (Lookups): The lookups object containing the (optional) tables
such as "lemma_rules", "lemma_index", "lemma_exc" and
"lemma_lookup". Defaults to None
overwrite (bool): Whether to overwrite existing lemmas. Defaults to
`False`.
DOCS: https://spacy.io/api/lemmatizer#init
"""
self.vocab = vocab
self.model = model
self._mode = mode
self.lookups = lookups if lookups is not None else Lookups()
self.overwrite = overwrite
if self.mode == "lookup":
self.lemmatize = self.lookup_lemmatize
elif self.mode == "rule":
self.lemmatize = self.rule_lemmatize
else:
try:
self.lemmatize = getattr(self, f"{self.mode}_lemmatize")
except AttributeError:
raise ValueError(Errors.E1003.format(mode=mode))
self.cache = {}
@property
def mode(self):
return self._mode
def __call__(self, doc: Doc) -> Doc:
"""Apply the lemmatizer to one document.
doc (Doc): The Doc to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/lemmatizer#call
"""
for token in doc:
if self.overwrite or token.lemma == 0:
token.lemma_ = self.lemmatize(token)[0]
return doc
def pipe(self, stream, *, batch_size=128):
"""Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are
applied to the Doc.
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/lemmatizer#pipe
"""
for doc in stream:
doc = self(doc)
yield doc
def lookup_lemmatize(self, token: Token) -> List[str]:
"""Lemmatize using a lookup-based approach.
token (Token): The token to lemmatize.
RETURNS (list): The available lemmas for the string.
DOCS: https://spacy.io/api/lemmatizer#lookup_lemmatize
"""
lookup_table = self.lookups.get_table("lemma_lookup", {})
result = lookup_table.get(token.text, token.text)
if isinstance(result, str):
result = [result]
return result
def rule_lemmatize(self, token: Token) -> List[str]:
"""Lemmatize using a rule-based approach.
token (Token): The token to lemmatize.
RETURNS (list): The available lemmas for the string.
DOCS: https://spacy.io/api/lemmatizer#rule_lemmatize
"""
cache_key = (token.orth, token.pos, token.morph)
if cache_key in self.cache:
return self.cache[cache_key]
string = token.text
univ_pos = token.pos_.lower()
if univ_pos in ("", "eol", "space"):
return [string.lower()]
# See Issue #435 for example of where this logic is requied.
if self.is_base_form(token):
return [string.lower()]
index_table = self.lookups.get_table("lemma_index", {})
exc_table = self.lookups.get_table("lemma_exc", {})
rules_table = self.lookups.get_table("lemma_rules", {})
if not any(
(
index_table.get(univ_pos),
exc_table.get(univ_pos),
rules_table.get(univ_pos),
)
):
if univ_pos == "propn":
return [string]
else:
return [string.lower()]
index = index_table.get(univ_pos, {})
exceptions = exc_table.get(univ_pos, {})
rules = rules_table.get(univ_pos, {})
orig = string
string = string.lower()
forms = []
oov_forms = []
for old, new in rules:
if string.endswith(old):
form = string[: len(string) - len(old)] + new
if not form:
pass
elif form in index or not form.isalpha():
forms.append(form)
else:
oov_forms.append(form)
# Remove duplicates but preserve the ordering of applied "rules"
forms = list(dict.fromkeys(forms))
# Put exceptions at the front of the list, so they get priority.
# This is a dodgy heuristic -- but it's the best we can do until we get
# frequencies on this. We can at least prune out problematic exceptions,
# if they shadow more frequent analyses.
for form in exceptions.get(string, []):
if form not in forms:
forms.insert(0, form)
if not forms:
forms.extend(oov_forms)
if not forms:
forms.append(orig)
self.cache[cache_key] = forms
return forms
def is_base_form(self, token: Token) -> bool:
"""Check whether the token is a base form that does not need further
analysis for lemmatization.
token (Token): The token.
RETURNS (bool): Whether the token is a base form.
DOCS: https://spacy.io/api/lemmatizer#is_base_form
"""
return False
def score(self, examples, **kwargs) -> Dict[str, Any]:
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores.
DOCS: https://spacy.io/api/lemmatizer#score
"""
return Scorer.score_token_attr(examples, "lemma", **kwargs)
def to_disk(self, path, *, exclude=tuple()):
"""Save the current state to a directory.
path (unicode or Path): A path to a directory, which will be created if
it doesn't exist.
exclude (list): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/vocab#to_disk
"""
serialize = {}
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
serialize["lookups"] = lambda p: self.lookups.to_disk(p)
util.to_disk(path, serialize, exclude)
def from_disk(self, path, *, exclude=tuple()):
"""Loads state from a directory. Modifies the object in place and
returns it.
path (unicode or Path): A path to a directory.
exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The modified `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_disk
"""
deserialize = {}
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
deserialize["lookups"] = lambda p: self.lookups.from_disk(p)
util.from_disk(path, deserialize, exclude)
def to_bytes(self, *, exclude=tuple()) -> bytes:
"""Serialize the current state to a binary string.
exclude (list): String names of serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Vocab` object.
DOCS: https://spacy.io/api/vocab#to_bytes
"""
serialize = {}
serialize["vocab"] = self.vocab.to_bytes
serialize["lookups"] = self.lookups.to_bytes
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data: bytes, *, exclude=tuple()):
"""Load state from a binary string.
bytes_data (bytes): The data to load from.
exclude (list): String names of serialization fields to exclude.
RETURNS (Vocab): The `Vocab` object.
DOCS: https://spacy.io/api/vocab#from_bytes
"""
deserialize = {}
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)
deserialize["lookups"] = lambda b: self.lookups.from_bytes(b)
util.from_bytes(bytes_data, deserialize, exclude)

View File

@ -39,12 +39,12 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"tagger",
assigns=["token.tag"],
default_config={"model": DEFAULT_TAGGER_MODEL, "set_morphology": False},
scores=["tag_acc", "pos_acc", "lemma_acc"],
default_config={"model": DEFAULT_TAGGER_MODEL},
scores=["tag_acc"],
default_score_weights={"tag_acc": 1.0},
)
def make_tagger(nlp: Language, name: str, model: Model, set_morphology: bool):
return Tagger(nlp.vocab, model, name, set_morphology=set_morphology)
def make_tagger(nlp: Language, name: str, model: Model):
return Tagger(nlp.vocab, model, name)
class Tagger(Pipe):
@ -52,13 +52,14 @@ class Tagger(Pipe):
DOCS: https://spacy.io/api/tagger
"""
def __init__(self, vocab, model, name="tagger", *, set_morphology=False):
def __init__(self, vocab, model, name="tagger", *, labels=None):
"""Initialize a part-of-speech tagger.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
labels (List): The set of labels. Defaults to None.
set_morphology (bool): Whether to set morphological features.
DOCS: https://spacy.io/api/tagger#init
@ -67,7 +68,7 @@ class Tagger(Pipe):
self.model = model
self.name = name
self._rehearsal_model = None
cfg = {"set_morphology": set_morphology}
cfg = {"labels": labels or []}
self.cfg = dict(sorted(cfg.items()))
@property
@ -80,7 +81,7 @@ class Tagger(Pipe):
DOCS: https://spacy.io/api/tagger#labels
"""
return tuple(self.vocab.morphology.tag_names)
return tuple(self.cfg["labels"])
def __call__(self, doc):
"""Apply the pipe to a Doc.
@ -150,9 +151,7 @@ class Tagger(Pipe):
if isinstance(docs, Doc):
docs = [docs]
cdef Doc doc
cdef int idx = 0
cdef Vocab vocab = self.vocab
assign_morphology = self.cfg.get("set_morphology", True)
for i, doc in enumerate(docs):
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, "get"):
@ -160,15 +159,7 @@ class Tagger(Pipe):
for j, tag_id in enumerate(doc_tag_ids):
# Don't clobber preset POS tags
if doc.c[j].tag == 0:
if doc.c[j].pos == 0 and assign_morphology:
# Don't clobber preset lemmas
lemma = doc.c[j].lemma
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
if lemma != 0 and lemma != doc.c[j].lex.orth:
doc.c[j].lemma = lemma
else:
doc.c[j].tag = self.vocab.strings[self.labels[tag_id]]
idx += 1
doc.c[j].tag = self.vocab.strings[self.labels[tag_id]]
doc.is_tagged = True
def update(self, examples, *, drop=0., sgd=None, losses=None, set_annotations=False):
@ -279,55 +270,26 @@ class Tagger(Pipe):
DOCS: https://spacy.io/api/tagger#begin_training
"""
lemma_tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
if not any(table in self.vocab.lookups for table in lemma_tables):
warnings.warn(Warnings.W022)
lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {})
if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS:
langs = ", ".join(util.LEXEME_NORM_LANGS)
warnings.warn(Warnings.W033.format(model="part-of-speech tagger", langs=langs))
orig_tag_map = dict(self.vocab.morphology.tag_map)
new_tag_map = {}
tags = set()
for example in get_examples():
try:
y = example.y
except AttributeError:
raise TypeError(Errors.E978.format(name="Tagger", method="begin_training", types=type(example))) from None
for token in y:
tag = token.tag_
if tag in orig_tag_map:
new_tag_map[tag] = orig_tag_map[tag]
else:
new_tag_map[tag] = {POS: X}
cdef Vocab vocab = self.vocab
if new_tag_map:
if "_SP" in orig_tag_map:
new_tag_map["_SP"] = orig_tag_map["_SP"]
vocab.morphology.load_tag_map(new_tag_map)
tags.add(token.tag_)
for tag in sorted(tags):
self.add_label(tag)
self.set_output(len(self.labels))
doc_sample = [Doc(self.vocab, words=["hello", "world"])]
if pipeline is not None:
for name, component in pipeline:
if component is self:
break
if hasattr(component, "pipe"):
doc_sample = list(component.pipe(doc_sample))
else:
doc_sample = [component(doc) for doc in doc_sample]
self.model.initialize(X=doc_sample)
# Get batch of example docs, example outputs to call begin_training().
# This lets the model infer shapes.
self.model.initialize()
if sgd is None:
sgd = self.create_optimizer()
return sgd
def add_label(self, label, values=None):
def add_label(self, label):
"""Add a new label to the pipe.
label (str): The label to add.
values (Dict[int, str]): Optional values to map to the label, e.g. a
tag map dictionary.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/tagger#add_label
@ -336,22 +298,8 @@ class Tagger(Pipe):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
if self.model.has_dim("nO"):
# Here's how the model resizing will work, once the
# neuron-to-tag mapping is no longer controlled by
# the Morphology class, which sorts the tag names.
# The sorting makes adding labels difficult.
# smaller = self.model._layers[-1]
# larger = Softmax(len(self.labels)+1, smaller.nI)
# copy_array(larger.W[:smaller.nO], smaller.W)
# copy_array(larger.b[:smaller.nO], smaller.b)
# self.model._layers[-1] = larger
raise ValueError(TempErrors.T003)
tag_map = dict(self.vocab.morphology.tag_map)
if values is None:
values = {POS: "X"}
tag_map[label] = values
self.vocab.morphology.load_tag_map(tag_map)
self.cfg["labels"].append(label)
self.vocab.strings.add(label)
return 1
def score(self, examples, **kwargs):
@ -363,11 +311,7 @@ class Tagger(Pipe):
DOCS: https://spacy.io/api/tagger#score
"""
scores = {}
scores.update(Scorer.score_token_attr(examples, "tag", **kwargs))
scores.update(Scorer.score_token_attr(examples, "pos", **kwargs))
scores.update(Scorer.score_token_attr(examples, "lemma", **kwargs))
return scores
return Scorer.score_token_attr(examples, "tag", **kwargs)
def to_bytes(self, *, exclude=tuple()):
"""Serialize the pipe to a bytestring.
@ -381,10 +325,6 @@ class Tagger(Pipe):
serialize["model"] = self.model.to_bytes
serialize["vocab"] = self.vocab.to_bytes
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
tag_map = dict(sorted(self.vocab.morphology.tag_map.items()))
serialize["tag_map"] = lambda: srsly.msgpack_dumps(tag_map)
morph_rules = dict(self.vocab.morphology.exc)
serialize["morph_rules"] = lambda: srsly.msgpack_dumps(morph_rules)
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data, *, exclude=tuple()):
@ -402,21 +342,8 @@ class Tagger(Pipe):
except AttributeError:
raise ValueError(Errors.E149) from None
def load_tag_map(b):
tag_map = srsly.msgpack_loads(b)
self.vocab.morphology.load_tag_map(tag_map)
def load_morph_rules(b):
morph_rules = srsly.msgpack_loads(b)
self.vocab.morphology.load_morph_exceptions(morph_rules)
self.vocab.morphology = Morphology(self.vocab.strings, dict(),
lemmatizer=self.vocab.morphology.lemmatizer)
deserialize = {
"vocab": lambda b: self.vocab.from_bytes(b),
"tag_map": load_tag_map,
"morph_rules": load_morph_rules,
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
"model": lambda b: load_model(b),
}
@ -431,12 +358,8 @@ class Tagger(Pipe):
DOCS: https://spacy.io/api/tagger#to_disk
"""
tag_map = dict(sorted(self.vocab.morphology.tag_map.items()))
morph_rules = dict(self.vocab.morphology.exc)
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
"tag_map": lambda p: srsly.write_msgpack(p, tag_map),
"morph_rules": lambda p: srsly.write_msgpack(p, morph_rules),
"model": lambda p: self.model.to_disk(p),
"cfg": lambda p: srsly.write_json(p, self.cfg),
}
@ -458,22 +381,9 @@ class Tagger(Pipe):
except AttributeError:
raise ValueError(Errors.E149) from None
def load_tag_map(p):
tag_map = srsly.read_msgpack(p)
self.vocab.morphology.load_tag_map(tag_map)
def load_morph_rules(p):
morph_rules = srsly.read_msgpack(p)
self.vocab.morphology.load_morph_exceptions(morph_rules)
self.vocab.morphology = Morphology(self.vocab.strings, dict(),
lemmatizer=self.vocab.morphology.lemmatizer)
deserialize = {
"vocab": lambda p: self.vocab.from_disk(p),
"cfg": lambda p: self.cfg.update(deserialize_config(p)),
"tag_map": load_tag_map,
"morph_rules": load_morph_rules,
"model": load_model,
}
util.from_disk(path, deserialize, exclude)

View File

@ -220,7 +220,6 @@ class ConfigSchemaNlp(BaseModel):
lang: StrictStr = Field(..., title="The base language to use")
pipeline: List[StrictStr] = Field(..., title="The pipeline component names in order")
tokenizer: Callable = Field(..., title="The tokenizer to use")
lemmatizer: Callable = Field(..., title="The lemmatizer to use")
load_vocab_data: StrictBool = Field(..., title="Whether to load additional vocab data from spacy-lookups-data")
before_creation: Optional[Callable[[Type["Language"]], Type["Language"]]] = Field(..., title="Optional callback to modify Language class before initialization")
after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed")

View File

@ -201,7 +201,7 @@ def ru_tokenizer():
@pytest.fixture
def ru_lemmatizer():
pytest.importorskip("pymorphy2")
return get_lang_class("ru")().vocab.morphology.lemmatizer
return get_lang_class("ru")().add_pipe("lemmatizer")
@pytest.fixture(scope="session")

View File

@ -1,21 +1,12 @@
import pytest
from spacy.vocab import Vocab
from spacy.tokens import Doc
from spacy.lemmatizer import Lemmatizer
from spacy.lookups import Lookups
from spacy import util
@pytest.fixture
def lemmatizer():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"dogs": "dog", "boxen": "box", "mice": "mouse"})
return Lemmatizer(lookups)
@pytest.fixture
def vocab(lemmatizer):
return Vocab(lemmatizer=lemmatizer)
def vocab():
return Vocab()
def test_empty_doc(vocab):
@ -30,14 +21,6 @@ def test_single_word(vocab):
assert doc.text == "a"
def test_lookup_lemmatization(vocab):
doc = Doc(vocab, words=["dogs", "dogses"])
assert doc[0].text == "dogs"
assert doc[0].lemma_ == "dog"
assert doc[1].text == "dogses"
assert doc[1].lemma_ == "dogses"
def test_create_from_words_and_text(vocab):
# no whitespace in words
words = ["'", "dogs", "'", "run"]

View File

@ -1,23 +1,17 @@
import pytest
from spacy.symbols import POS, PRON, VERB
@pytest.fixture
def i_has(en_tokenizer):
doc = en_tokenizer("I has")
tag_map = {
"PRP": {POS: PRON, "PronType": "prs"},
"VBZ": {
POS: VERB,
"VerbForm": "fin",
"Tense": "pres",
"Number": "sing",
"Person": "three",
},
doc[0].morph_ = {"PronType": "prs"}
doc[1].morph_ = {
"VerbForm": "fin",
"Tense": "pres",
"Number": "sing",
"Person": "three",
}
en_tokenizer.vocab.morphology.load_tag_map(tag_map)
doc[0].tag_ = "PRP"
doc[1].tag_ = "VBZ"
return doc

View File

@ -124,7 +124,6 @@ def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
assert doc[0].text == "The players"
assert doc[0].tag_ == "NN"
assert doc[0].pos_ == "NOUN"
assert doc[0].lemma_ == "The players"
doc = get_doc(
tokens.vocab,
words=[t.text for t in tokens],
@ -143,11 +142,9 @@ def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
assert doc[0].text == "The players"
assert doc[0].tag_ == "NN"
assert doc[0].pos_ == "NOUN"
assert doc[0].lemma_ == "The players"
assert doc[1].text == "start ."
assert doc[1].tag_ == "VBZ"
assert doc[1].pos_ == "VERB"
assert doc[1].lemma_ == "start ."
def test_doc_retokenize_spans_merge_heads(en_tokenizer):

View File

@ -1,21 +0,0 @@
from spacy.symbols import POS, PRON, VERB, DET, NOUN, PUNCT
from ...util import get_doc
def test_en_tagger_load_morph_exc(en_tokenizer):
text = "I like his style."
tags = ["PRP", "VBP", "PRP$", "NN", "."]
tag_map = {
"PRP": {POS: PRON},
"VBP": {POS: VERB},
"PRP$": {POS: DET},
"NN": {POS: NOUN},
".": {POS: PUNCT},
}
morph_exc = {"VBP": {"like": {"lemma": "luck"}}}
en_tokenizer.vocab.morphology.load_tag_map(tag_map)
en_tokenizer.vocab.morphology.load_morph_exceptions(morph_exc)
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], tags=tags)
assert doc[1].tag_ == "VBP"
assert doc[1].lemma_ == "luck"

View File

@ -3,15 +3,16 @@ import pytest
from ...util import get_doc
@pytest.mark.xfail(reason="TODO: investigate why lemmatizer fails here")
def test_ru_doc_lemmatization(ru_tokenizer):
def test_ru_doc_lemmatization(ru_lemmatizer):
words = ["мама", "мыла", "раму"]
tags = [
"NOUN__Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing",
"VERB__Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
"NOUN__Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
pos = ["NOUN", "VERB", "NOUN"]
morphs = [
"Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing",
"Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
"Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
]
doc = get_doc(ru_tokenizer.vocab, words=words, tags=tags)
doc = get_doc(ru_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
doc = ru_lemmatizer(doc)
lemmas = [token.lemma_ for token in doc]
assert lemmas == ["мама", "мыть", "рама"]
@ -27,43 +28,51 @@ def test_ru_doc_lemmatization(ru_tokenizer):
],
)
def test_ru_lemmatizer_noun_lemmas(ru_lemmatizer, text, lemmas):
assert sorted(ru_lemmatizer.noun(text)) == lemmas
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"])
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
assert sorted(result_lemmas) == lemmas
@pytest.mark.parametrize(
"text,pos,morphology,lemma",
"text,pos,morph,lemma",
[
("рой", "NOUN", None, "рой"),
("рой", "VERB", None, "рыть"),
("клей", "NOUN", None, "клей"),
("клей", "VERB", None, "клеить"),
("три", "NUM", None, "три"),
("кос", "NOUN", {"Number": "Sing"}, "кос"),
("кос", "NOUN", {"Number": "Plur"}, "коса"),
("кос", "ADJ", None, "косой"),
("потом", "NOUN", None, "пот"),
("потом", "ADV", None, "потом"),
("рой", "NOUN", "", "рой"),
("рой", "VERB", "", "рыть"),
("клей", "NOUN", "", "клей"),
("клей", "VERB", "", "клеить"),
("три", "NUM", "", "три"),
("кос", "NOUN", "Number=Sing", "кос"),
("кос", "NOUN", "Number=Plur", "коса"),
("кос", "ADJ", "", "косой"),
("потом", "NOUN", "", "пот"),
("потом", "ADV", "", "потом"),
],
)
def test_ru_lemmatizer_works_with_different_pos_homonyms(
ru_lemmatizer, text, pos, morphology, lemma
ru_lemmatizer, text, pos, morph, lemma
):
assert ru_lemmatizer(text, pos, morphology) == [lemma]
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=[pos], morphs=[morph])
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
assert result_lemmas == [lemma]
@pytest.mark.parametrize(
"text,morphology,lemma",
"text,morph,lemma",
[
("гвоздики", {"Gender": "Fem"}, "гвоздика"),
("гвоздики", {"Gender": "Masc"}, "гвоздик"),
("вина", {"Gender": "Fem"}, "вина"),
("вина", {"Gender": "Neut"}, "вино"),
("гвоздики", "Gender=Fem", "гвоздика"),
("гвоздики", "Gender=Masc", "гвоздик"),
("вина", "Gender=Fem", "вина"),
("вина", "Gender=Neut", "вино"),
],
)
def test_ru_lemmatizer_works_with_noun_homonyms(ru_lemmatizer, text, morphology, lemma):
assert ru_lemmatizer.noun(text, morphology) == [lemma]
def test_ru_lemmatizer_works_with_noun_homonyms(ru_lemmatizer, text, morph, lemma):
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"], morphs=[morph])
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
assert result_lemmas == [lemma]
def test_ru_lemmatizer_punct(ru_lemmatizer):
assert ru_lemmatizer.punct("«") == ['"']
assert ru_lemmatizer.punct("»") == ['"']
doc = get_doc(ru_lemmatizer.vocab, words=["«"], pos=["PUNCT"])
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
doc = get_doc(ru_lemmatizer.vocab, words=["»"], pos=["PUNCT"])
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']

View File

@ -0,0 +1,34 @@
import pytest
from spacy import registry
from spacy.lookups import Lookups
from spacy.util import get_lang_class
# fmt: off
# Only include languages with no external dependencies
# excluded: ru, uk
# excluded for custom tables: pl
LANGUAGES = ["el", "en", "fr", "nl"]
# fmt: on
@pytest.mark.parametrize("lang", LANGUAGES)
def test_lemmatizer_initialize(lang, capfd):
@registry.assets("lemmatizer_init_lookups")
def lemmatizer_init_lookups():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"})
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
return lookups
"""Test that languages can be initialized."""
nlp = get_lang_class(lang)()
nlp.add_pipe(
"lemmatizer", config={"lookups": {"@assets": "lemmatizer_init_lookups"}}
)
# Check for stray print statements (see #3342)
doc = nlp("test") # noqa: F841
captured = capfd.readouterr()
assert not captured.out

View File

@ -1,14 +1,11 @@
import pytest
from spacy.morphology import Morphology
from spacy.strings import StringStore, get_string_id
from spacy.lemmatizer import Lemmatizer
from spacy.lookups import Lookups
@pytest.fixture
def morphology():
lemmatizer = Lemmatizer(Lookups())
return Morphology(StringStore(), {}, lemmatizer)
return Morphology(StringStore())
def test_init(morphology):

View File

@ -2,21 +2,18 @@ import pytest
import pickle
from spacy.morphology import Morphology
from spacy.strings import StringStore
from spacy.lemmatizer import Lemmatizer
from spacy.lookups import Lookups
@pytest.fixture
def morphology():
tag_map = {"A": {"POS": "X"}, "B": {"POS": "NOUN"}}
exc = {"A": {"a": {"POS": "VERB"}}}
lemmatizer = Lemmatizer(Lookups())
return Morphology(StringStore(), tag_map, lemmatizer, exc=exc)
morphology = Morphology(StringStore())
morphology.add("Feat1=Val1|Feat2=Val2")
morphology.add("Feat3=Val3|Feat4=Val4")
return morphology
def test_morphology_pickle_roundtrip(morphology):
b = pickle.dumps(morphology)
reloaded_morphology = pickle.loads(b)
assert morphology.tag_map == reloaded_morphology.tag_map
assert morphology.exc == reloaded_morphology.exc
assert reloaded_morphology.get(morphology.strings["Feat1=Val1|Feat2=Val2"]) == "Feat1=Val1|Feat2=Val2"
assert reloaded_morphology.get(morphology.strings["Feat3=Val3|Feat4=Val4"]) == "Feat3=Val3|Feat4=Val4"

View File

@ -82,10 +82,10 @@ def test_parser_merge_pp(en_tokenizer):
text = "A phrase with another phrase occurs"
heads = [1, 4, -1, 1, -2, 0]
deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT"]
tags = ["DT", "NN", "IN", "DT", "NN", "VBZ"]
pos = ["DET", "NOUN", "ADP", "DET", "NOUN", "VERB"]
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], deps=deps, heads=heads, tags=tags
tokens.vocab, words=[t.text for t in tokens], deps=deps, heads=heads, pos=pos,
)
with doc.retokenize() as retokenizer:
for np in doc.noun_chunks:

View File

@ -0,0 +1,109 @@
import pytest
from spacy import util, registry
from spacy.lang.en import English
from spacy.lookups import Lookups, load_lookups
from ..util import make_tempdir
@pytest.fixture
def nlp():
return English()
@pytest.fixture
def lemmatizer(nlp):
@registry.assets("cope_lookups")
def cope_lookups():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"})
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
return lookups
lemmatizer = nlp.add_pipe(
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}}
)
return lemmatizer
def test_lemmatizer_init(nlp):
@registry.assets("cope_lookups")
def cope_lookups():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"})
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
return lookups
lemmatizer = nlp.add_pipe(
"lemmatizer", config={"mode": "lookup", "lookups": {"@assets": "cope_lookups"}}
)
assert isinstance(lemmatizer.lookups, Lookups)
assert lemmatizer.mode == "lookup"
# replace any tables from spacy-lookups-data
lemmatizer.lookups = Lookups()
doc = nlp("coping")
# lookup with no tables sets text as lemma
assert doc[0].lemma_ == "coping"
nlp.remove_pipe("lemmatizer")
@registry.assets("empty_lookups")
def empty_lookups():
return Lookups()
with pytest.raises(ValueError):
nlp.add_pipe(
"lemmatizer",
config={"mode": "lookup", "lookups": {"@assets": "empty_lookups"}},
)
def test_lemmatizer_config(nlp, lemmatizer):
doc = nlp.make_doc("coping")
doc[0].pos_ = "VERB"
assert doc[0].lemma_ == ""
doc = lemmatizer(doc)
assert doc[0].text == "coping"
assert doc[0].lemma_ == "cope"
doc = nlp.make_doc("coping")
doc[0].pos_ = "VERB"
assert doc[0].lemma_ == ""
doc = lemmatizer(doc)
assert doc[0].text == "coping"
assert doc[0].lemma_ == "cope"
def test_lemmatizer_serialize(nlp, lemmatizer):
@registry.assets("cope_lookups")
def cope_lookups():
lookups = Lookups()
lookups.add_table("lemma_lookup", {"cope": "cope"})
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
return lookups
nlp2 = English()
lemmatizer2 = nlp2.add_pipe(
"lemmatizer", config={"mode": "rule", "lookups": {"@assets": "cope_lookups"}}
)
lemmatizer2.from_bytes(lemmatizer.to_bytes())
assert lemmatizer.to_bytes() == lemmatizer2.to_bytes()
assert lemmatizer.lookups.tables == lemmatizer2.lookups.tables
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2.make_doc("coping")
doc2[0].pos_ = "VERB"
assert doc2[0].lemma_ == ""
doc2 = lemmatizer(doc2)
assert doc2[0].text == "coping"
assert doc2[0].lemma_ == "cope"

View File

@ -23,13 +23,12 @@ def test_tagger_begin_training_tag_map():
nlp = Language()
tagger = nlp.add_pipe("tagger")
orig_tag_count = len(tagger.labels)
tagger.add_label("A", {"POS": "NOUN"})
tagger.add_label("A")
nlp.begin_training()
assert nlp.vocab.morphology.tag_map["A"] == {POS: NOUN}
assert orig_tag_count + 1 == len(nlp.get_pipe("tagger").labels)
TAG_MAP = {"N": {"pos": "NOUN"}, "V": {"pos": "VERB"}, "J": {"pos": "ADJ"}}
TAGS = ("N", "V", "J")
MORPH_RULES = {"V": {"like": {"lemma": "luck"}}}
@ -42,15 +41,12 @@ TRAIN_DATA = [
def test_overfitting_IO():
# Simple test to try and quickly overfit the tagger - ensuring the ML models work correctly
nlp = English()
nlp.vocab.morphology.load_tag_map(TAG_MAP)
nlp.vocab.morphology.load_morph_exceptions(MORPH_RULES)
tagger = nlp.add_pipe("tagger", config={"set_morphology": True})
nlp.vocab.morphology.load_tag_map(TAG_MAP)
tagger = nlp.add_pipe("tagger")
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
for tag, values in TAG_MAP.items():
tagger.add_label(tag, values)
for tag in TAGS:
tagger.add_label(tag)
optimizer = nlp.begin_training()
for i in range(50):
@ -65,7 +61,6 @@ def test_overfitting_IO():
assert doc[1].tag_ is "V"
assert doc[2].tag_ is "J"
assert doc[3].tag_ is "N"
assert doc[1].lemma_ == "luck"
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
@ -76,4 +71,3 @@ def test_overfitting_IO():
assert doc2[1].tag_ is "V"
assert doc2[2].tag_ is "J"
assert doc2[3].tag_ is "N"
assert doc[1].lemma_ == "luck"

View File

@ -8,10 +8,8 @@ from spacy.attrs import IS_PUNCT, ORTH, LOWER
from spacy.symbols import POS, VERB
from spacy.vocab import Vocab
from spacy.lang.en import English
from spacy.lemmatizer import Lemmatizer
from spacy.lookups import Lookups
from spacy.tokens import Doc, Span
from spacy.lang.en.lemmatizer import is_base_form
from ..util import get_doc, make_tempdir
@ -157,16 +155,15 @@ def test_issue590(en_vocab):
assert len(matches) == 2
@pytest.mark.skip(reason="Old vocab-based lemmatization")
def test_issue595():
"""Test lemmatization of base forms"""
words = ["Do", "n't", "feed", "the", "dog"]
tag_map = {"VB": {POS: VERB, "VerbForm": "inf"}}
lookups = Lookups()
lookups.add_table("lemma_rules", {"verb": [["ed", "e"]]})
lookups.add_table("lemma_index", {"verb": {}})
lookups.add_table("lemma_exc", {"verb": {}})
lemmatizer = Lemmatizer(lookups, is_base_form=is_base_form)
vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map)
vocab = Vocab()
doc = Doc(vocab, words=words)
doc[2].tag_ = "VB"
assert doc[2].text == "feed"
@ -389,6 +386,7 @@ def test_issue891(en_tokenizer, text):
assert tokens[1].text == "/"
@pytest.mark.skip(reason="Old vocab-based lemmatization")
@pytest.mark.parametrize(
"text,tag,lemma",
[("anus", "NN", "anus"), ("princess", "NN", "princess"), ("inner", "JJ", "inner")],

View File

@ -6,7 +6,6 @@ from spacy.lang.en import English
from spacy.lang.lex_attrs import LEX_ATTRS
from spacy.matcher import Matcher
from spacy.tokenizer import Tokenizer
from spacy.lemmatizer import Lemmatizer
from spacy.lookups import Lookups
from spacy.symbols import ORTH, LEMMA, POS, VERB
@ -57,6 +56,7 @@ def test_issue1242():
assert len(docs[1]) == 1
@pytest.mark.skip(reason="v3 no longer supports LEMMA/POS in tokenizer special cases")
def test_issue1250():
"""Test cached special cases."""
special_case = [{ORTH: "reimbur", LEMMA: "reimburse", POS: "VERB"}]
@ -87,20 +87,6 @@ def test_issue1375():
assert doc[1].nbor(1).text == "2"
def test_issue1387():
tag_map = {"VBG": {POS: VERB, "VerbForm": "part"}}
lookups = Lookups()
lookups.add_table("lemma_index", {"verb": ("cope", "cop")})
lookups.add_table("lemma_exc", {"verb": {"coping": ("cope",)}})
lookups.add_table("lemma_rules", {"verb": [["ing", ""]]})
lemmatizer = Lemmatizer(lookups)
vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map)
doc = Doc(vocab, words=["coping"])
doc[0].tag_ = "VBG"
assert doc[0].text == "coping"
assert doc[0].lemma_ == "cope"
def test_issue1434():
"""Test matches occur when optional element at end of short doc."""
pattern = [{"ORTH": "Hello"}, {"IS_ALPHA": True, "OP": "?"}]

View File

@ -130,8 +130,6 @@ def test_issue1727():
vectors = Vectors(data=data, keys=["I", "am", "Matt"])
tagger = nlp.create_pipe("tagger")
tagger.add_label("PRP")
with pytest.warns(UserWarning):
tagger.begin_training()
assert tagger.cfg.get("pretrained_dims", 0) == 0
tagger.vocab.vectors = vectors
with make_tempdir() as path:

View File

@ -19,8 +19,8 @@ def test_issue2564():
"""Test the tagger sets is_tagged correctly when used via Language.pipe."""
nlp = Language()
tagger = nlp.add_pipe("tagger")
with pytest.warns(UserWarning):
tagger.begin_training() # initialise weights
tagger.add_label("A")
tagger.begin_training()
doc = nlp("hello world")
assert doc.is_tagged
docs = nlp.pipe(["hello", "world"])

View File

@ -241,11 +241,11 @@ def test_issue3449():
assert t3[5].text == "I"
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_issue3456():
# this crashed because of a padding error in layer.ops.unflatten in thinc
nlp = English()
nlp.add_pipe("tagger")
tagger = nlp.add_pipe("tagger")
tagger.add_label("A")
nlp.begin_training()
list(nlp.pipe(["hi", ""]))

View File

@ -149,13 +149,15 @@ def test_issue3540(en_vocab):
gold_text = ["I", "live", "in", "NewYork", "right", "now"]
assert [token.text for token in doc] == gold_text
gold_lemma = ["I", "live", "in", "NewYork", "right", "now"]
for i, lemma in enumerate(gold_lemma):
doc[i].lemma_ = lemma
assert [token.lemma_ for token in doc] == gold_lemma
vectors_1 = [token.vector for token in doc]
assert len(vectors_1) == len(doc)
with doc.retokenize() as retokenizer:
heads = [(doc[3], 1), doc[2]]
attrs = {"POS": ["PROPN", "PROPN"], "DEP": ["pobj", "compound"]}
attrs = {"POS": ["PROPN", "PROPN"], "LEMMA": ["New", "York"], "DEP": ["pobj", "compound"]}
retokenizer.split(doc[3], ["New", "York"], heads=heads, attrs=attrs)
gold_text = ["I", "live", "in", "New", "York", "right", "now"]

View File

@ -271,6 +271,7 @@ def test_issue4267():
assert token.ent_iob == 2
@pytest.mark.skip(reason="lemmatizer lookups no longer in vocab")
def test_issue4272():
"""Test that lookup table can be accessed from Token.lemma if no POS tags
are available."""

View File

@ -62,8 +62,7 @@ def tagger():
# need to add model for two reasons:
# 1. no model leads to error in serialization,
# 2. the affected line is the one for model serialization
with pytest.warns(UserWarning):
tagger.begin_training(pipeline=nlp.pipeline)
tagger.begin_training(pipeline=nlp.pipeline)
return tagger

View File

@ -44,8 +44,8 @@ def blank_parser(en_vocab):
def taggers(en_vocab):
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
tagger1 = Tagger(en_vocab, model, set_morphology=True)
tagger2 = Tagger(en_vocab, model, set_morphology=True)
tagger1 = Tagger(en_vocab, model)
tagger2 = Tagger(en_vocab, model)
return tagger1, tagger2
@ -125,8 +125,8 @@ def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
tagger2.to_disk(file_path2)
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"]
tagger1_d = Tagger(en_vocab, model, set_morphology=True).from_disk(file_path1)
tagger2_d = Tagger(en_vocab, model, set_morphology=True).from_disk(file_path2)
tagger1_d = Tagger(en_vocab, model).from_disk(file_path1)
tagger2_d = Tagger(en_vocab, model).from_disk(file_path2)
assert tagger1_d.to_bytes() == tagger2_d.to_bytes()

View File

@ -8,7 +8,6 @@ from ..util import make_tempdir
test_strings = [([], []), (["rats", "are", "cute"], ["i", "like", "rats"])]
test_strings_attrs = [(["rats", "are", "cute"], "Hello")]
default_strings = ("_SP", "POS=SPACE")
@pytest.mark.parametrize("text", ["rat"])
@ -34,10 +33,8 @@ def test_serialize_vocab_roundtrip_bytes(strings1, strings2):
assert vocab1.to_bytes() == vocab1_b
new_vocab1 = Vocab().from_bytes(vocab1_b)
assert new_vocab1.to_bytes() == vocab1_b
assert len(new_vocab1.strings) == len(strings1) + 2 # adds _SP and POS=SPACE
assert sorted([s for s in new_vocab1.strings]) == sorted(
strings1 + list(default_strings)
)
assert len(new_vocab1.strings) == len(strings1)
assert sorted([s for s in new_vocab1.strings]) == sorted(strings1)
@pytest.mark.parametrize("strings1,strings2", test_strings)
@ -52,16 +49,12 @@ def test_serialize_vocab_roundtrip_disk(strings1, strings2):
vocab1_d = Vocab().from_disk(file_path1)
vocab2_d = Vocab().from_disk(file_path2)
# check strings rather than lexemes, which are only reloaded on demand
assert strings1 == [s for s in vocab1_d.strings if s not in default_strings]
assert strings2 == [s for s in vocab2_d.strings if s not in default_strings]
assert strings1 == [s for s in vocab1_d.strings]
assert strings2 == [s for s in vocab2_d.strings]
if strings1 == strings2:
assert [s for s in vocab1_d.strings if s not in default_strings] == [
s for s in vocab2_d.strings if s not in default_strings
]
assert [s for s in vocab1_d.strings] == [s for s in vocab2_d.strings]
else:
assert [s for s in vocab1_d.strings if s not in default_strings] != [
s for s in vocab2_d.strings if s not in default_strings
]
assert [s for s in vocab1_d.strings] != [s for s in vocab2_d.strings]
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
@ -80,7 +73,7 @@ def test_deserialize_vocab_seen_entries(strings, lex_attr):
# Reported in #2153
vocab = Vocab(strings=strings)
vocab.from_bytes(vocab.to_bytes())
assert len(vocab.strings) == len(strings) + 2 # adds _SP and POS=SPACE
assert len(vocab.strings) == len(strings)
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)

View File

@ -1,64 +0,0 @@
import pytest
from spacy.tokens import Doc
from spacy.language import Language
from spacy.lookups import Lookups
from spacy.lemmatizer import Lemmatizer
@pytest.mark.skip(reason="We probably don't want to support this anymore in v3?")
def test_lemmatizer_reflects_lookups_changes():
"""Test for an issue that'd cause lookups available in a model loaded from
disk to not be reflected in the lemmatizer."""
nlp = Language()
assert Doc(nlp.vocab, words=["foo"])[0].lemma_ == "foo"
table = nlp.vocab.lookups.add_table("lemma_lookup")
table["foo"] = "bar"
assert Doc(nlp.vocab, words=["foo"])[0].lemma_ == "bar"
table = nlp.vocab.lookups.get_table("lemma_lookup")
table["hello"] = "world"
# The update to the table should be reflected in the lemmatizer
assert Doc(nlp.vocab, words=["hello"])[0].lemma_ == "world"
new_nlp = Language()
table = new_nlp.vocab.lookups.add_table("lemma_lookup")
table["hello"] = "hi"
assert Doc(new_nlp.vocab, words=["hello"])[0].lemma_ == "hi"
nlp_bytes = nlp.to_bytes()
new_nlp.from_bytes(nlp_bytes)
# Make sure we have the previously saved lookup table
assert "lemma_lookup" in new_nlp.vocab.lookups
assert len(new_nlp.vocab.lookups.get_table("lemma_lookup")) == 2
assert new_nlp.vocab.lookups.get_table("lemma_lookup")["hello"] == "world"
assert Doc(new_nlp.vocab, words=["foo"])[0].lemma_ == "bar"
assert Doc(new_nlp.vocab, words=["hello"])[0].lemma_ == "world"
def test_tagger_warns_no_lookups():
nlp = Language()
nlp.vocab.lookups = Lookups()
assert not len(nlp.vocab.lookups)
tagger = nlp.add_pipe("tagger")
with pytest.warns(UserWarning):
tagger.begin_training()
with pytest.warns(UserWarning):
nlp.begin_training()
nlp.vocab.lookups.add_table("lemma_lookup")
nlp.vocab.lookups.add_table("lexeme_norm")
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
with pytest.warns(None) as record:
nlp.begin_training()
assert not record.list
def test_lemmatizer_without_is_base_form_implementation():
# Norwegian example from #5658
lookups = Lookups()
lookups.add_table("lemma_rules", {"noun": []})
lookups.add_table("lemma_index", {"noun": {}})
lookups.add_table("lemma_exc", {"noun": {"formuesskatten": ["formuesskatt"]}})
lemmatizer = Lemmatizer(lookups, is_base_form=None)
assert lemmatizer(
"Formuesskatten",
"noun",
{"Definite": "def", "Gender": "masc", "Number": "sing"},
) == ["formuesskatt"]

View File

@ -112,16 +112,15 @@ def test_tokenizer_validate_special_case(tokenizer, text, tokens):
@pytest.mark.parametrize(
"text,tokens", [("lorem", [{"orth": "lo", "tag": "NN"}, {"orth": "rem"}])]
"text,tokens", [("lorem", [{"orth": "lo", "norm": "LO"}, {"orth": "rem"}])]
)
def test_tokenizer_add_special_case_tag(text, tokens):
vocab = Vocab(tag_map={"NN": {"pos": "NOUN"}})
vocab = Vocab()
tokenizer = Tokenizer(vocab, {}, None, None, None)
tokenizer.add_special_case(text, tokens)
doc = tokenizer(text)
assert doc[0].text == tokens[0]["orth"]
assert doc[0].tag_ == tokens[0]["tag"]
assert doc[0].pos_ == "NOUN"
assert doc[0].norm_ == tokens[0]["norm"]
assert doc[1].text == tokens[1]["orth"]

View File

@ -11,7 +11,7 @@ from .span cimport Span
from .token cimport Token
from ..lexeme cimport Lexeme, EMPTY_LEXEME
from ..structs cimport LexemeC, TokenC
from ..attrs cimport TAG, MORPH
from ..attrs cimport MORPH
from ..vocab cimport Vocab
from .underscore import is_writable_attr
@ -365,8 +365,6 @@ def _split(Doc doc, int token_index, orths, heads, attrs):
doc[token_index + i]._.set(ext_attr_key, ext_attr_value)
# NB: We need to call get_string_id here because only the keys are
# "intified" (since we support "KEY": [value, value] syntax here).
elif attr_name == TAG:
doc.vocab.morphology.assign_tag(token, get_string_id(attr_value))
else:
# Set attributes on both token and lexeme to take care of token
# attribute vs. lexical attribute without having to enumerate
@ -431,8 +429,6 @@ def set_token_attrs(Token py_token, attrs):
if attr_name == "_": # Set extension attributes
for ext_attr_key, ext_attr_value in attr_value.items():
py_token._.set(ext_attr_key, ext_attr_value)
elif attr_name == TAG:
doc.vocab.morphology.assign_tag(token, attr_value)
else:
# Set attributes on both token and lexeme to take care of token
# attribute vs. lexical attribute without having to enumerate

View File

@ -832,13 +832,6 @@ cdef class Doc:
rel_head_index=abs_head_index-i
)
)
# Do TAG first. This lets subsequent loop override stuff like POS, LEMMA
if TAG in attrs:
col = attrs.index(TAG)
for i in range(length):
value = values[col * stride + i]
if value != 0:
self.vocab.morphology.assign_tag(&tokens[i], value)
# Verify ENT_IOB are proper integers
if ENT_IOB in attrs:
iob_strings = Token.iob_strings()
@ -857,12 +850,11 @@ cdef class Doc:
for i in range(length):
token = &self.c[i]
for j in range(n_attrs):
if attr_ids[j] != TAG:
value = values[j * stride + i]
if attr_ids[j] == MORPH:
# add morph to morphology table
self.vocab.morphology.add(self.vocab.strings[value])
Token.set_struct_attr(token, attr_ids[j], value)
value = values[j * stride + i]
if attr_ids[j] == MORPH:
# add morph to morphology table
self.vocab.morphology.add(self.vocab.strings[value])
Token.set_struct_attr(token, attr_ids[j], value)
# Set flags
self.is_parsed = bool(self.is_parsed or HEAD in attrs)
self.is_tagged = bool(self.is_tagged or TAG in attrs or POS in attrs)

View File

@ -332,11 +332,7 @@ cdef class Token:
inflectional suffixes.
"""
def __get__(self):
if self.c.lemma == 0:
lemma_ = self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
return self.vocab.strings[lemma_]
else:
return self.c.lemma
return self.c.lemma
def __set__(self, attr_t lemma):
self.c.lemma = lemma
@ -355,7 +351,7 @@ cdef class Token:
return self.c.tag
def __set__(self, attr_t tag):
self.vocab.morphology.assign_tag(self.c, tag)
self.c.tag = tag
property dep:
"""RETURNS (uint64): ID of syntactic dependency label."""
@ -888,10 +884,7 @@ cdef class Token:
with no inflectional suffixes.
"""
def __get__(self):
if self.c.lemma == 0:
return self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
else:
return self.vocab.strings[self.c.lemma]
return self.vocab.strings[self.c.lemma]
def __set__(self, unicode lemma_):
self.c.lemma = self.vocab.strings.add(lemma_)

View File

@ -9,11 +9,10 @@ from .lexeme cimport EMPTY_LEXEME, OOV_RANK
from .lexeme cimport Lexeme
from .typedefs cimport attr_t
from .tokens.token cimport Token
from .attrs cimport LANG, ORTH, TAG, POS
from .attrs cimport LANG, ORTH
from .compat import copy_reg
from .errors import Errors
from .lemmatizer import Lemmatizer
from .attrs import intify_attrs, NORM, IS_STOP
from .vectors import Vectors
from .util import registry
@ -23,7 +22,7 @@ from .lang.norm_exceptions import BASE_NORMS
from .lang.lex_attrs import LEX_ATTRS, is_stop, get_lang
def create_vocab(lang, defaults, lemmatizer=None, vectors_name=None, load_data=True):
def create_vocab(lang, defaults, vectors_name=None, load_data=True):
# If the spacy-lookups-data package is installed, we pre-populate the lookups
# with lexeme data, if available
if load_data:
@ -43,7 +42,6 @@ def create_vocab(lang, defaults, lemmatizer=None, vectors_name=None, load_data=T
)
return Vocab(
lex_attr_getters=lex_attrs,
lemmatizer=lemmatizer,
lookups=lookups,
writing_system=defaults.writing_system,
get_noun_chunks=defaults.syntax_iterators.get("noun_chunks"),
@ -58,17 +56,13 @@ cdef class Vocab:
DOCS: https://spacy.io/api/vocab
"""
def __init__(self, lex_attr_getters=None, lemmatizer=None,
strings=tuple(), lookups=None, tag_map={},
def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None,
oov_prob=-20., vectors_name=None, writing_system={},
get_noun_chunks=None, **deprecated_kwargs):
"""Create the vocabulary.
lex_attr_getters (dict): A dictionary mapping attribute IDs to
functions to compute them. Defaults to `None`.
tag_map (dict): Dictionary mapping fine-grained tags to coarse-grained
parts-of-speech, and optionally morphological attributes.
lemmatizer (object): A lemmatizer. Defaults to `None`.
strings (StringStore): StringStore that maps strings to integers, and
vice versa.
lookups (Lookups): Container for large lookup tables and dictionaries.
@ -78,8 +72,6 @@ cdef class Vocab:
lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
if lookups in (None, True, False):
lookups = Lookups()
if lemmatizer in (None, True, False):
lemmatizer = Lemmatizer(lookups)
self.cfg = {'oov_prob': oov_prob}
self.mem = Pool()
self._by_orth = PreshMap()
@ -89,7 +81,7 @@ cdef class Vocab:
for string in strings:
_ = self[string]
self.lex_attr_getters = lex_attr_getters
self.morphology = Morphology(self.strings, tag_map, lemmatizer)
self.morphology = Morphology(self.strings)
self.vectors = Vectors(name=vectors_name)
self.lookups = lookups
self.writing_system = writing_system
@ -268,12 +260,6 @@ cdef class Vocab:
# Set the special tokens up to have arbitrary attributes
lex = <LexemeC*>self.get_by_orth(self.mem, props[ORTH])
token.lex = lex
if TAG in props:
self.morphology.assign_tag(token, props[TAG])
elif POS in props:
# Don't allow POS to be set without TAG -- this causes problems,
# see #1773
props.pop(POS)
for attr_id, value in props.items():
Token.set_struct_attr(token, attr_id, value)
# NORM is the only one that overlaps between the two

View File

@ -1,102 +1,263 @@
---
title: Lemmatizer
teaser: Assign the base forms of words
tag: class
source: spacy/lemmatizer.py
source: spacy/pipeline/lemmatizer.py
new: 3
teaser: 'Pipeline component for lemmatization'
api_base_class: /api/pipe
api_string_name: lemmatizer
api_trainable: false
---
<!-- TODO: rewrite once it's converted to pipe -->
## Config and implementation
The `Lemmatizer` supports simple part-of-speech-sensitive suffix rules and
lookup tables.
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg` for training](/usage/training#config).
For examples of the lookups data formats used by the lookup and rule-based
lemmatizers, see the
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) repo.
> #### Example
>
> ```python
> config = {"mode": "rule"}
> nlp.add_pipe("lemmatizer", config=config)
> ```
| Setting | Type | Description | Default |
| ----------- | ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------- |
| `mode` | str | The lemmatizer mode, e.g. "lookup" or "rule". | `"lookup"` |
| `lookups` | [`Lookups`](/api/lookups) | The lookups object containing the tables such as "lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup". If `None`, default tables are loaded from `spacy-lookups-data`. | `None` |
| `overwrite` | bool | Whether to overwrite existing lemmas. | `False` |
| `model` | [`Model`](https://thinc.ai/docs/api-model) | **Not yet implemented:** the model to use. | `None` |
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/lemmatizer.py
```
## Lemmatizer.\_\_init\_\_ {#init tag="method"}
Initialize a `Lemmatizer`. Typically, this happens under the hood within spaCy
when a `Language` subclass and its `Vocab` is initialized.
> #### Example
>
> ```python
> from spacy.lemmatizer import Lemmatizer
> from spacy.lookups import Lookups
> lookups = Lookups()
> lookups.add_table("lemma_rules", {"noun": [["s", ""]]})
> lemmatizer = Lemmatizer(lookups)
> ```
> # Construction via add_pipe with default model
> lemmatizer = nlp.add_pipe("lemmatizer")
>
> For examples of the data format, see the
> [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) repo.
> # Construction via add_pipe with custom settings
> config = {"mode": "rule", overwrite=True}
> lemmatizer = nlp.add_pipe("lemmatizer", config=config)
> ```
| Name | Type | Description |
| -------------------------------------- | ------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| `lookups` <Tag variant="new">2.2</Tag> | [`Lookups`](/api/lookups) | The lookups object containing the (optional) tables `"lemma_rules"`, `"lemma_index"`, `"lemma_exc"` and `"lemma_lookup"`. |
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#add_pipe).
| Name | Type | Description |
| -------------- | ------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | [`Vocab`](/api/vocab) | The vocab. |
| `model` | [`Model`](https://thinc.ai/docs/api-model) | A model (not yet implemented). |
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
| _keyword-only_ | | |
| mode | str | The lemmatizer mode, e.g. "lookup" or "rule". Defaults to "lookup". |
| lookups | [`Lookups`](/api/lookups) | A lookups object containing the tables such as "lemma_rules", "lemma_index", "lemma_exc" and "lemma_lookup". Defaults to `None`. |
| overwrite | bool | Whether to overwrite existing lemmas. |
## Lemmatizer.\_\_call\_\_ {#call tag="method"}
Lemmatize a string.
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order.
> #### Example
>
> ```python
> from spacy.lemmatizer import Lemmatizer
> from spacy.lookups import Lookups
> lookups = Lookups()
> lookups.add_table("lemma_rules", {"noun": [["s", ""]]})
> lemmatizer = Lemmatizer(lookups)
> lemmas = lemmatizer("ducks", "NOUN")
> assert lemmas == ["duck"]
> doc = nlp("This is a sentence.")
> lemmatizer = nlp.add_pipe("lemmatizer")
> # This usually happens under the hood
> processed = lemmatizer(doc)
> ```
| Name | Type | Description |
| ------------ | ------------- | -------------------------------------------------------------------------------------------------------- |
| `string` | str | The string to lemmatize, e.g. the token text. |
| `univ_pos` | str / int | The token's universal part-of-speech tag. |
| `morphology` | dict / `None` | Morphological features following the [Universal Dependencies](http://universaldependencies.org/) scheme. |
| **RETURNS** | list | The available lemmas for the string. |
| Name | Type | Description |
| ----------- | ----- | ------------------------ |
| `doc` | `Doc` | The document to process. |
| **RETURNS** | `Doc` | The processed document. |
## Lemmatizer.lookup {#lookup tag="method" new="2"}
## Lemmatizer.pipe {#pipe tag="method"}
Look up a lemma in the lookup table, if available. If no lemma is found, the
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order.
> #### Example
>
> ```python
> lemmatizer = nlp.add_pipe("lemmatizer")
> for doc in lemmatizer.pipe(docs, batch_size=50):
> pass
> ```
| Name | Type | Description |
| -------------- | --------------- | ------------------------------------------------------ |
| `stream` | `Iterable[Doc]` | A stream of documents. |
| _keyword-only_ | | |
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
## Lemmatizer.lookup_lemmatize {#lookup_lemmatize tag="method"}
Lemmatize a token using a lookup-based approach. If no lemma is found, the
original string is returned. Languages can provide a
[lookup table](/usage/adding-languages#lemmatizer) via the `Lookups`.
> #### Example
>
> ```python
> lookups = Lookups()
> lookups.add_table("lemma_lookup", {"going": "go"})
> assert lemmatizer.lookup("going") == "go"
> ```
| Name | Type | Description |
| ----------- | --------------------- | ------------------------------------- |
| `token` | [`Token`](/api/token) | The token to lemmatize. |
| **RETURNS** | `List[str]` | A list containing one or more lemmas. |
| Name | Type | Description |
| ----------- | ---- | ----------------------------------------------------------------------------------------------------------- |
| `string` | str | The string to look up. |
| `orth` | int | Optional hash of the string to look up. If not set, the string will be used and hashed. Defaults to `None`. |
| **RETURNS** | str | The lemma if the string was found, otherwise the original string. |
## Lemmatizer.rule_lemmatize {#rule_lemmatize tag="method"}
Lemmatize a token using a rule-based approach. Typically relies on POS tags.
| Name | Type | Description |
| ----------- | --------------------- | ------------------------------------- |
| `token` | [`Token`](/api/token) | The token to lemmatize. |
| **RETURNS** | `List[str]` | A list containing one or more lemmas. |
## Lemmatizer.is_base_form {#is_base_form tag="method"}
Check whether we're dealing with an uninflected paradigm, so we can avoid
lemmatization entirely.
| Name | Type | Description |
| ----------- | --------------------- | ------------------------------------------------------------------------------------------------------- |
| `token` | [`Token`](/api/token) | The token to analyze. |
| **RETURNS** | bool | Whether the token's attributes (e.g., part-of-speech tag, morphological features) describe a base form. |
## Lemmatizer.get_lookups_config {#get_lookups_config tag="classmethod"}
Returns the lookups configuration settings for a given mode for use in
[`Lemmatizer.load_lookups`](#load_lookups).
| Name | Type | Description |
| ----------- | ---- | ------------------------------------------------- |
| `mode` | str | The lemmatizer mode. |
| **RETURNS** | dict | The lookups configuration settings for this mode. |
## Lemmatizer.load_lookups {#load_lookups tag="classmethod"}
Load and validate lookups tables. If the provided lookups is `None`, load the
default lookups tables according to the language and mode settings. Confirm that
all required tables for the language and mode are present.
| Name | Type | Description |
| ----------- | ------------------------- | ---------------------------------------------------------------------------- |
| `lang` | str | The language. |
| `mode` | str | The lemmatizer mode. |
| `lookups` | [`Lookups`](/api/lookups) | The provided lookups, may be `None` if the default lookups should be loaded. |
| **RETURNS** | [`Lookups`](/api/lookups) | The lookups object. |
## Lemmatizer.to_disk {#to_disk tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> pos = "verb"
> morph = {"VerbForm": "inf"}
> is_base_form = lemmatizer.is_base_form(pos, morph)
> assert is_base_form == True
> lemmatizer = nlp.add_pipe("lemmatizer")
> lemmatizer.to_disk("/path/to/lemmatizer")
> ```
| Name | Type | Description |
| ------------ | --------- | --------------------------------------------------------------------------------------- |
| `univ_pos` | str / int | The token's universal part-of-speech tag. |
| `morphology` | dict | The token's morphological features. |
| **RETURNS** | bool | Whether the token's part-of-speech tag and morphological features describe a base form. |
| Name | Type | Description |
| -------------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
| _keyword-only_ | | |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
## Lemmatizer.from_disk {#from_disk tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> lemmatizer = nlp.add_pipe("lemmatizer")
> lemmatizer.from_disk("/path/to/lemmatizer")
> ```
| Name | Type | Description |
| -------------- | --------------- | -------------------------------------------------------------------------- |
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
| _keyword-only_ | | |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | `Lemmatizer` | The modified `Lemmatizer` object. |
## Lemmatizer.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
> lemmatizer = nlp.add_pipe("lemmatizer")
> lemmatizer_bytes = lemmatizer.to_bytes()
> ```
Serialize the pipe to a bytestring.
| Name | Type | Description |
| -------------- | --------------- | ------------------------------------------------------------------------- |
| _keyword-only_ | | |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | bytes | The serialized form of the `Lemmatizer` object. |
## Lemmatizer.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> lemmatizer_bytes = lemmatizer.to_bytes()
> lemmatizer = nlp.add_pipe("lemmatizer")
> lemmatizer.from_bytes(lemmatizer_bytes)
> ```
| Name | Type | Description |
| -------------- | --------------- | ------------------------------------------------------------------------- |
| `bytes_data` | bytes | The data to load from. |
| _keyword-only_ | | |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | `Lemmatizer` | The `Lemmatizer` object. |
## Lemmatizer.mode {#mode tag="property"}
The lemmatizer mode.
| Name | Type | Description |
| ----------- | ----- | -------------------- |
| **RETURNS** | `str` | The lemmatizer mode. |
## Attributes {#attributes}
| Name | Type | Description |
| -------------------------------------- | ------------------------- | --------------------------------------------------------------- |
| `lookups` <Tag variant="new">2.2</Tag> | [`Lookups`](/api/lookups) | The lookups object containing the rules and data, if available. |
| Name | Type | Description |
| --------- | --------------------------------- | ------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `lookups` | [`Lookups`](/api/lookups) | The lookups object. |
## Serialization fields {#serialization-fields}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = lemmatizer.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| --------- | ---------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `lookups` | The lookups. You usually don't want to exclude this. |

View File

@ -11,22 +11,19 @@ this class.
## Morphology.\_\_init\_\_ {#init tag="method"}
Create a Morphology object using the tag map, lemmatizer and exceptions.
Create a Morphology object.
> #### Example
>
> ```python
> from spacy.morphology import Morphology
>
> morphology = Morphology(strings, tag_map, lemmatizer)
> morphology = Morphology(strings)
> ```
| Name | Type | Description |
| ------------ | ----------------- | ---------------------------------------------------------------------------------------------------------- |
| `strings` | `StringStore` | The string store. |
| `tag_map` | `Dict[str, Dict]` | The tag map. |
| `lemmatizer` | `Lemmatizer` | The lemmatizer. |
| `exc` | `Dict[str, Dict]` | A dictionary of exceptions in the format `{tag: {orth: {"POS": "X", "Feat1": "Val1, "Feat2": "Val2", ...}` |
| Name | Type | Description |
| --------- | ------------- | ----------------- |
| `strings` | `StringStore` | The string store. |
## Morphology.add {#add tag="method"}
@ -62,52 +59,6 @@ Get the FEATS string for the hash of the morphological analysis.
| ------- | ---- | --------------------------------------- |
| `morph` | int | The hash of the morphological analysis. |
## Morphology.load_tag_map {#load_tag_map tag="method"}
Replace the current tag map with the provided tag map.
| Name | Type | Description |
| --------- | ----------------- | ------------ |
| `tag_map` | `Dict[str, Dict]` | The tag map. |
## Morphology.load_morph_exceptions {#load_morph_exceptions tag="method"}
Replace the current morphological exceptions with the provided exceptions.
| Name | Type | Description |
| ------------- | ----------------- | ----------------------------- |
| `morph_rules` | `Dict[str, Dict]` | The morphological exceptions. |
## Morphology.add_special_case {#add_special_case tag="method"}
Add a special-case rule to the morphological analyzer. Tokens whose tag and orth
match the rule will receive the specified properties.
> #### Example
>
> ```python
> attrs = {"POS": "DET", "Definite": "Def"}
> morphology.add_special_case("DT", "the", attrs)
> ```
| Name | Type | Description |
| ---------- | ---- | ---------------------------------------------- |
| `tag_str` | str | The fine-grained tag. |
| `orth_str` | str | The token text. |
| `attrs` | dict | The features to assign for this token and tag. |
## Morphology.exc {#exc tag="property"}
The current morphological exceptions.
| Name | Type | Description |
| ---------- | ---- | --------------------------------------------------- |
| **YIELDS** | dict | The current dictionary of morphological exceptions. |
## Morphology.lemmatize {#lemmatize tag="method"}
TODO
## Morphology.feats_to_dict {#feats_to_dict tag="staticmethod"}
Convert a string FEATS representation to a dictionary of features and values in

View File

@ -47,7 +47,7 @@ https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/tagger.pyx
>
> # Construction via create_pipe with custom model
> config = {"model": {"@architectures": "my_tagger"}}
> parser = nlp.add_pipe("tagger", config=config)
> tagger = nlp.add_pipe("tagger", config=config)
>
> # Construction from class
> from spacy.pipeline import Tagger
@ -285,16 +285,14 @@ Add a new label to the pipe.
> #### Example
>
> ```python
> from spacy.symbols import POS
> tagger = nlp.add_pipe("tagger")
> tagger.add_label("MY_LABEL", {POS: "NOUN"})
> tagger.add_label("MY_LABEL")
> ```
| Name | Type | Description |
| ----------- | ---------------- | --------------------------------------------------------------- |
| `label` | str | The label to add. |
| `values` | `Dict[int, str]` | Optional values to map to the label, e.g. a tag map dictionary. |
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
| Name | Type | Description |
| ----------- | ---- | --------------------------------------------------- |
| `label` | str | The label to add. |
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
## Tagger.to_disk {#to_disk tag="method"}
@ -369,9 +367,7 @@ Load the pipe from a bytestring. Modifies the object in place and returns it.
## Tagger.labels {#labels tag="property"}
The labels currently added to the component. Note that even for a blank
component, this will always include the built-in coarse-grained part-of-speech
tags by default, e.g. `VERB`, `NOUN` and so on.
The labels currently added to the component.
> #### Example
>
@ -396,9 +392,8 @@ serialization by passing in the string names via the `exclude` argument.
> data = tagger.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| --------- | ------------------------------------------------------------------------------------------ |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |
| `tag_map` | The [tag map](/usage/adding-languages#tag-map) mapping fine-grained to coarse-grained tag. |
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |

View File

@ -24,8 +24,6 @@ Create the vocabulary.
| Name | Type | Description |
| -------------------------------------------- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lex_attr_getters` | dict | A dictionary mapping attribute IDs to functions to compute them. Defaults to `None`. |
| `tag_map` | dict | A dictionary mapping fine-grained tags to coarse-grained parts-of-speech, and optionally morphological attributes. |
| `lemmatizer` | object | A lemmatizer. Defaults to `None`. |
| `strings` | `StringStore` / list | A [`StringStore`](/api/stringstore) that maps strings to hash values, and vice versa, or a list of strings. |
| `lookups` | `Lookups` | A [`Lookups`](/api/lookups) that stores the `lemma_\*`, `lexeme_norm` and other large lookup tables. Defaults to `None`. |
| `lookups_extra` <Tag variant="new">2.3</Tag> | `Lookups` | A [`Lookups`](/api/lookups) that stores the optional `lexeme_cluster`/`lexeme_prob`/`lexeme_sentiment`/`lexeme_settings` lookup tables. Defaults to `None`. |