mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 00:04:15 +03:00
Fix tagging model
This commit is contained in:
parent
468c138ab3
commit
e9ab800e15
27
spacy/_ml.py
27
spacy/_ml.py
|
@ -346,16 +346,16 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|||
|
||||
|
||||
def fine_tune(model1, combine=None):
|
||||
def fine_tune_fwd(docs, drop=0.):
|
||||
def fine_tune_fwd(docs_tokvecs, drop=0.):
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lengths = model.ops.asarray([len(doc) for doc in docs], dtype='i')
|
||||
X1, bp_X1 = model1.begin_update(docs)
|
||||
lengths = [len(doc) for doc in docs]
|
||||
X2 = model1.ops.flatten(X1)
|
||||
|
||||
def fine_tune_bwd(d_output, sgd=None):
|
||||
bp_X1(d_output, sgd=sgd)
|
||||
bp_X1(model1.ops.flatten(d_output), sgd=sgd)
|
||||
return d_output
|
||||
|
||||
return (X1+X2, lengths), fine_tune_bwd
|
||||
return model1.ops.unflatten(X1+X2, lengths), fine_tune_bwd
|
||||
model = wrap(fine_tune_fwd)
|
||||
return model
|
||||
|
||||
|
@ -410,30 +410,21 @@ def preprocess_doc(docs, drop=0.):
|
|||
def build_tagger_model(nr_class, token_vector_width, **cfg):
|
||||
with Model.define_operators({'>>': chain, '+': add}):
|
||||
# Input: (doc, tensor) tuples
|
||||
embed_docs = with_getitem(0,
|
||||
embed_docs = (
|
||||
FeatureExtracter([NORM])
|
||||
>> flatten
|
||||
>> HashEmbed(token_vector_width, 1000)
|
||||
>> flatten_add_lengths
|
||||
)
|
||||
|
||||
model = (
|
||||
fine_tune(embed_docs)
|
||||
>>
|
||||
with_getitem(0,
|
||||
FeatureExtracter([NORM])
|
||||
>> HashEmbed(token_vector_width, 1000)
|
||||
>> flatten_add_lengths
|
||||
)
|
||||
>> with_getitem(1,
|
||||
flatten_add_lengths)
|
||||
>> add_tuples
|
||||
>> with_flatten(
|
||||
Maxout(token_vector_width, token_vector_width)
|
||||
>> Softmax(nr_class, token_vector_width)
|
||||
)
|
||||
)
|
||||
return model
|
||||
|
||||
model.nI = None
|
||||
return model
|
||||
|
||||
|
||||
def build_text_classifier(nr_class, width=64, **cfg):
|
||||
|
|
|
@ -253,23 +253,25 @@ class NeuralTagger(BaseThincComponent):
|
|||
self.cfg = dict(cfg)
|
||||
|
||||
def __call__(self, doc):
|
||||
tags = self.predict([doc.tensor])
|
||||
tags = self.predict(([doc], [doc.tensor]))
|
||||
self.set_annotations([doc], tags)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
for docs in cytoolz.partition_all(batch_size, stream):
|
||||
docs = list(docs)
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
tag_ids = self.predict(tokvecs)
|
||||
tag_ids = self.predict((docs, tokvecs))
|
||||
self.set_annotations(docs, tag_ids)
|
||||
yield from docs
|
||||
|
||||
def predict(self, tokvecs):
|
||||
scores = self.model(tokvecs)
|
||||
def predict(self, docs_tokvecs):
|
||||
scores = self.model(docs_tokvecs)
|
||||
scores = self.model.ops.flatten(scores)
|
||||
guesses = scores.argmax(axis=1)
|
||||
if not isinstance(guesses, numpy.ndarray):
|
||||
guesses = guesses.get()
|
||||
tokvecs = docs_tokvecs[1]
|
||||
guesses = self.model.ops.unflatten(guesses,
|
||||
[tv.shape[0] for tv in tokvecs])
|
||||
return guesses
|
||||
|
@ -295,7 +297,7 @@ class NeuralTagger(BaseThincComponent):
|
|||
if self.model.nI is None:
|
||||
self.model.nI = tokvecs[0].shape[1]
|
||||
|
||||
tag_scores, bp_tag_scores = self.model.begin_update(tokvecs, drop=drop)
|
||||
tag_scores, bp_tag_scores = self.model.begin_update(docs_tokvecs, drop=drop)
|
||||
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
||||
|
||||
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
|
||||
|
|
Loading…
Reference in New Issue
Block a user