Bugfix for similarity return types (#10051)

This commit is contained in:
Richard Hudson 2022-01-20 11:40:46 +01:00 committed by GitHub
parent 7d528e607c
commit e9c6314539
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 40 additions and 12 deletions

View File

@ -130,7 +130,9 @@ cdef class Lexeme:
return 0.0 return 0.0
vector = self.vector vector = self.vector
xp = get_array_module(vector) xp = get_array_module(vector)
return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)) result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
# ensure we get a scalar back (numpy does this automatically but cupy doesn't)
return result.item()
@property @property
def has_vector(self): def has_vector(self):

View File

@ -35,6 +35,7 @@ def test_vectors_similarity_LL(vocab, vectors):
assert lex1.vector_norm != 0 assert lex1.vector_norm != 0
assert lex2.vector_norm != 0 assert lex2.vector_norm != 0
assert lex1.vector[0] != lex2.vector[0] and lex1.vector[1] != lex2.vector[1] assert lex1.vector[0] != lex2.vector[0] and lex1.vector[1] != lex2.vector[1]
assert isinstance(lex1.similarity(lex2), float)
assert numpy.isclose(lex1.similarity(lex2), get_cosine(vec1, vec2)) assert numpy.isclose(lex1.similarity(lex2), get_cosine(vec1, vec2))
assert numpy.isclose(lex2.similarity(lex2), lex1.similarity(lex1)) assert numpy.isclose(lex2.similarity(lex2), lex1.similarity(lex1))
@ -47,25 +48,46 @@ def test_vectors_similarity_TT(vocab, vectors):
assert doc[0].vector_norm != 0 assert doc[0].vector_norm != 0
assert doc[1].vector_norm != 0 assert doc[1].vector_norm != 0
assert doc[0].vector[0] != doc[1].vector[0] and doc[0].vector[1] != doc[1].vector[1] assert doc[0].vector[0] != doc[1].vector[0] and doc[0].vector[1] != doc[1].vector[1]
assert isinstance(doc[0].similarity(doc[1]), float)
assert numpy.isclose(doc[0].similarity(doc[1]), get_cosine(vec1, vec2)) assert numpy.isclose(doc[0].similarity(doc[1]), get_cosine(vec1, vec2))
assert numpy.isclose(doc[1].similarity(doc[0]), doc[0].similarity(doc[1])) assert numpy.isclose(doc[1].similarity(doc[0]), doc[0].similarity(doc[1]))
def test_vectors_similarity_SS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert isinstance(doc[0:1].similarity(doc[0:2]), float)
assert doc[0:1].similarity(doc[0:2]) == doc[0:2].similarity(doc[0:1])
def test_vectors_similarity_DD(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc1 = Doc(vocab, words=[word1, word2])
doc2 = Doc(vocab, words=[word2, word1])
assert isinstance(doc1.similarity(doc2), float)
assert doc1.similarity(doc2) == doc2.similarity(doc1)
def test_vectors_similarity_TD(vocab, vectors): def test_vectors_similarity_TD(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors [(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2]) doc = Doc(vocab, words=[word1, word2])
with pytest.warns(UserWarning): with pytest.warns(UserWarning):
assert isinstance(doc.similarity(doc[0]), float)
assert isinstance(doc[0].similarity(doc), float)
assert doc.similarity(doc[0]) == doc[0].similarity(doc) assert doc.similarity(doc[0]) == doc[0].similarity(doc)
def test_vectors_similarity_DS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert doc.similarity(doc[:2]) == doc[:2].similarity(doc)
def test_vectors_similarity_TS(vocab, vectors): def test_vectors_similarity_TS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors [(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2]) doc = Doc(vocab, words=[word1, word2])
with pytest.warns(UserWarning): with pytest.warns(UserWarning):
assert isinstance(doc[:2].similarity(doc[0]), float)
assert isinstance(doc[0].similarity(doc[-2]), float)
assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2]) assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2])
def test_vectors_similarity_DS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert isinstance(doc.similarity(doc[:2]), float)
assert doc.similarity(doc[:2]) == doc[:2].similarity(doc)

View File

@ -364,7 +364,9 @@ cdef class Span:
return 0.0 return 0.0
vector = self.vector vector = self.vector
xp = get_array_module(vector) xp = get_array_module(vector)
return xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm) result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
# ensure we get a scalar back (numpy does this automatically but cupy doesn't)
return result.item()
cpdef np.ndarray to_array(self, object py_attr_ids): cpdef np.ndarray to_array(self, object py_attr_ids):
"""Given a list of M attribute IDs, export the tokens to a numpy """Given a list of M attribute IDs, export the tokens to a numpy

View File

@ -209,7 +209,9 @@ cdef class Token:
return 0.0 return 0.0
vector = self.vector vector = self.vector
xp = get_array_module(vector) xp = get_array_module(vector)
return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)) result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
# ensure we get a scalar back (numpy does this automatically but cupy doesn't)
return result.item()
def has_morph(self): def has_morph(self):
"""Check whether the token has annotated morph information. """Check whether the token has annotated morph information.