mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 09:56:28 +03:00
Merge pull request #12842 from svlandeg/sync_v4
Sync v4 with latest from master and develop
This commit is contained in:
commit
eaaac5a08c
6
.github/workflows/tests.yml
vendored
6
.github/workflows/tests.yml
vendored
|
@ -45,6 +45,12 @@ jobs:
|
|||
run: |
|
||||
python -m pip install flake8==5.0.4
|
||||
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
|
||||
- name: cython-lint
|
||||
run: |
|
||||
python -m pip install cython-lint -c requirements.txt
|
||||
# E501: line too log, W291: trailing whitespace, E266: too many leading '#' for block comment
|
||||
cython-lint spacy --ignore E501,W291,E266
|
||||
|
||||
tests:
|
||||
name: Test
|
||||
needs: Validate
|
||||
|
|
2
Makefile
2
Makefile
|
@ -1,7 +1,7 @@
|
|||
SHELL := /bin/bash
|
||||
|
||||
ifndef SPACY_EXTRAS
|
||||
override SPACY_EXTRAS = spacy-lookups-data==1.0.2 jieba spacy-pkuseg==0.0.28 sudachipy sudachidict_core pymorphy2
|
||||
override SPACY_EXTRAS = spacy-lookups-data==1.0.3
|
||||
endif
|
||||
|
||||
ifndef PYVER
|
||||
|
|
|
@ -36,4 +36,5 @@ types-setuptools>=57.0.0
|
|||
types-requests
|
||||
types-setuptools>=57.0.0
|
||||
black==22.3.0
|
||||
cython-lint>=0.15.0; python_version >= "3.7"
|
||||
isort>=5.0,<6.0
|
||||
|
|
|
@ -32,6 +32,7 @@ def init_vectors_cli(
|
|||
mode: str = Opt("default", "--mode", "-m", help="Vectors mode: default or floret"),
|
||||
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
||||
jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True),
|
||||
attr: str = Opt("ORTH", "--attr", "-a", help="Optional token attribute to use for vectors, e.g. LOWER or NORM"),
|
||||
# fmt: on
|
||||
):
|
||||
"""Convert word vectors for use with spaCy. Will export an nlp object that
|
||||
|
@ -53,6 +54,7 @@ def init_vectors_cli(
|
|||
truncate=truncate,
|
||||
prune=prune,
|
||||
mode=mode,
|
||||
attr=attr,
|
||||
)
|
||||
msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors")
|
||||
nlp.to_disk(output_dir)
|
||||
|
|
|
@ -128,7 +128,7 @@ grad_factor = 1.0
|
|||
{% if "span_finder" in components -%}
|
||||
[components.span_finder]
|
||||
factory = "span_finder"
|
||||
max_length = null
|
||||
max_length = 25
|
||||
min_length = null
|
||||
scorer = {"@scorers":"spacy.span_finder_scorer.v1"}
|
||||
spans_key = "sc"
|
||||
|
@ -415,7 +415,7 @@ width = ${components.tok2vec.model.encode.width}
|
|||
{% if "span_finder" in components %}
|
||||
[components.span_finder]
|
||||
factory = "span_finder"
|
||||
max_length = null
|
||||
max_length = 25
|
||||
min_length = null
|
||||
scorer = {"@scorers":"spacy.span_finder_scorer.v1"}
|
||||
spans_key = "sc"
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import itertools
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
|
@ -218,7 +217,7 @@ class SpanRenderer:
|
|||
+ (self.offset_step * (len(entities) - 1))
|
||||
)
|
||||
markup += self.span_template.format(
|
||||
text=token["text"],
|
||||
text=escape_html(token["text"]),
|
||||
span_slices=slices,
|
||||
span_starts=starts,
|
||||
total_height=total_height,
|
||||
|
|
|
@ -208,6 +208,9 @@ class Warnings(metaclass=ErrorsWithCodes):
|
|||
W123 = ("Argument `enable` with value {enable} does not contain all values specified in the config option "
|
||||
"`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.")
|
||||
W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.")
|
||||
W125 = ("The StaticVectors key_attr is no longer used. To set a custom "
|
||||
"key attribute for vectors, configure it through Vectors(attr=) or "
|
||||
"'spacy init vectors --attr'")
|
||||
|
||||
# v4 warning strings
|
||||
W400 = ("`use_upper=False` is ignored, the upper layer is always enabled")
|
||||
|
|
|
@ -12,8 +12,9 @@ from .candidate import Candidate
|
|||
|
||||
|
||||
cdef class KnowledgeBase:
|
||||
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
|
||||
to support entity linking of named entities to real-world concepts.
|
||||
"""A `KnowledgeBase` instance stores unique identifiers for entities and
|
||||
their textual aliases, to support entity linking of named entities to
|
||||
real-world concepts.
|
||||
This is an abstract class and requires its operations to be implemented.
|
||||
|
||||
DOCS: https://spacy.io/api/kb
|
||||
|
@ -31,7 +32,9 @@ cdef class KnowledgeBase:
|
|||
self.entity_vector_length = entity_vector_length
|
||||
self.mem = Pool()
|
||||
|
||||
def get_candidates_batch(self, mentions: SpanGroup) -> Iterable[Iterable[Candidate]]:
|
||||
def get_candidates_batch(
|
||||
self, mentions: SpanGroup
|
||||
) -> Iterable[Iterable[Candidate]]:
|
||||
"""
|
||||
Return candidate entities for a specified Span mention. Each candidate defines at least the entity and the
|
||||
entity's embedding vector. Depending on the KB implementation, further properties - such as the prior
|
||||
|
@ -52,7 +55,9 @@ cdef class KnowledgeBase:
|
|||
RETURNS (Iterable[Candidate]): Identified candidates.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
Errors.E1045.format(parent="KnowledgeBase", method="get_candidates", name=self.__name__)
|
||||
Errors.E1045.format(
|
||||
parent="KnowledgeBase", method="get_candidates", name=self.__name__
|
||||
)
|
||||
)
|
||||
|
||||
def get_vectors(self, entities: Iterable[str]) -> Iterable[Iterable[float]]:
|
||||
|
@ -70,7 +75,9 @@ cdef class KnowledgeBase:
|
|||
RETURNS (Iterable[float]): Vector for specified entity.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
Errors.E1045.format(parent="KnowledgeBase", method="get_vector", name=self.__name__)
|
||||
Errors.E1045.format(
|
||||
parent="KnowledgeBase", method="get_vector", name=self.__name__
|
||||
)
|
||||
)
|
||||
|
||||
def to_bytes(self, **kwargs) -> bytes:
|
||||
|
@ -78,7 +85,9 @@ cdef class KnowledgeBase:
|
|||
RETURNS (bytes): Current state as binary string.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
Errors.E1045.format(parent="KnowledgeBase", method="to_bytes", name=self.__name__)
|
||||
Errors.E1045.format(
|
||||
parent="KnowledgeBase", method="to_bytes", name=self.__name__
|
||||
)
|
||||
)
|
||||
|
||||
def from_bytes(self, bytes_data: bytes, *, exclude: Tuple[str] = tuple()):
|
||||
|
@ -87,27 +96,37 @@ cdef class KnowledgeBase:
|
|||
exclude (Tuple[str]): Properties to exclude when restoring KB.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
Errors.E1045.format(parent="KnowledgeBase", method="from_bytes", name=self.__name__)
|
||||
Errors.E1045.format(
|
||||
parent="KnowledgeBase", method="from_bytes", name=self.__name__
|
||||
)
|
||||
)
|
||||
|
||||
def to_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
|
||||
def to_disk(
|
||||
self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()
|
||||
) -> None:
|
||||
"""
|
||||
Write KnowledgeBase content to disk.
|
||||
path (Union[str, Path]): Target file path.
|
||||
exclude (Iterable[str]): List of components to exclude.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
Errors.E1045.format(parent="KnowledgeBase", method="to_disk", name=self.__name__)
|
||||
Errors.E1045.format(
|
||||
parent="KnowledgeBase", method="to_disk", name=self.__name__
|
||||
)
|
||||
)
|
||||
|
||||
def from_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
|
||||
def from_disk(
|
||||
self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()
|
||||
) -> None:
|
||||
"""
|
||||
Load KnowledgeBase content from disk.
|
||||
path (Union[str, Path]): Target file path.
|
||||
exclude (Iterable[str]): List of components to exclude.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
Errors.E1045.format(parent="KnowledgeBase", method="from_disk", name=self.__name__)
|
||||
Errors.E1045.format(
|
||||
parent="KnowledgeBase", method="from_disk", name=self.__name__
|
||||
)
|
||||
)
|
||||
|
||||
@property
|
||||
|
|
|
@ -55,23 +55,28 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
# optional data, we can let users configure a DB as the backend for this.
|
||||
cdef object _features_table
|
||||
|
||||
|
||||
cdef inline int64_t c_add_vector(self, vector[float] entity_vector) nogil:
|
||||
"""Add an entity vector to the vectors table."""
|
||||
cdef int64_t new_index = self._vectors_table.size()
|
||||
self._vectors_table.push_back(entity_vector)
|
||||
return new_index
|
||||
|
||||
|
||||
cdef inline int64_t c_add_entity(self, hash_t entity_hash, float freq,
|
||||
int32_t vector_index, int feats_row) nogil:
|
||||
cdef inline int64_t c_add_entity(
|
||||
self,
|
||||
hash_t entity_hash,
|
||||
float freq,
|
||||
int32_t vector_index,
|
||||
int feats_row
|
||||
) nogil:
|
||||
"""Add an entry to the vector of entries.
|
||||
After calling this method, make sure to update also the _entry_index using the return value"""
|
||||
After calling this method, make sure to update also the _entry_index
|
||||
using the return value"""
|
||||
# This is what we'll map the entity hash key to. It's where the entry will sit
|
||||
# in the vector of entries, so we can get it later.
|
||||
cdef int64_t new_index = self._entries.size()
|
||||
|
||||
# Avoid struct initializer to enable nogil, cf https://github.com/cython/cython/issues/1642
|
||||
# Avoid struct initializer to enable nogil, cf.
|
||||
# https://github.com/cython/cython/issues/1642
|
||||
cdef KBEntryC entry
|
||||
entry.entity_hash = entity_hash
|
||||
entry.vector_index = vector_index
|
||||
|
@ -81,11 +86,17 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
self._entries.push_back(entry)
|
||||
return new_index
|
||||
|
||||
cdef inline int64_t c_add_aliases(self, hash_t alias_hash, vector[int64_t] entry_indices, vector[float] probs) nogil:
|
||||
"""Connect a mention to a list of potential entities with their prior probabilities .
|
||||
After calling this method, make sure to update also the _alias_index using the return value"""
|
||||
# This is what we'll map the alias hash key to. It's where the alias will be defined
|
||||
# in the vector of aliases.
|
||||
cdef inline int64_t c_add_aliases(
|
||||
self,
|
||||
hash_t alias_hash,
|
||||
vector[int64_t] entry_indices,
|
||||
vector[float] probs
|
||||
) nogil:
|
||||
"""Connect a mention to a list of potential entities with their prior
|
||||
probabilities. After calling this method, make sure to update also the
|
||||
_alias_index using the return value"""
|
||||
# This is what we'll map the alias hash key to. It's where the alias will be
|
||||
# defined in the vector of aliases.
|
||||
cdef int64_t new_index = self._aliases_table.size()
|
||||
|
||||
# Avoid struct initializer to enable nogil
|
||||
|
@ -98,8 +109,9 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
|
||||
cdef inline void _create_empty_vectors(self, hash_t dummy_hash) nogil:
|
||||
"""
|
||||
Initializing the vectors and making sure the first element of each vector is a dummy,
|
||||
because the PreshMap maps pointing to indices in these vectors can not contain 0 as value
|
||||
Initializing the vectors and making sure the first element of each vector is a
|
||||
dummy, because the PreshMap maps pointing to indices in these vectors can not
|
||||
contain 0 as value.
|
||||
cf. https://github.com/explosion/preshed/issues/17
|
||||
"""
|
||||
cdef int32_t dummy_value = 0
|
||||
|
@ -130,12 +142,18 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
cdef class Writer:
|
||||
cdef FILE* _fp
|
||||
|
||||
cdef int write_header(self, int64_t nr_entries, int64_t entity_vector_length) except -1
|
||||
cdef int write_header(
|
||||
self, int64_t nr_entries, int64_t entity_vector_length
|
||||
) except -1
|
||||
cdef int write_vector_element(self, float element) except -1
|
||||
cdef int write_entry(self, hash_t entry_hash, float entry_freq, int32_t vector_index) except -1
|
||||
cdef int write_entry(
|
||||
self, hash_t entry_hash, float entry_freq, int32_t vector_index
|
||||
) except -1
|
||||
|
||||
cdef int write_alias_length(self, int64_t alias_length) except -1
|
||||
cdef int write_alias_header(self, hash_t alias_hash, int64_t candidate_length) except -1
|
||||
cdef int write_alias_header(
|
||||
self, hash_t alias_hash, int64_t candidate_length
|
||||
) except -1
|
||||
cdef int write_alias(self, int64_t entry_index, float prob) except -1
|
||||
|
||||
cdef int _write(self, void* value, size_t size) except -1
|
||||
|
@ -143,12 +161,18 @@ cdef class Writer:
|
|||
cdef class Reader:
|
||||
cdef FILE* _fp
|
||||
|
||||
cdef int read_header(self, int64_t* nr_entries, int64_t* entity_vector_length) except -1
|
||||
cdef int read_header(
|
||||
self, int64_t* nr_entries, int64_t* entity_vector_length
|
||||
) except -1
|
||||
cdef int read_vector_element(self, float* element) except -1
|
||||
cdef int read_entry(self, hash_t* entity_hash, float* freq, int32_t* vector_index) except -1
|
||||
cdef int read_entry(
|
||||
self, hash_t* entity_hash, float* freq, int32_t* vector_index
|
||||
) except -1
|
||||
|
||||
cdef int read_alias_length(self, int64_t* alias_length) except -1
|
||||
cdef int read_alias_header(self, hash_t* alias_hash, int64_t* candidate_length) except -1
|
||||
cdef int read_alias_header(
|
||||
self, hash_t* alias_hash, int64_t* candidate_length
|
||||
) except -1
|
||||
cdef int read_alias(self, int64_t* entry_index, float* prob) except -1
|
||||
|
||||
cdef int _read(self, void* value, size_t size) except -1
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
from typing import Any, Callable, Dict, Iterable, Union
|
||||
from typing import Any, Callable, Dict, Iterable
|
||||
|
||||
import srsly
|
||||
|
||||
|
@ -27,8 +27,9 @@ from .candidate import InMemoryCandidate
|
|||
|
||||
|
||||
cdef class InMemoryLookupKB(KnowledgeBase):
|
||||
"""An `InMemoryLookupKB` instance stores unique identifiers for entities and their textual aliases,
|
||||
to support entity linking of named entities to real-world concepts.
|
||||
"""An `InMemoryLookupKB` instance stores unique identifiers for entities
|
||||
and their textual aliases, to support entity linking of named entities to
|
||||
real-world concepts.
|
||||
|
||||
DOCS: https://spacy.io/api/inmemorylookupkb
|
||||
"""
|
||||
|
@ -71,7 +72,8 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
|
||||
def add_entity(self, str entity, float freq, vector[float] entity_vector):
|
||||
"""
|
||||
Add an entity to the KB, optionally specifying its log probability based on corpus frequency
|
||||
Add an entity to the KB, optionally specifying its log probability
|
||||
based on corpus frequency.
|
||||
Return the hash of the entity ID/name at the end.
|
||||
"""
|
||||
cdef hash_t entity_hash = self.vocab.strings.add(entity)
|
||||
|
@ -83,14 +85,20 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
|
||||
# Raise an error if the provided entity vector is not of the correct length
|
||||
if len(entity_vector) != self.entity_vector_length:
|
||||
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
|
||||
raise ValueError(
|
||||
Errors.E141.format(
|
||||
found=len(entity_vector), required=self.entity_vector_length
|
||||
)
|
||||
)
|
||||
|
||||
vector_index = self.c_add_vector(entity_vector=entity_vector)
|
||||
|
||||
new_index = self.c_add_entity(entity_hash=entity_hash,
|
||||
freq=freq,
|
||||
vector_index=vector_index,
|
||||
feats_row=-1) # Features table currently not implemented
|
||||
new_index = self.c_add_entity(
|
||||
entity_hash=entity_hash,
|
||||
freq=freq,
|
||||
vector_index=vector_index,
|
||||
feats_row=-1
|
||||
) # Features table currently not implemented
|
||||
self._entry_index[entity_hash] = new_index
|
||||
|
||||
return entity_hash
|
||||
|
@ -115,7 +123,12 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
else:
|
||||
entity_vector = vector_list[i]
|
||||
if len(entity_vector) != self.entity_vector_length:
|
||||
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
|
||||
raise ValueError(
|
||||
Errors.E141.format(
|
||||
found=len(entity_vector),
|
||||
required=self.entity_vector_length
|
||||
)
|
||||
)
|
||||
|
||||
entry.entity_hash = entity_hash
|
||||
entry.freq = freq_list[i]
|
||||
|
@ -149,11 +162,15 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
previous_alias_nr = self.get_size_aliases()
|
||||
# Throw an error if the length of entities and probabilities are not the same
|
||||
if not len(entities) == len(probabilities):
|
||||
raise ValueError(Errors.E132.format(alias=alias,
|
||||
entities_length=len(entities),
|
||||
probabilities_length=len(probabilities)))
|
||||
raise ValueError(
|
||||
Errors.E132.format(
|
||||
alias=alias,
|
||||
entities_length=len(entities),
|
||||
probabilities_length=len(probabilities))
|
||||
)
|
||||
|
||||
# Throw an error if the probabilities sum up to more than 1 (allow for some rounding errors)
|
||||
# Throw an error if the probabilities sum up to more than 1 (allow for
|
||||
# some rounding errors)
|
||||
prob_sum = sum(probabilities)
|
||||
if prob_sum > 1.00001:
|
||||
raise ValueError(Errors.E133.format(alias=alias, sum=prob_sum))
|
||||
|
@ -170,40 +187,47 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
|
||||
for entity, prob in zip(entities, probabilities):
|
||||
entity_hash = self.vocab.strings[entity]
|
||||
if not entity_hash in self._entry_index:
|
||||
if entity_hash not in self._entry_index:
|
||||
raise ValueError(Errors.E134.format(entity=entity))
|
||||
|
||||
entry_index = <int64_t>self._entry_index.get(entity_hash)
|
||||
entry_indices.push_back(int(entry_index))
|
||||
probs.push_back(float(prob))
|
||||
|
||||
new_index = self.c_add_aliases(alias_hash=alias_hash, entry_indices=entry_indices, probs=probs)
|
||||
new_index = self.c_add_aliases(
|
||||
alias_hash=alias_hash, entry_indices=entry_indices, probs=probs
|
||||
)
|
||||
self._alias_index[alias_hash] = new_index
|
||||
|
||||
if previous_alias_nr + 1 != self.get_size_aliases():
|
||||
raise RuntimeError(Errors.E891.format(alias=alias))
|
||||
return alias_hash
|
||||
|
||||
def append_alias(self, str alias, str entity, float prior_prob, ignore_warnings=False):
|
||||
def append_alias(
|
||||
self, str alias, str entity, float prior_prob, ignore_warnings=False
|
||||
):
|
||||
"""
|
||||
For an alias already existing in the KB, extend its potential entities with one more.
|
||||
For an alias already existing in the KB, extend its potential entities
|
||||
with one more.
|
||||
Throw a warning if either the alias or the entity is unknown,
|
||||
or when the combination is already previously recorded.
|
||||
Throw an error if this entity+prior prob would exceed the sum of 1.
|
||||
For efficiency, it's best to use the method `add_alias` as much as possible instead of this one.
|
||||
For efficiency, it's best to use the method `add_alias` as much as
|
||||
possible instead of this one.
|
||||
"""
|
||||
# Check if the alias exists in the KB
|
||||
cdef hash_t alias_hash = self.vocab.strings[alias]
|
||||
if not alias_hash in self._alias_index:
|
||||
if alias_hash not in self._alias_index:
|
||||
raise ValueError(Errors.E176.format(alias=alias))
|
||||
|
||||
# Check if the entity exists in the KB
|
||||
cdef hash_t entity_hash = self.vocab.strings[entity]
|
||||
if not entity_hash in self._entry_index:
|
||||
if entity_hash not in self._entry_index:
|
||||
raise ValueError(Errors.E134.format(entity=entity))
|
||||
entry_index = <int64_t>self._entry_index.get(entity_hash)
|
||||
|
||||
# Throw an error if the prior probabilities (including the new one) sum up to more than 1
|
||||
# Throw an error if the prior probabilities (including the new one)
|
||||
# sum up to more than 1
|
||||
alias_index = <int64_t>self._alias_index.get(alias_hash)
|
||||
alias_entry = self._aliases_table[alias_index]
|
||||
current_sum = sum([p for p in alias_entry.probs])
|
||||
|
@ -236,12 +260,13 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
|
||||
def _get_alias_candidates(self, str alias) -> Iterable[InMemoryCandidate]:
|
||||
"""
|
||||
Return candidate entities for an alias. Each candidate defines the entity, the original alias,
|
||||
and the prior probability of that alias resolving to that entity.
|
||||
Return candidate entities for an alias. Each candidate defines the
|
||||
entity, the original alias, and the prior probability of that alias
|
||||
resolving to that entity.
|
||||
If the alias is not known in the KB, and empty list is returned.
|
||||
"""
|
||||
cdef hash_t alias_hash = self.vocab.strings[alias]
|
||||
if not alias_hash in self._alias_index:
|
||||
if alias_hash not in self._alias_index:
|
||||
return []
|
||||
alias_index = <int64_t>self._alias_index.get(alias_hash)
|
||||
alias_entry = self._aliases_table[alias_index]
|
||||
|
@ -270,8 +295,9 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
return self._vectors_table[self._entries[entry_index].vector_index]
|
||||
|
||||
def get_prior_prob(self, str entity, str alias):
|
||||
""" Return the prior probability of a given alias being linked to a given entity,
|
||||
or return 0.0 when this combination is not known in the knowledge base"""
|
||||
""" Return the prior probability of a given alias being linked to a
|
||||
given entity, or return 0.0 when this combination is not known in the
|
||||
knowledge base."""
|
||||
cdef hash_t alias_hash = self.vocab.strings[alias]
|
||||
cdef hash_t entity_hash = self.vocab.strings[entity]
|
||||
|
||||
|
@ -282,7 +308,9 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
entry_index = self._entry_index[entity_hash]
|
||||
|
||||
alias_entry = self._aliases_table[alias_index]
|
||||
for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs):
|
||||
for (entry_index, prior_prob) in zip(
|
||||
alias_entry.entry_indices, alias_entry.probs
|
||||
):
|
||||
if self._entries[entry_index].entity_hash == entity_hash:
|
||||
return prior_prob
|
||||
|
||||
|
@ -295,13 +323,19 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
"""Serialize the current state to a binary string.
|
||||
"""
|
||||
def serialize_header():
|
||||
header = (self.get_size_entities(), self.get_size_aliases(), self.entity_vector_length)
|
||||
header = (
|
||||
self.get_size_entities(),
|
||||
self.get_size_aliases(),
|
||||
self.entity_vector_length
|
||||
)
|
||||
return srsly.json_dumps(header)
|
||||
|
||||
def serialize_entries():
|
||||
i = 1
|
||||
tuples = []
|
||||
for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]):
|
||||
for entry_hash, entry_index in sorted(
|
||||
self._entry_index.items(), key=lambda x: x[1]
|
||||
):
|
||||
entry = self._entries[entry_index]
|
||||
assert entry.entity_hash == entry_hash
|
||||
assert entry_index == i
|
||||
|
@ -314,7 +348,9 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
headers = []
|
||||
indices_lists = []
|
||||
probs_lists = []
|
||||
for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]):
|
||||
for alias_hash, alias_index in sorted(
|
||||
self._alias_index.items(), key=lambda x: x[1]
|
||||
):
|
||||
alias = self._aliases_table[alias_index]
|
||||
assert alias_index == i
|
||||
candidate_length = len(alias.entry_indices)
|
||||
|
@ -372,7 +408,7 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
indices = srsly.json_loads(all_data[1])
|
||||
probs = srsly.json_loads(all_data[2])
|
||||
for header, indices, probs in zip(headers, indices, probs):
|
||||
alias_hash, candidate_length = header
|
||||
alias_hash, _candidate_length = header
|
||||
alias.entry_indices = indices
|
||||
alias.probs = probs
|
||||
self._aliases_table[i] = alias
|
||||
|
@ -421,10 +457,14 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
writer.write_vector_element(element)
|
||||
i = i+1
|
||||
|
||||
# dumping the entry records in the order in which they are in the _entries vector.
|
||||
# index 0 is a dummy object not stored in the _entry_index and can be ignored.
|
||||
# dumping the entry records in the order in which they are in the
|
||||
# _entries vector.
|
||||
# index 0 is a dummy object not stored in the _entry_index and can
|
||||
# be ignored.
|
||||
i = 1
|
||||
for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]):
|
||||
for entry_hash, entry_index in sorted(
|
||||
self._entry_index.items(), key=lambda x: x[1]
|
||||
):
|
||||
entry = self._entries[entry_index]
|
||||
assert entry.entity_hash == entry_hash
|
||||
assert entry_index == i
|
||||
|
@ -436,7 +476,9 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
# dumping the aliases in the order in which they are in the _alias_index vector.
|
||||
# index 0 is a dummy object not stored in the _aliases_table and can be ignored.
|
||||
i = 1
|
||||
for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]):
|
||||
for alias_hash, alias_index in sorted(
|
||||
self._alias_index.items(), key=lambda x: x[1]
|
||||
):
|
||||
alias = self._aliases_table[alias_index]
|
||||
assert alias_index == i
|
||||
|
||||
|
@ -542,7 +584,8 @@ cdef class Writer:
|
|||
def __init__(self, path):
|
||||
assert isinstance(path, Path)
|
||||
content = bytes(path)
|
||||
cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content
|
||||
cdef bytes bytes_loc = content.encode('utf8') \
|
||||
if type(content) == str else content
|
||||
self._fp = fopen(<char*>bytes_loc, 'wb')
|
||||
if not self._fp:
|
||||
raise IOError(Errors.E146.format(path=path))
|
||||
|
@ -552,14 +595,18 @@ cdef class Writer:
|
|||
cdef size_t status = fclose(self._fp)
|
||||
assert status == 0
|
||||
|
||||
cdef int write_header(self, int64_t nr_entries, int64_t entity_vector_length) except -1:
|
||||
cdef int write_header(
|
||||
self, int64_t nr_entries, int64_t entity_vector_length
|
||||
) except -1:
|
||||
self._write(&nr_entries, sizeof(nr_entries))
|
||||
self._write(&entity_vector_length, sizeof(entity_vector_length))
|
||||
|
||||
cdef int write_vector_element(self, float element) except -1:
|
||||
self._write(&element, sizeof(element))
|
||||
|
||||
cdef int write_entry(self, hash_t entry_hash, float entry_freq, int32_t vector_index) except -1:
|
||||
cdef int write_entry(
|
||||
self, hash_t entry_hash, float entry_freq, int32_t vector_index
|
||||
) except -1:
|
||||
self._write(&entry_hash, sizeof(entry_hash))
|
||||
self._write(&entry_freq, sizeof(entry_freq))
|
||||
self._write(&vector_index, sizeof(vector_index))
|
||||
|
@ -568,7 +615,9 @@ cdef class Writer:
|
|||
cdef int write_alias_length(self, int64_t alias_length) except -1:
|
||||
self._write(&alias_length, sizeof(alias_length))
|
||||
|
||||
cdef int write_alias_header(self, hash_t alias_hash, int64_t candidate_length) except -1:
|
||||
cdef int write_alias_header(
|
||||
self, hash_t alias_hash, int64_t candidate_length
|
||||
) except -1:
|
||||
self._write(&alias_hash, sizeof(alias_hash))
|
||||
self._write(&candidate_length, sizeof(candidate_length))
|
||||
|
||||
|
@ -584,16 +633,19 @@ cdef class Writer:
|
|||
cdef class Reader:
|
||||
def __init__(self, path):
|
||||
content = bytes(path)
|
||||
cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content
|
||||
cdef bytes bytes_loc = content.encode('utf8') \
|
||||
if type(content) == str else content
|
||||
self._fp = fopen(<char*>bytes_loc, 'rb')
|
||||
if not self._fp:
|
||||
PyErr_SetFromErrno(IOError)
|
||||
status = fseek(self._fp, 0, 0) # this can be 0 if there is no header
|
||||
fseek(self._fp, 0, 0) # this can be 0 if there is no header
|
||||
|
||||
def __dealloc__(self):
|
||||
fclose(self._fp)
|
||||
|
||||
cdef int read_header(self, int64_t* nr_entries, int64_t* entity_vector_length) except -1:
|
||||
cdef int read_header(
|
||||
self, int64_t* nr_entries, int64_t* entity_vector_length
|
||||
) except -1:
|
||||
status = self._read(nr_entries, sizeof(int64_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
|
@ -613,7 +665,9 @@ cdef class Reader:
|
|||
return 0 # end of file
|
||||
raise IOError(Errors.E145.format(param="vector element"))
|
||||
|
||||
cdef int read_entry(self, hash_t* entity_hash, float* freq, int32_t* vector_index) except -1:
|
||||
cdef int read_entry(
|
||||
self, hash_t* entity_hash, float* freq, int32_t* vector_index
|
||||
) except -1:
|
||||
status = self._read(entity_hash, sizeof(hash_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
|
@ -644,7 +698,9 @@ cdef class Reader:
|
|||
return 0 # end of file
|
||||
raise IOError(Errors.E145.format(param="alias length"))
|
||||
|
||||
cdef int read_alias_header(self, hash_t* alias_hash, int64_t* candidate_length) except -1:
|
||||
cdef int read_alias_header(
|
||||
self, hash_t* alias_hash, int64_t* candidate_length
|
||||
) except -1:
|
||||
status = self._read(alias_hash, sizeof(hash_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
|
|
|
@ -740,6 +740,11 @@ class Language:
|
|||
)
|
||||
)
|
||||
pipe = source.get_pipe(source_name)
|
||||
# There is no actual solution here. Either the component has the right
|
||||
# name for the source pipeline or the component has the right name for
|
||||
# the current pipeline. This prioritizes the current pipeline.
|
||||
if hasattr(pipe, "name"):
|
||||
pipe.name = name
|
||||
# Make sure the source config is interpolated so we don't end up with
|
||||
# orphaned variables in our final config
|
||||
source_config = source.config.interpolate()
|
||||
|
@ -817,6 +822,7 @@ class Language:
|
|||
pipe_index = self._get_pipe_index(before, after, first, last)
|
||||
self._pipe_meta[name] = self.get_factory_meta(factory_name)
|
||||
self._components.insert(pipe_index, (name, pipe_component))
|
||||
self._link_components()
|
||||
return pipe_component
|
||||
|
||||
def _get_pipe_index(
|
||||
|
@ -956,6 +962,7 @@ class Language:
|
|||
if old_name in self._config["initialize"]["components"]:
|
||||
init_cfg = self._config["initialize"]["components"].pop(old_name)
|
||||
self._config["initialize"]["components"][new_name] = init_cfg
|
||||
self._link_components()
|
||||
|
||||
def remove_pipe(self, name: str) -> Tuple[str, PipeCallable]:
|
||||
"""Remove a component from the pipeline.
|
||||
|
@ -979,6 +986,7 @@ class Language:
|
|||
# Make sure the name is also removed from the set of disabled components
|
||||
if name in self.disabled:
|
||||
self._disabled.remove(name)
|
||||
self._link_components()
|
||||
return removed
|
||||
|
||||
def disable_pipe(self, name: str) -> None:
|
||||
|
@ -1823,8 +1831,16 @@ class Language:
|
|||
# The problem is we need to do it during deserialization...And the
|
||||
# components don't receive the pipeline then. So this does have to be
|
||||
# here :(
|
||||
# First, fix up all the internal component names in case they have
|
||||
# gotten out of sync due to sourcing components from different
|
||||
# pipelines, since find_listeners uses proc2.name for the listener
|
||||
# map.
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "name"):
|
||||
proc.name = name
|
||||
for i, (name1, proc1) in enumerate(self.pipeline):
|
||||
if isinstance(proc1, ty.ListenedToComponent):
|
||||
proc1.listener_map = {}
|
||||
for name2, proc2 in self.pipeline[i + 1 :]:
|
||||
proc1.find_listeners(proc2)
|
||||
|
||||
|
@ -1934,7 +1950,6 @@ class Language:
|
|||
# Later we replace the component config with the raw config again.
|
||||
interpolated = filled.interpolate() if not filled.is_interpolated else filled
|
||||
pipeline = interpolated.get("components", {})
|
||||
sourced = util.get_sourced_components(interpolated)
|
||||
# If components are loaded from a source (existing models), we cache
|
||||
# them here so they're only loaded once
|
||||
source_nlps = {}
|
||||
|
@ -1962,6 +1977,7 @@ class Language:
|
|||
raw_config=raw_config,
|
||||
)
|
||||
else:
|
||||
assert "source" in pipe_cfg
|
||||
# We need the sourced components to reference the same
|
||||
# vocab without modifying the current vocab state **AND**
|
||||
# we still want to load the source model vectors to perform
|
||||
|
@ -1981,6 +1997,10 @@ class Language:
|
|||
source_name = pipe_cfg.get("component", pipe_name)
|
||||
listeners_replaced = False
|
||||
if "replace_listeners" in pipe_cfg:
|
||||
# Make sure that the listened-to component has the
|
||||
# state of the source pipeline listener map so that the
|
||||
# replace_listeners method below works as intended.
|
||||
source_nlps[model]._link_components()
|
||||
for name, proc in source_nlps[model].pipeline:
|
||||
if source_name in getattr(proc, "listening_components", []):
|
||||
source_nlps[model].replace_listeners(
|
||||
|
@ -1992,6 +2012,8 @@ class Language:
|
|||
nlp.add_pipe(
|
||||
source_name, source=source_nlps[model], name=pipe_name
|
||||
)
|
||||
# At this point after nlp.add_pipe, the listener map
|
||||
# corresponds to the new pipeline.
|
||||
if model not in source_nlp_vectors_hashes:
|
||||
source_nlp_vectors_hashes[model] = hash(
|
||||
source_nlps[model].vocab.vectors.to_bytes(
|
||||
|
@ -2046,27 +2068,6 @@ class Language:
|
|||
raise ValueError(
|
||||
Errors.E942.format(name="pipeline_creation", value=type(nlp))
|
||||
)
|
||||
# Detect components with listeners that are not frozen consistently
|
||||
for name, proc in nlp.pipeline:
|
||||
if isinstance(proc, ty.ListenedToComponent):
|
||||
# Remove listeners not in the pipeline
|
||||
listener_names = proc.listening_components
|
||||
unused_listener_names = [
|
||||
ll for ll in listener_names if ll not in nlp.pipe_names
|
||||
]
|
||||
for listener_name in unused_listener_names:
|
||||
for listener in proc.listener_map.get(listener_name, []):
|
||||
proc.remove_listener(listener, listener_name)
|
||||
|
||||
for listener_name in proc.listening_components:
|
||||
# e.g. tok2vec/transformer
|
||||
# If it's a component sourced from another pipeline, we check if
|
||||
# the tok2vec listeners should be replaced with standalone tok2vec
|
||||
# models (e.g. so component can be frozen without its performance
|
||||
# degrading when other components/tok2vec are updated)
|
||||
paths = sourced.get(listener_name, {}).get("replace_listeners", [])
|
||||
if paths:
|
||||
nlp.replace_listeners(name, listener_name, paths)
|
||||
return nlp
|
||||
|
||||
def replace_listeners(
|
||||
|
@ -2081,7 +2082,7 @@ class Language:
|
|||
useful when training a pipeline with components sourced from an existing
|
||||
pipeline: if multiple components (e.g. tagger, parser, NER) listen to
|
||||
the same tok2vec component, but some of them are frozen and not updated,
|
||||
their performance may degrade significally as the tok2vec component is
|
||||
their performance may degrade significantly as the tok2vec component is
|
||||
updated with new data. To prevent this, listeners can be replaced with
|
||||
a standalone tok2vec layer that is owned by the component and doesn't
|
||||
change if the component isn't updated.
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
# cython: embedsignature=True
|
||||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||||
cimport numpy as np
|
||||
from cython.view cimport array as cvarray
|
||||
from libc.string cimport memset
|
||||
|
||||
np.import_array()
|
||||
|
@ -35,7 +34,7 @@ from .typedefs cimport attr_t, flags_t
|
|||
from .attrs import intify_attrs
|
||||
from .errors import Errors, Warnings
|
||||
|
||||
OOV_RANK = 0xffffffffffffffff # UINT64_MAX
|
||||
OOV_RANK = 0xffffffffffffffff # UINT64_MAX
|
||||
memset(&EMPTY_LEXEME, 0, sizeof(LexemeC))
|
||||
EMPTY_LEXEME.id = OOV_RANK
|
||||
|
||||
|
@ -105,7 +104,7 @@ cdef class Lexeme:
|
|||
if isinstance(value, float):
|
||||
continue
|
||||
elif isinstance(value, (int, long)):
|
||||
Lexeme.set_struct_attr(self.c, attr, value)
|
||||
Lexeme.set_struct_attr(self.c, attr, value)
|
||||
else:
|
||||
Lexeme.set_struct_attr(self.c, attr, self.vocab.strings.add(value))
|
||||
|
||||
|
@ -137,10 +136,12 @@ cdef class Lexeme:
|
|||
if hasattr(other, "orth"):
|
||||
if self.c.orth == other.orth:
|
||||
return 1.0
|
||||
elif hasattr(other, "__len__") and len(other) == 1 \
|
||||
and hasattr(other[0], "orth"):
|
||||
if self.c.orth == other[0].orth:
|
||||
return 1.0
|
||||
elif (
|
||||
hasattr(other, "__len__") and len(other) == 1
|
||||
and hasattr(other[0], "orth")
|
||||
and self.c.orth == other[0].orth
|
||||
):
|
||||
return 1.0
|
||||
if self.vector_norm == 0 or other.vector_norm == 0:
|
||||
warnings.warn(Warnings.W008.format(obj="Lexeme"))
|
||||
return 0.0
|
||||
|
@ -149,7 +150,7 @@ cdef class Lexeme:
|
|||
result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
|
||||
# ensure we get a scalar back (numpy does this automatically but cupy doesn't)
|
||||
return result.item()
|
||||
|
||||
|
||||
@property
|
||||
def has_vector(self):
|
||||
"""RETURNS (bool): Whether a word vector is associated with the object.
|
||||
|
|
|
@ -108,7 +108,7 @@ cdef class DependencyMatcher:
|
|||
key (str): The match ID.
|
||||
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
||||
"""
|
||||
return self.has_key(key)
|
||||
return self.has_key(key) # no-cython-lint: W601
|
||||
|
||||
def _validate_input(self, pattern, key):
|
||||
idx = 0
|
||||
|
@ -264,7 +264,7 @@ cdef class DependencyMatcher:
|
|||
|
||||
def remove(self, key):
|
||||
key = self._normalize_key(key)
|
||||
if not key in self._patterns:
|
||||
if key not in self._patterns:
|
||||
raise ValueError(Errors.E175.format(key=key))
|
||||
self._patterns.pop(key)
|
||||
self._raw_patterns.pop(key)
|
||||
|
@ -382,7 +382,7 @@ cdef class DependencyMatcher:
|
|||
return []
|
||||
return [doc[node].head]
|
||||
|
||||
def _gov(self,doc,node):
|
||||
def _gov(self, doc, node):
|
||||
return list(doc[node].children)
|
||||
|
||||
def _dep_chain(self, doc, node):
|
||||
|
@ -443,7 +443,7 @@ cdef class DependencyMatcher:
|
|||
|
||||
def _right_child(self, doc, node):
|
||||
return [child for child in doc[node].rights]
|
||||
|
||||
|
||||
def _left_child(self, doc, node):
|
||||
return [child for child in doc[node].lefts]
|
||||
|
||||
|
@ -461,7 +461,7 @@ cdef class DependencyMatcher:
|
|||
if doc[node].head.i > node:
|
||||
return [doc[node].head]
|
||||
return []
|
||||
|
||||
|
||||
def _left_parent(self, doc, node):
|
||||
if doc[node].head.i < node:
|
||||
return [doc[node].head]
|
||||
|
|
|
@ -12,25 +12,13 @@ import warnings
|
|||
|
||||
import srsly
|
||||
|
||||
from ..attrs cimport (
|
||||
DEP,
|
||||
ENT_IOB,
|
||||
ID,
|
||||
LEMMA,
|
||||
MORPH,
|
||||
NULL_ATTR,
|
||||
ORTH,
|
||||
POS,
|
||||
TAG,
|
||||
attr_id_t,
|
||||
)
|
||||
from ..attrs cimport DEP, ENT_IOB, ID, LEMMA, MORPH, NULL_ATTR, POS, TAG
|
||||
from ..structs cimport TokenC
|
||||
from ..tokens.doc cimport Doc, get_token_attr_for_matcher
|
||||
from ..tokens.morphanalysis cimport MorphAnalysis
|
||||
from ..tokens.span cimport Span
|
||||
from ..tokens.token cimport Token
|
||||
from ..typedefs cimport attr_t
|
||||
from ..vocab cimport Vocab
|
||||
|
||||
from ..errors import Errors, MatchPatternError, Warnings
|
||||
from ..schemas import validate_token_pattern
|
||||
|
@ -42,7 +30,6 @@ from ..attrs import IDS
|
|||
from ..errors import Errors, MatchPatternError, Warnings
|
||||
from ..schemas import validate_token_pattern
|
||||
from ..strings import get_string_id
|
||||
from ..util import registry
|
||||
from .levenshtein import levenshtein_compare
|
||||
|
||||
DEF PADDING = 5
|
||||
|
@ -93,9 +80,9 @@ cdef class Matcher:
|
|||
key (str): The match ID.
|
||||
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
||||
"""
|
||||
return self.has_key(key)
|
||||
return self.has_key(key) # no-cython-lint: W601
|
||||
|
||||
def add(self, key, patterns, *, on_match=None, greedy: str=None):
|
||||
def add(self, key, patterns, *, on_match=None, greedy: str = None):
|
||||
"""Add a match-rule to the matcher. A match-rule consists of: an ID
|
||||
key, an on_match callback, and one or more patterns.
|
||||
|
||||
|
@ -149,8 +136,13 @@ cdef class Matcher:
|
|||
key = self._normalize_key(key)
|
||||
for pattern in patterns:
|
||||
try:
|
||||
specs = _preprocess_pattern(pattern, self.vocab,
|
||||
self._extensions, self._extra_predicates, self._fuzzy_compare)
|
||||
specs = _preprocess_pattern(
|
||||
pattern,
|
||||
self.vocab,
|
||||
self._extensions,
|
||||
self._extra_predicates,
|
||||
self._fuzzy_compare
|
||||
)
|
||||
self.patterns.push_back(init_pattern(self.mem, key, specs))
|
||||
for spec in specs:
|
||||
for attr, _ in spec[1]:
|
||||
|
@ -174,7 +166,7 @@ cdef class Matcher:
|
|||
key (str): The ID of the match rule.
|
||||
"""
|
||||
norm_key = self._normalize_key(key)
|
||||
if not norm_key in self._patterns:
|
||||
if norm_key not in self._patterns:
|
||||
raise ValueError(Errors.E175.format(key=key))
|
||||
self._patterns.pop(norm_key)
|
||||
self._callbacks.pop(norm_key)
|
||||
|
@ -274,8 +266,15 @@ cdef class Matcher:
|
|||
if self.patterns.empty():
|
||||
matches = []
|
||||
else:
|
||||
matches = find_matches(&self.patterns[0], self.patterns.size(), doclike, length,
|
||||
extensions=self._extensions, predicates=self._extra_predicates, with_alignments=with_alignments)
|
||||
matches = find_matches(
|
||||
&self.patterns[0],
|
||||
self.patterns.size(),
|
||||
doclike,
|
||||
length,
|
||||
extensions=self._extensions,
|
||||
predicates=self._extra_predicates,
|
||||
with_alignments=with_alignments
|
||||
)
|
||||
final_matches = []
|
||||
pairs_by_id = {}
|
||||
# For each key, either add all matches, or only the filtered,
|
||||
|
@ -299,9 +298,9 @@ cdef class Matcher:
|
|||
memset(matched, 0, length * sizeof(matched[0]))
|
||||
span_filter = self._filter.get(key)
|
||||
if span_filter == "FIRST":
|
||||
sorted_pairs = sorted(pairs, key=lambda x: (x[0], -x[1]), reverse=False) # sort by start
|
||||
sorted_pairs = sorted(pairs, key=lambda x: (x[0], -x[1]), reverse=False) # sort by start
|
||||
elif span_filter == "LONGEST":
|
||||
sorted_pairs = sorted(pairs, key=lambda x: (x[1]-x[0], -x[0]), reverse=True) # reverse sort by length
|
||||
sorted_pairs = sorted(pairs, key=lambda x: (x[1]-x[0], -x[0]), reverse=True) # reverse sort by length
|
||||
else:
|
||||
raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=span_filter))
|
||||
for match in sorted_pairs:
|
||||
|
@ -373,7 +372,6 @@ cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, e
|
|||
cdef vector[MatchC] matches
|
||||
cdef vector[vector[MatchAlignmentC]] align_states
|
||||
cdef vector[vector[MatchAlignmentC]] align_matches
|
||||
cdef PatternStateC state
|
||||
cdef int i, j, nr_extra_attr
|
||||
cdef Pool mem = Pool()
|
||||
output = []
|
||||
|
@ -395,14 +393,22 @@ cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, e
|
|||
value = token.vocab.strings[value]
|
||||
extra_attr_values[i * nr_extra_attr + index] = value
|
||||
# Main loop
|
||||
cdef int nr_predicate = len(predicates)
|
||||
for i in range(length):
|
||||
for j in range(n):
|
||||
states.push_back(PatternStateC(patterns[j], i, 0))
|
||||
if with_alignments != 0:
|
||||
align_states.resize(states.size())
|
||||
transition_states(states, matches, align_states, align_matches, predicate_cache,
|
||||
doclike[i], extra_attr_values, predicates, with_alignments)
|
||||
transition_states(
|
||||
states,
|
||||
matches,
|
||||
align_states,
|
||||
align_matches,
|
||||
predicate_cache,
|
||||
doclike[i],
|
||||
extra_attr_values,
|
||||
predicates,
|
||||
with_alignments
|
||||
)
|
||||
extra_attr_values += nr_extra_attr
|
||||
predicate_cache += len(predicates)
|
||||
# Handle matches that end in 0-width patterns
|
||||
|
@ -428,18 +434,28 @@ cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, e
|
|||
return output
|
||||
|
||||
|
||||
cdef void transition_states(vector[PatternStateC]& states, vector[MatchC]& matches,
|
||||
vector[vector[MatchAlignmentC]]& align_states, vector[vector[MatchAlignmentC]]& align_matches,
|
||||
int8_t* cached_py_predicates,
|
||||
Token token, const attr_t* extra_attrs, py_predicates, bint with_alignments) except *:
|
||||
cdef void transition_states(
|
||||
vector[PatternStateC]& states,
|
||||
vector[MatchC]& matches,
|
||||
vector[vector[MatchAlignmentC]]& align_states,
|
||||
vector[vector[MatchAlignmentC]]& align_matches,
|
||||
int8_t* cached_py_predicates,
|
||||
Token token,
|
||||
const attr_t* extra_attrs,
|
||||
py_predicates,
|
||||
bint with_alignments
|
||||
) except *:
|
||||
cdef int q = 0
|
||||
cdef vector[PatternStateC] new_states
|
||||
cdef vector[vector[MatchAlignmentC]] align_new_states
|
||||
cdef int nr_predicate = len(py_predicates)
|
||||
for i in range(states.size()):
|
||||
if states[i].pattern.nr_py >= 1:
|
||||
update_predicate_cache(cached_py_predicates,
|
||||
states[i].pattern, token, py_predicates)
|
||||
update_predicate_cache(
|
||||
cached_py_predicates,
|
||||
states[i].pattern,
|
||||
token,
|
||||
py_predicates
|
||||
)
|
||||
action = get_action(states[i], token.c, extra_attrs,
|
||||
cached_py_predicates)
|
||||
if action == REJECT:
|
||||
|
@ -475,8 +491,12 @@ cdef void transition_states(vector[PatternStateC]& states, vector[MatchC]& match
|
|||
align_new_states.push_back(align_states[q])
|
||||
states[q].pattern += 1
|
||||
if states[q].pattern.nr_py != 0:
|
||||
update_predicate_cache(cached_py_predicates,
|
||||
states[q].pattern, token, py_predicates)
|
||||
update_predicate_cache(
|
||||
cached_py_predicates,
|
||||
states[q].pattern,
|
||||
token,
|
||||
py_predicates
|
||||
)
|
||||
action = get_action(states[q], token.c, extra_attrs,
|
||||
cached_py_predicates)
|
||||
# Update alignment before the transition of current state
|
||||
|
@ -492,8 +512,12 @@ cdef void transition_states(vector[PatternStateC]& states, vector[MatchC]& match
|
|||
ent_id = get_ent_id(state.pattern)
|
||||
if action == MATCH:
|
||||
matches.push_back(
|
||||
MatchC(pattern_id=ent_id, start=state.start,
|
||||
length=state.length+1))
|
||||
MatchC(
|
||||
pattern_id=ent_id,
|
||||
start=state.start,
|
||||
length=state.length+1
|
||||
)
|
||||
)
|
||||
# `align_matches` always corresponds to `matches` 1:1
|
||||
if with_alignments != 0:
|
||||
align_matches.push_back(align_states[q])
|
||||
|
@ -501,23 +525,35 @@ cdef void transition_states(vector[PatternStateC]& states, vector[MatchC]& match
|
|||
# push match without last token if length > 0
|
||||
if state.length > 0:
|
||||
matches.push_back(
|
||||
MatchC(pattern_id=ent_id, start=state.start,
|
||||
length=state.length))
|
||||
MatchC(
|
||||
pattern_id=ent_id,
|
||||
start=state.start,
|
||||
length=state.length
|
||||
)
|
||||
)
|
||||
# MATCH_DOUBLE emits matches twice,
|
||||
# add one more to align_matches in order to keep 1:1 relationship
|
||||
if with_alignments != 0:
|
||||
align_matches.push_back(align_states[q])
|
||||
# push match with last token
|
||||
matches.push_back(
|
||||
MatchC(pattern_id=ent_id, start=state.start,
|
||||
length=state.length+1))
|
||||
MatchC(
|
||||
pattern_id=ent_id,
|
||||
start=state.start,
|
||||
length=state.length + 1
|
||||
)
|
||||
)
|
||||
# `align_matches` always corresponds to `matches` 1:1
|
||||
if with_alignments != 0:
|
||||
align_matches.push_back(align_states[q])
|
||||
elif action == MATCH_REJECT:
|
||||
matches.push_back(
|
||||
MatchC(pattern_id=ent_id, start=state.start,
|
||||
length=state.length))
|
||||
MatchC(
|
||||
pattern_id=ent_id,
|
||||
start=state.start,
|
||||
length=state.length
|
||||
)
|
||||
)
|
||||
# `align_matches` always corresponds to `matches` 1:1
|
||||
if with_alignments != 0:
|
||||
align_matches.push_back(align_states[q])
|
||||
|
@ -540,8 +576,12 @@ cdef void transition_states(vector[PatternStateC]& states, vector[MatchC]& match
|
|||
align_states.push_back(align_new_states[i])
|
||||
|
||||
|
||||
cdef int update_predicate_cache(int8_t* cache,
|
||||
const TokenPatternC* pattern, Token token, predicates) except -1:
|
||||
cdef int update_predicate_cache(
|
||||
int8_t* cache,
|
||||
const TokenPatternC* pattern,
|
||||
Token token,
|
||||
predicates
|
||||
) except -1:
|
||||
# If the state references any extra predicates, check whether they match.
|
||||
# These are cached, so that we don't call these potentially expensive
|
||||
# Python functions more than we need to.
|
||||
|
@ -587,10 +627,12 @@ cdef void finish_states(vector[MatchC]& matches, vector[PatternStateC]& states,
|
|||
else:
|
||||
state.pattern += 1
|
||||
|
||||
|
||||
cdef action_t get_action(PatternStateC state,
|
||||
const TokenC* token, const attr_t* extra_attrs,
|
||||
const int8_t* predicate_matches) nogil:
|
||||
cdef action_t get_action(
|
||||
PatternStateC state,
|
||||
const TokenC * token,
|
||||
const attr_t * extra_attrs,
|
||||
const int8_t * predicate_matches
|
||||
) nogil:
|
||||
"""We need to consider:
|
||||
a) Does the token match the specification? [Yes, No]
|
||||
b) What's the quantifier? [1, 0+, ?]
|
||||
|
@ -656,53 +698,56 @@ cdef action_t get_action(PatternStateC state,
|
|||
is_match = not is_match
|
||||
quantifier = ONE
|
||||
if quantifier == ONE:
|
||||
if is_match and is_final:
|
||||
# Yes, final: 1000
|
||||
return MATCH
|
||||
elif is_match and not is_final:
|
||||
# Yes, non-final: 0100
|
||||
return ADVANCE
|
||||
elif not is_match and is_final:
|
||||
# No, final: 0000
|
||||
return REJECT
|
||||
else:
|
||||
return REJECT
|
||||
if is_match and is_final:
|
||||
# Yes, final: 1000
|
||||
return MATCH
|
||||
elif is_match and not is_final:
|
||||
# Yes, non-final: 0100
|
||||
return ADVANCE
|
||||
elif not is_match and is_final:
|
||||
# No, final: 0000
|
||||
return REJECT
|
||||
else:
|
||||
return REJECT
|
||||
elif quantifier == ZERO_PLUS:
|
||||
if is_match and is_final:
|
||||
# Yes, final: 1001
|
||||
return MATCH_EXTEND
|
||||
elif is_match and not is_final:
|
||||
# Yes, non-final: 0011
|
||||
return RETRY_EXTEND
|
||||
elif not is_match and is_final:
|
||||
# No, final 2000 (note: Don't include last token!)
|
||||
return MATCH_REJECT
|
||||
else:
|
||||
# No, non-final 0010
|
||||
return RETRY
|
||||
if is_match and is_final:
|
||||
# Yes, final: 1001
|
||||
return MATCH_EXTEND
|
||||
elif is_match and not is_final:
|
||||
# Yes, non-final: 0011
|
||||
return RETRY_EXTEND
|
||||
elif not is_match and is_final:
|
||||
# No, final 2000 (note: Don't include last token!)
|
||||
return MATCH_REJECT
|
||||
else:
|
||||
# No, non-final 0010
|
||||
return RETRY
|
||||
elif quantifier == ZERO_ONE:
|
||||
if is_match and is_final:
|
||||
# Yes, final: 3000
|
||||
# To cater for a pattern ending in "?", we need to add
|
||||
# a match both with and without the last token
|
||||
return MATCH_DOUBLE
|
||||
elif is_match and not is_final:
|
||||
# Yes, non-final: 0110
|
||||
# We need both branches here, consider a pair like:
|
||||
# pattern: .?b string: b
|
||||
# If we 'ADVANCE' on the .?, we miss the match.
|
||||
return RETRY_ADVANCE
|
||||
elif not is_match and is_final:
|
||||
# No, final 2000 (note: Don't include last token!)
|
||||
return MATCH_REJECT
|
||||
else:
|
||||
# No, non-final 0010
|
||||
return RETRY
|
||||
if is_match and is_final:
|
||||
# Yes, final: 3000
|
||||
# To cater for a pattern ending in "?", we need to add
|
||||
# a match both with and without the last token
|
||||
return MATCH_DOUBLE
|
||||
elif is_match and not is_final:
|
||||
# Yes, non-final: 0110
|
||||
# We need both branches here, consider a pair like:
|
||||
# pattern: .?b string: b
|
||||
# If we 'ADVANCE' on the .?, we miss the match.
|
||||
return RETRY_ADVANCE
|
||||
elif not is_match and is_final:
|
||||
# No, final 2000 (note: Don't include last token!)
|
||||
return MATCH_REJECT
|
||||
else:
|
||||
# No, non-final 0010
|
||||
return RETRY
|
||||
|
||||
|
||||
cdef int8_t get_is_match(PatternStateC state,
|
||||
const TokenC* token, const attr_t* extra_attrs,
|
||||
const int8_t* predicate_matches) nogil:
|
||||
cdef int8_t get_is_match(
|
||||
PatternStateC state,
|
||||
const TokenC* token,
|
||||
const attr_t* extra_attrs,
|
||||
const int8_t* predicate_matches
|
||||
) nogil:
|
||||
for i in range(state.pattern.nr_py):
|
||||
if predicate_matches[state.pattern.py_predicates[i]] == -1:
|
||||
return 0
|
||||
|
@ -867,7 +912,7 @@ class _FuzzyPredicate:
|
|||
self.is_extension = is_extension
|
||||
if self.predicate not in self.operators:
|
||||
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
|
||||
fuzz = self.predicate[len("FUZZY"):] # number after prefix
|
||||
fuzz = self.predicate[len("FUZZY"):] # number after prefix
|
||||
self.fuzzy = int(fuzz) if fuzz else -1
|
||||
self.fuzzy_compare = fuzzy_compare
|
||||
self.key = _predicate_cache_key(self.attr, self.predicate, value, fuzzy=self.fuzzy)
|
||||
|
@ -1089,7 +1134,7 @@ def _get_extra_predicates_dict(attr, value_dict, vocab, predicate_types,
|
|||
elif cls == _FuzzyPredicate:
|
||||
if isinstance(value, dict):
|
||||
# add predicates inside fuzzy operator
|
||||
fuzz = type_[len("FUZZY"):] # number after prefix
|
||||
fuzz = type_[len("FUZZY"):] # number after prefix
|
||||
fuzzy_val = int(fuzz) if fuzz else -1
|
||||
output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
|
||||
extra_predicates, seen_predicates,
|
||||
|
@ -1108,8 +1153,9 @@ def _get_extra_predicates_dict(attr, value_dict, vocab, predicate_types,
|
|||
return output
|
||||
|
||||
|
||||
def _get_extension_extra_predicates(spec, extra_predicates, predicate_types,
|
||||
seen_predicates):
|
||||
def _get_extension_extra_predicates(
|
||||
spec, extra_predicates, predicate_types, seen_predicates
|
||||
):
|
||||
output = []
|
||||
for attr, value in spec.items():
|
||||
if isinstance(value, dict):
|
||||
|
@ -1138,7 +1184,7 @@ def _get_operators(spec):
|
|||
return (ONE,)
|
||||
elif spec["OP"] in lookup:
|
||||
return lookup[spec["OP"]]
|
||||
#Min_max {n,m}
|
||||
# Min_max {n,m}
|
||||
elif spec["OP"].startswith("{") and spec["OP"].endswith("}"):
|
||||
# {n} --> {n,n} exactly n ONE,(n)
|
||||
# {n,m}--> {n,m} min of n, max of m ONE,(n),ZERO_ONE,(m)
|
||||
|
@ -1149,8 +1195,8 @@ def _get_operators(spec):
|
|||
min_max = min_max if "," in min_max else f"{min_max},{min_max}"
|
||||
n, m = min_max.split(",")
|
||||
|
||||
#1. Either n or m is a blank string and the other is numeric -->isdigit
|
||||
#2. Both are numeric and n <= m
|
||||
# 1. Either n or m is a blank string and the other is numeric -->isdigit
|
||||
# 2. Both are numeric and n <= m
|
||||
if (not n.isdecimal() and not m.isdecimal()) or (n.isdecimal() and m.isdecimal() and int(n) > int(m)):
|
||||
keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m "
|
||||
raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys))
|
||||
|
|
|
@ -2,16 +2,14 @@
|
|||
from collections import defaultdict
|
||||
from typing import List
|
||||
|
||||
from libc.stdint cimport uintptr_t
|
||||
from preshed.maps cimport map_clear, map_get, map_init, map_iter, map_set
|
||||
|
||||
import warnings
|
||||
|
||||
from ..attrs cimport DEP, LEMMA, MORPH, ORTH, POS, TAG
|
||||
from ..attrs cimport DEP, LEMMA, MORPH, POS, TAG
|
||||
|
||||
from ..attrs import IDS
|
||||
|
||||
from ..structs cimport TokenC
|
||||
from ..tokens.span cimport Span
|
||||
from ..tokens.token cimport Token
|
||||
from ..typedefs cimport attr_t
|
||||
|
@ -160,7 +158,6 @@ cdef class PhraseMatcher:
|
|||
del self._callbacks[key]
|
||||
del self._docs[key]
|
||||
|
||||
|
||||
def _add_from_arrays(self, key, specs, *, on_match=None):
|
||||
"""Add a preprocessed list of specs, with an optional callback.
|
||||
|
||||
|
@ -196,7 +193,6 @@ cdef class PhraseMatcher:
|
|||
result = internal_node
|
||||
map_set(self.mem, <MapStruct*>result, self.vocab.strings[key], NULL)
|
||||
|
||||
|
||||
def add(self, key, docs, *, on_match=None):
|
||||
"""Add a match-rule to the phrase-matcher. A match-rule consists of: an ID
|
||||
key, a list of one or more patterns, and (optionally) an on_match callback.
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import warnings
|
||||
from typing import Callable, List, Optional, Sequence, Tuple, cast
|
||||
|
||||
from thinc.api import Model, Ops, registry
|
||||
|
@ -5,7 +6,8 @@ from thinc.initializers import glorot_uniform_init
|
|||
from thinc.types import Floats1d, Floats2d, Ints1d, Ragged
|
||||
from thinc.util import partial
|
||||
|
||||
from ..errors import Errors
|
||||
from ..attrs import ORTH
|
||||
from ..errors import Errors, Warnings
|
||||
from ..tokens import Doc
|
||||
from ..vectors import Mode
|
||||
from ..vocab import Vocab
|
||||
|
@ -24,6 +26,8 @@ def StaticVectors(
|
|||
linear projection to control the dimensionality. If a dropout rate is
|
||||
specified, the dropout is applied per dimension over the whole batch.
|
||||
"""
|
||||
if key_attr != "ORTH":
|
||||
warnings.warn(Warnings.W125, DeprecationWarning)
|
||||
return Model(
|
||||
"static_vectors",
|
||||
forward,
|
||||
|
@ -40,9 +44,9 @@ def forward(
|
|||
token_count = sum(len(doc) for doc in docs)
|
||||
if not token_count:
|
||||
return _handle_empty(model.ops, model.get_dim("nO"))
|
||||
key_attr: int = model.attrs["key_attr"]
|
||||
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
|
||||
vocab: Vocab = docs[0].vocab
|
||||
key_attr: int = getattr(vocab.vectors, "attr", ORTH)
|
||||
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
|
||||
W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
|
||||
if vocab.vectors.mode == Mode.default:
|
||||
V = model.ops.asarray(vocab.vectors.data)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False
|
||||
from typing import Any, List, Optional, Tuple, TypeVar, cast
|
||||
from typing import Any, List, Optional, Tuple, cast
|
||||
|
||||
from libc.stdlib cimport calloc, free, realloc
|
||||
from libc.string cimport memcpy, memset
|
||||
|
@ -23,7 +23,7 @@ from thinc.api import (
|
|||
|
||||
from thinc.backends.cblas cimport CBlas, saxpy, sgemm
|
||||
|
||||
from thinc.types import Floats1d, Floats2d, Floats3d, Floats4d, Ints1d, Ints2d
|
||||
from thinc.types import Floats2d, Floats3d, Floats4d, Ints1d, Ints2d
|
||||
|
||||
from ..errors import Errors
|
||||
from ..pipeline._parser_internals import _beam_utils
|
||||
|
@ -136,7 +136,7 @@ def init(
|
|||
Y: Optional[Tuple[List[State], List[Floats2d]]] = None,
|
||||
):
|
||||
if X is not None:
|
||||
docs, moves = X
|
||||
docs, _ = X
|
||||
model.get_ref("tok2vec").initialize(X=docs)
|
||||
else:
|
||||
model.get_ref("tok2vec").initialize()
|
||||
|
@ -145,7 +145,6 @@ def init(
|
|||
current_nO = model.maybe_get_dim("nO")
|
||||
if current_nO is None or current_nO != inferred_nO:
|
||||
model.attrs["resize_output"](model, inferred_nO)
|
||||
nO = model.get_dim("nO")
|
||||
nP = model.get_dim("nP")
|
||||
nH = model.get_dim("nH")
|
||||
nI = model.get_dim("nI")
|
||||
|
@ -192,9 +191,10 @@ class TransitionModelInputs:
|
|||
self,
|
||||
docs: List[Doc],
|
||||
moves: TransitionSystem,
|
||||
actions: Optional[List[Ints1d]]=None,
|
||||
max_moves: int=0,
|
||||
states: Optional[List[State]]=None):
|
||||
actions: Optional[List[Ints1d]] = None,
|
||||
max_moves: int = 0,
|
||||
states: Optional[List[State]] = None,
|
||||
):
|
||||
"""
|
||||
actions (Optional[List[Ints1d]]): actions to apply for each Doc.
|
||||
docs (List[Doc]): Docs to predict transition sequences for.
|
||||
|
@ -234,12 +234,12 @@ def forward(model, inputs: TransitionModelInputs, is_train: bool):
|
|||
return _forward_greedy_cpu(model, moves, states, feats, seen_mask, actions=actions)
|
||||
else:
|
||||
return _forward_fallback(model, moves, states, tokvecs, backprop_tok2vec,
|
||||
feats, backprop_feats, seen_mask, is_train, actions=actions,
|
||||
max_moves=inputs.max_moves)
|
||||
feats, backprop_feats, seen_mask, is_train, actions=actions,
|
||||
max_moves=inputs.max_moves)
|
||||
|
||||
|
||||
def _forward_greedy_cpu(model: Model, TransitionSystem moves, states: List[StateClass], np.ndarray feats,
|
||||
np.ndarray[np.npy_bool, ndim=1] seen_mask, actions: Optional[List[Ints1d]]=None):
|
||||
np.ndarray[np.npy_bool, ndim = 1] seen_mask, actions: Optional[List[Ints1d]] = None):
|
||||
cdef vector[StateC*] c_states
|
||||
cdef StateClass state
|
||||
for state in states:
|
||||
|
@ -257,9 +257,10 @@ def _forward_greedy_cpu(model: Model, TransitionSystem moves, states: List[State
|
|||
|
||||
return (states, scores), backprop
|
||||
|
||||
|
||||
cdef list _parse_batch(CBlas cblas, TransitionSystem moves, StateC** states,
|
||||
WeightsC weights, SizesC sizes, actions: Optional[List[Ints1d]]=None):
|
||||
cdef int i, j
|
||||
cdef int i
|
||||
cdef vector[StateC *] unfinished
|
||||
cdef ActivationsC activations = _alloc_activations(sizes)
|
||||
cdef np.ndarray step_scores
|
||||
|
@ -276,7 +277,7 @@ cdef list _parse_batch(CBlas cblas, TransitionSystem moves, StateC** states,
|
|||
if actions is None:
|
||||
# Validate actions, argmax, take action.
|
||||
c_transition_batch(moves, states, <const float*>step_scores.data, sizes.classes,
|
||||
sizes.states)
|
||||
sizes.states)
|
||||
else:
|
||||
c_apply_actions(moves, states, <const int*>step_actions.data, sizes.states)
|
||||
for i in range(sizes.states):
|
||||
|
@ -302,8 +303,9 @@ def _forward_fallback(
|
|||
backprop_feats,
|
||||
seen_mask,
|
||||
is_train: bool,
|
||||
actions: Optional[List[Ints1d]]=None,
|
||||
max_moves: int=0):
|
||||
actions: Optional[List[Ints1d]] = None,
|
||||
max_moves: int = 0,
|
||||
):
|
||||
nF = model.get_dim("nF")
|
||||
output = model.get_ref("output")
|
||||
hidden_b = model.get_param("hidden_b")
|
||||
|
@ -371,7 +373,7 @@ def _forward_fallback(
|
|||
for clas in set(model.attrs["unseen_classes"]):
|
||||
if (d_scores[:, clas] < 0).any():
|
||||
model.attrs["unseen_classes"].remove(clas)
|
||||
d_scores *= seen_mask == False
|
||||
d_scores *= seen_mask == False # no-cython-lint
|
||||
# Calculate the gradients for the parameters of the output layer.
|
||||
# The weight gemm is (nS, nO) @ (nS, nH).T
|
||||
output.inc_grad("b", d_scores.sum(axis=0))
|
||||
|
@ -571,13 +573,13 @@ cdef void _resize_activations(ActivationsC* A, SizesC n) nogil:
|
|||
A._max_size = n.states
|
||||
else:
|
||||
A.token_ids = <int*>realloc(A.token_ids,
|
||||
n.states * n.feats * sizeof(A.token_ids[0]))
|
||||
n.states * n.feats * sizeof(A.token_ids[0]))
|
||||
A.unmaxed = <float*>realloc(A.unmaxed,
|
||||
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
|
||||
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
|
||||
A.hiddens = <float*>realloc(A.hiddens,
|
||||
n.states * n.hiddens * sizeof(A.hiddens[0]))
|
||||
n.states * n.hiddens * sizeof(A.hiddens[0]))
|
||||
A.is_valid = <int*>realloc(A.is_valid,
|
||||
n.states * n.classes * sizeof(A.is_valid[0]))
|
||||
n.states * n.classes * sizeof(A.is_valid[0]))
|
||||
A._max_size = n.states
|
||||
A._curr_size = n.states
|
||||
|
||||
|
@ -599,9 +601,9 @@ cdef void _predict_states(CBlas cblas, ActivationsC* A, float* scores, StateC**
|
|||
else:
|
||||
# Compute hidden-to-output
|
||||
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
|
||||
1.0, <const float *>A.hiddens, n.hiddens,
|
||||
<const float *>W.hidden_weights, n.hiddens,
|
||||
0.0, scores, n.classes)
|
||||
1.0, <const float *>A.hiddens, n.hiddens,
|
||||
<const float *>W.hidden_weights, n.hiddens,
|
||||
0.0, scores, n.classes)
|
||||
# Add bias
|
||||
for i in range(n.states):
|
||||
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &scores[i*n.classes], 1)
|
||||
|
@ -617,12 +619,12 @@ cdef void _predict_states(CBlas cblas, ActivationsC* A, float* scores, StateC**
|
|||
scores[i*n.classes+j] = min_
|
||||
|
||||
|
||||
cdef void _sum_state_features(CBlas cblas, float* output,
|
||||
const float* cached, const int* token_ids, SizesC n) nogil:
|
||||
cdef int idx, b, f, i
|
||||
cdef void _sum_state_features(CBlas cblas, float* output, const float* cached,
|
||||
const int* token_ids, SizesC n) nogil:
|
||||
cdef int idx, b, f
|
||||
cdef const float* feature
|
||||
cdef int B = n.states
|
||||
cdef int O = n.hiddens * n.pieces
|
||||
cdef int O = n.hiddens * n.pieces # no-cython-lint
|
||||
cdef int F = n.feats
|
||||
cdef int T = n.tokens
|
||||
padding = cached + (T * F * O)
|
||||
|
@ -637,4 +639,3 @@ cdef void _sum_state_features(CBlas cblas, float* output,
|
|||
feature = &cached[idx]
|
||||
saxpy(cblas)(O, one, <const float*>feature, 1, &output[b*O], 1)
|
||||
token_ids += F
|
||||
|
||||
|
|
|
@ -80,15 +80,13 @@ cdef class Morphology:
|
|||
out.sort(key=lambda x: x[0])
|
||||
return dict(out)
|
||||
|
||||
|
||||
def _normalized_feat_dict_to_str(self, feats: Dict[str, str]) -> str:
|
||||
norm_feats_string = self.FEATURE_SEP.join([
|
||||
self.FIELD_SEP.join([field, self.VALUE_SEP.join(values) if isinstance(values, list) else values])
|
||||
self.FIELD_SEP.join([field, self.VALUE_SEP.join(values) if isinstance(values, list) else values])
|
||||
for field, values in feats.items()
|
||||
])
|
||||
])
|
||||
return norm_feats_string or self.EMPTY_MORPH
|
||||
|
||||
|
||||
cdef hash_t _add(self, features):
|
||||
"""Insert a morphological analysis in the morphology table, if not
|
||||
already present. The morphological analysis may be provided in the UD
|
||||
|
@ -140,7 +138,7 @@ cdef class Morphology:
|
|||
field_feature_pairs.append((field_key, value_key))
|
||||
else:
|
||||
# We could box scalar values into a list and use a common
|
||||
# code path to generate features but that incurs a small
|
||||
# code path to generate features but that incurs a small
|
||||
# but measurable allocation/iteration overhead (as this
|
||||
# branch is taken often enough).
|
||||
value_key = self.strings.add(field + self.FIELD_SEP + values)
|
||||
|
@ -246,6 +244,7 @@ cdef int get_n_by_field(attr_t* results, const shared_ptr[MorphAnalysisC] morph,
|
|||
n_results += 1
|
||||
return n_results
|
||||
|
||||
|
||||
def unpickle_morphology(strings, tags):
|
||||
cdef Morphology morphology = Morphology(strings)
|
||||
for tag in tags:
|
||||
|
|
|
@ -8,7 +8,7 @@ cpdef enum univ_pos_t:
|
|||
ADV = symbols.ADV
|
||||
AUX = symbols.AUX
|
||||
CONJ = symbols.CONJ
|
||||
CCONJ = symbols.CCONJ # U20
|
||||
CCONJ = symbols.CCONJ # U20
|
||||
DET = symbols.DET
|
||||
INTJ = symbols.INTJ
|
||||
NOUN = symbols.NOUN
|
||||
|
|
|
@ -46,11 +46,18 @@ cdef struct EditTreeC:
|
|||
bint is_match_node
|
||||
NodeC inner
|
||||
|
||||
cdef inline EditTreeC edittree_new_match(len_t prefix_len, len_t suffix_len,
|
||||
uint32_t prefix_tree, uint32_t suffix_tree):
|
||||
cdef MatchNodeC match_node = MatchNodeC(prefix_len=prefix_len,
|
||||
suffix_len=suffix_len, prefix_tree=prefix_tree,
|
||||
suffix_tree=suffix_tree)
|
||||
cdef inline EditTreeC edittree_new_match(
|
||||
len_t prefix_len,
|
||||
len_t suffix_len,
|
||||
uint32_t prefix_tree,
|
||||
uint32_t suffix_tree
|
||||
):
|
||||
cdef MatchNodeC match_node = MatchNodeC(
|
||||
prefix_len=prefix_len,
|
||||
suffix_len=suffix_len,
|
||||
prefix_tree=prefix_tree,
|
||||
suffix_tree=suffix_tree
|
||||
)
|
||||
cdef NodeC inner = NodeC(match_node=match_node)
|
||||
return EditTreeC(is_match_node=True, inner=inner)
|
||||
|
||||
|
|
|
@ -5,8 +5,6 @@ from libc.string cimport memset
|
|||
from libcpp.pair cimport pair
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from ...typedefs cimport hash_t
|
||||
|
||||
from ... import util
|
||||
|
@ -25,17 +23,16 @@ cdef LCS find_lcs(str source, str target):
|
|||
target (str): The second string.
|
||||
RETURNS (LCS): The spans of the longest common subsequences.
|
||||
"""
|
||||
cdef Py_ssize_t source_len = len(source)
|
||||
cdef Py_ssize_t target_len = len(target)
|
||||
cdef size_t longest_align = 0;
|
||||
cdef size_t longest_align = 0
|
||||
cdef int source_idx, target_idx
|
||||
cdef LCS lcs
|
||||
cdef Py_UCS4 source_cp, target_cp
|
||||
|
||||
memset(&lcs, 0, sizeof(lcs))
|
||||
|
||||
cdef vector[size_t] prev_aligns = vector[size_t](target_len);
|
||||
cdef vector[size_t] cur_aligns = vector[size_t](target_len);
|
||||
cdef vector[size_t] prev_aligns = vector[size_t](target_len)
|
||||
cdef vector[size_t] cur_aligns = vector[size_t](target_len)
|
||||
|
||||
for (source_idx, source_cp) in enumerate(source):
|
||||
for (target_idx, target_cp) in enumerate(target):
|
||||
|
@ -89,7 +86,7 @@ cdef class EditTrees:
|
|||
cdef LCS lcs = find_lcs(form, lemma)
|
||||
|
||||
cdef EditTreeC tree
|
||||
cdef uint32_t tree_id, prefix_tree, suffix_tree
|
||||
cdef uint32_t prefix_tree, suffix_tree
|
||||
if lcs_is_empty(lcs):
|
||||
tree = edittree_new_subst(self.strings.add(form), self.strings.add(lemma))
|
||||
else:
|
||||
|
@ -108,7 +105,7 @@ cdef class EditTrees:
|
|||
return self._tree_id(tree)
|
||||
|
||||
cdef uint32_t _tree_id(self, EditTreeC tree):
|
||||
# If this tree has been constructed before, return its identifier.
|
||||
# If this tree has been constructed before, return its identifier.
|
||||
cdef hash_t hash = edittree_hash(tree)
|
||||
cdef unordered_map[hash_t, uint32_t].iterator iter = self.map.find(hash)
|
||||
if iter != self.map.end():
|
||||
|
@ -289,6 +286,7 @@ def _tree2dict(tree):
|
|||
tree = tree["inner"]["subst_node"]
|
||||
return(dict(tree))
|
||||
|
||||
|
||||
def _dict2tree(tree):
|
||||
errors = validate_edit_tree(tree)
|
||||
if errors:
|
||||
|
|
|
@ -1,12 +1,8 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
cimport numpy as np
|
||||
|
||||
import numpy
|
||||
|
||||
from cpython.ref cimport Py_XDECREF, PyObject
|
||||
|
||||
from ...typedefs cimport class_t, hash_t
|
||||
from ...typedefs cimport class_t
|
||||
from .transition_system cimport Transition, TransitionSystem
|
||||
|
||||
from ...errors import Errors
|
||||
|
@ -146,7 +142,6 @@ def update_beam(TransitionSystem moves, states, golds, model, int width, beam_de
|
|||
cdef MaxViolation violn
|
||||
pbeam = BeamBatch(moves, states, golds, width=width, density=beam_density)
|
||||
gbeam = BeamBatch(moves, states, golds, width=width, density=0.0)
|
||||
cdef StateClass state
|
||||
beam_maps = []
|
||||
backprops = []
|
||||
violns = [MaxViolation() for _ in range(len(states))]
|
||||
|
|
|
@ -280,7 +280,6 @@ cdef cppclass StateC:
|
|||
|
||||
return n
|
||||
|
||||
|
||||
int n_L(int head) nogil const:
|
||||
return n_arcs(this._left_arcs, head)
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ from ...strings cimport hash_string
|
|||
from ...structs cimport TokenC
|
||||
from ...tokens.doc cimport Doc, set_children_from_heads
|
||||
from ...tokens.token cimport MISSING_DEP
|
||||
from ...typedefs cimport attr_t, hash_t
|
||||
from ...typedefs cimport attr_t
|
||||
|
||||
from ...training import split_bilu_label
|
||||
|
||||
|
@ -68,8 +68,9 @@ cdef struct GoldParseStateC:
|
|||
weight_t pop_cost
|
||||
|
||||
|
||||
cdef GoldParseStateC create_gold_state(Pool mem, const StateC* state,
|
||||
heads, labels, sent_starts) except *:
|
||||
cdef GoldParseStateC create_gold_state(
|
||||
Pool mem, const StateC* state, heads, labels, sent_starts
|
||||
) except *:
|
||||
cdef GoldParseStateC gs
|
||||
gs.length = len(heads)
|
||||
gs.stride = 1
|
||||
|
@ -82,7 +83,7 @@ cdef GoldParseStateC create_gold_state(Pool mem, const StateC* state,
|
|||
gs.n_kids_in_stack = <int32_t*>mem.alloc(gs.length, sizeof(gs.n_kids_in_stack[0]))
|
||||
|
||||
for i, is_sent_start in enumerate(sent_starts):
|
||||
if is_sent_start == True:
|
||||
if is_sent_start is True:
|
||||
gs.state_bits[i] = set_state_flag(
|
||||
gs.state_bits[i],
|
||||
IS_SENT_START,
|
||||
|
@ -210,6 +211,7 @@ cdef class ArcEagerGold:
|
|||
def update(self, StateClass stcls):
|
||||
update_gold_state(&self.c, stcls.c)
|
||||
|
||||
|
||||
def _get_aligned_sent_starts(example):
|
||||
"""Get list of SENT_START attributes aligned to the predicted tokenization.
|
||||
If the reference has not sentence starts, return a list of None values.
|
||||
|
@ -524,7 +526,6 @@ cdef class Break:
|
|||
"""
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
cdef int i
|
||||
if st.buffer_length() < 2:
|
||||
return False
|
||||
elif st.B(1) != st.B(0) + 1:
|
||||
|
@ -556,8 +557,8 @@ cdef class Break:
|
|||
cost -= 1
|
||||
if gold.heads[si] == b0:
|
||||
cost -= 1
|
||||
if not is_sent_start(gold, state.B(1)) \
|
||||
and not is_sent_start_unknown(gold, state.B(1)):
|
||||
if not is_sent_start(gold, state.B(1)) and\
|
||||
not is_sent_start_unknown(gold, state.B(1)):
|
||||
cost += 1
|
||||
return cost
|
||||
|
||||
|
@ -805,7 +806,6 @@ cdef class ArcEager(TransitionSystem):
|
|||
raise TypeError(Errors.E909.format(name="ArcEagerGold"))
|
||||
cdef ArcEagerGold gold_ = gold
|
||||
gold_state = gold_.c
|
||||
n_gold = 0
|
||||
if self.c[i].is_valid(stcls.c, self.c[i].label):
|
||||
cost = self.c[i].get_cost(stcls.c, &gold_state, self.c[i].label)
|
||||
else:
|
||||
|
@ -878,7 +878,7 @@ cdef class ArcEager(TransitionSystem):
|
|||
print("Gold")
|
||||
for token in example.y:
|
||||
print(token.i, token.text, token.dep_, token.head.text)
|
||||
aligned_heads, aligned_labels = example.get_aligned_parse()
|
||||
aligned_heads, _aligned_labels = example.get_aligned_parse()
|
||||
print("Aligned heads")
|
||||
for i, head in enumerate(aligned_heads):
|
||||
print(example.x[i], example.x[head] if head is not None else "__")
|
||||
|
|
|
@ -1,8 +1,4 @@
|
|||
import os
|
||||
import random
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
from libc.stdint cimport int32_t
|
||||
from libcpp.memory cimport shared_ptr
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
|
@ -14,7 +10,7 @@ from ...tokens.span import Span
|
|||
|
||||
from ...attrs cimport IS_SPACE
|
||||
from ...lexeme cimport Lexeme
|
||||
from ...structs cimport SpanC, TokenC
|
||||
from ...structs cimport SpanC
|
||||
from ...tokens.span cimport Span
|
||||
from ...typedefs cimport attr_t, weight_t
|
||||
|
||||
|
@ -138,11 +134,10 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
OUT: Counter()
|
||||
}
|
||||
actions[OUT][''] = 1 # Represents a token predicted to be outside of any entity
|
||||
actions[UNIT][''] = 1 # Represents a token prohibited to be in an entity
|
||||
actions[UNIT][''] = 1 # Represents a token prohibited to be in an entity
|
||||
for entity_type in kwargs.get('entity_types', []):
|
||||
for action in (BEGIN, IN, LAST, UNIT):
|
||||
actions[action][entity_type] = 1
|
||||
moves = ('M', 'B', 'I', 'L', 'U')
|
||||
for example in kwargs.get('examples', []):
|
||||
for token in example.y:
|
||||
ent_type = token.ent_type_
|
||||
|
@ -324,7 +319,6 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
raise TypeError(Errors.E909.format(name="BiluoGold"))
|
||||
cdef BiluoGold gold_ = gold
|
||||
gold_state = gold_.c
|
||||
n_gold = 0
|
||||
if self.c[i].is_valid(stcls.c, self.c[i].label):
|
||||
cost = self.c[i].get_cost(stcls.c, &gold_state, self.c[i].label)
|
||||
else:
|
||||
|
@ -487,10 +481,8 @@ cdef class In:
|
|||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
move = IN
|
||||
cdef int next_act = gold.ner[s.B(1)].move if s.B(1) >= 0 else OUT
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
cdef attr_t g_tag = gold.ner[s.B(0)].label
|
||||
cdef bint is_sunk = _entity_is_sunk(s, gold.ner)
|
||||
|
||||
if g_act == MISSING:
|
||||
|
@ -550,12 +542,10 @@ cdef class Last:
|
|||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
move = LAST
|
||||
b0 = s.B(0)
|
||||
ent_start = s.E(0)
|
||||
|
||||
cdef int g_act = gold.ner[b0].move
|
||||
cdef attr_t g_tag = gold.ner[b0].label
|
||||
|
||||
cdef int cost = 0
|
||||
|
||||
|
@ -655,7 +645,6 @@ cdef class Unit:
|
|||
return cost
|
||||
|
||||
|
||||
|
||||
cdef class Out:
|
||||
@staticmethod
|
||||
cdef bint is_valid(const StateC* st, attr_t label) nogil:
|
||||
|
@ -678,7 +667,6 @@ cdef class Out:
|
|||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
cdef attr_t g_tag = gold.ner[s.B(0)].label
|
||||
cdef weight_t cost = 0
|
||||
if g_act == MISSING:
|
||||
pass
|
||||
|
|
|
@ -125,14 +125,17 @@ def decompose(label):
|
|||
def is_decorated(label):
|
||||
return DELIMITER in label
|
||||
|
||||
|
||||
def count_decorated_labels(gold_data):
|
||||
freqs = {}
|
||||
for example in gold_data:
|
||||
proj_heads, deco_deps = projectivize(example.get_aligned("HEAD"),
|
||||
example.get_aligned("DEP"))
|
||||
# set the label to ROOT for each root dependent
|
||||
deco_deps = ['ROOT' if head == i else deco_deps[i]
|
||||
for i, head in enumerate(proj_heads)]
|
||||
deco_deps = [
|
||||
'ROOT' if head == i else deco_deps[i]
|
||||
for i, head in enumerate(proj_heads)
|
||||
]
|
||||
# count label frequencies
|
||||
for label in deco_deps:
|
||||
if is_decorated(label):
|
||||
|
@ -160,9 +163,9 @@ def projectivize(heads, labels):
|
|||
|
||||
|
||||
cdef vector[int] _heads_to_c(heads):
|
||||
cdef vector[int] c_heads;
|
||||
cdef vector[int] c_heads
|
||||
for head in heads:
|
||||
if head == None:
|
||||
if head is None:
|
||||
c_heads.push_back(-1)
|
||||
else:
|
||||
assert head < len(heads)
|
||||
|
@ -199,6 +202,7 @@ def _decorate(heads, proj_heads, labels):
|
|||
deco_labels.append(labels[tokenid])
|
||||
return deco_labels
|
||||
|
||||
|
||||
def get_smallest_nonproj_arc_slow(heads):
|
||||
cdef vector[int] c_heads = _heads_to_c(heads)
|
||||
return _get_smallest_nonproj_arc(c_heads)
|
||||
|
|
|
@ -57,7 +57,6 @@ cdef class Beam:
|
|||
cdef int advance(self, trans_func_t transition_func, hash_func_t hash_func,
|
||||
void* extra_args) except -1
|
||||
cdef int check_done(self, finish_func_t finish_func, void* extra_args) except -1
|
||||
|
||||
|
||||
cdef inline void set_cell(self, int i, int j, weight_t score, int is_valid, weight_t cost) nogil:
|
||||
self.scores[i][j] = score
|
||||
|
|
|
@ -1,11 +1,8 @@
|
|||
# cython: profile=True, experimental_cpp_class_def=True, cdivision=True, infer_types=True
|
||||
cimport cython
|
||||
from libc.math cimport exp, log
|
||||
from libc.string cimport memcpy, memset
|
||||
|
||||
import math
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
from libc.math cimport exp
|
||||
from libc.string cimport memcpy, memset
|
||||
from preshed.maps cimport PreshMap
|
||||
|
||||
|
||||
|
@ -70,7 +67,7 @@ cdef class Beam:
|
|||
self.costs[i][j] = costs[j]
|
||||
|
||||
cdef int set_table(self, weight_t** scores, int** is_valid, weight_t** costs) except -1:
|
||||
cdef int i, j
|
||||
cdef int i
|
||||
for i in range(self.width):
|
||||
memcpy(self.scores[i], scores[i], sizeof(weight_t) * self.nr_class)
|
||||
memcpy(self.is_valid[i], is_valid[i], sizeof(bint) * self.nr_class)
|
||||
|
@ -176,7 +173,6 @@ cdef class Beam:
|
|||
beam-width, and n is the number of classes.
|
||||
"""
|
||||
cdef Entry entry
|
||||
cdef weight_t score
|
||||
cdef _State* s
|
||||
cdef int i, j, move_id
|
||||
assert self.size >= 1
|
||||
|
@ -269,7 +265,7 @@ cdef class MaxViolation:
|
|||
# This can happen from non-monotonic actions
|
||||
# If we find a better gold analysis this way, be sure to keep it.
|
||||
elif pred._states[i].loss <= 0 \
|
||||
and tuple(pred.histories[i]) not in seen_golds:
|
||||
and tuple(pred.histories[i]) not in seen_golds:
|
||||
g_scores.append(pred._states[i].score)
|
||||
g_hist.append(list(pred.histories[i]))
|
||||
for i in range(gold.size):
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
# cython: infer_types=True
|
||||
import numpy
|
||||
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from ...tokens.doc cimport Doc
|
||||
|
@ -42,11 +40,11 @@ cdef class StateClass:
|
|||
cdef vector[ArcC] arcs
|
||||
self.c.get_arcs(&arcs)
|
||||
return list(arcs)
|
||||
#py_arcs = []
|
||||
#for arc in arcs:
|
||||
# if arc.head != -1 and arc.child != -1:
|
||||
# py_arcs.append((arc.head, arc.child, arc.label))
|
||||
#return arcs
|
||||
# py_arcs = []
|
||||
# for arc in arcs:
|
||||
# if arc.head != -1 and arc.child != -1:
|
||||
# py_arcs.append((arc.head, arc.child, arc.label))
|
||||
# return arcs
|
||||
|
||||
def add_arc(self, int head, int child, int label):
|
||||
self.c.add_arc(head, child, label)
|
||||
|
@ -56,10 +54,10 @@ cdef class StateClass:
|
|||
|
||||
def H(self, int child):
|
||||
return self.c.H(child)
|
||||
|
||||
|
||||
def L(self, int head, int idx):
|
||||
return self.c.L(head, idx)
|
||||
|
||||
|
||||
def R(self, int head, int idx):
|
||||
return self.c.R(head, idx)
|
||||
|
||||
|
@ -102,7 +100,7 @@ cdef class StateClass:
|
|||
|
||||
def H(self, int i):
|
||||
return self.c.H(i)
|
||||
|
||||
|
||||
def E(self, int i):
|
||||
return self.c.E(i)
|
||||
|
||||
|
@ -120,7 +118,7 @@ cdef class StateClass:
|
|||
|
||||
def H_(self, int i):
|
||||
return self.doc[self.c.H(i)]
|
||||
|
||||
|
||||
def E_(self, int i):
|
||||
return self.doc[self.c.E(i)]
|
||||
|
||||
|
@ -129,7 +127,7 @@ cdef class StateClass:
|
|||
|
||||
def R_(self, int i, int idx):
|
||||
return self.doc[self.c.R(i, idx)]
|
||||
|
||||
|
||||
def empty(self):
|
||||
return self.c.empty()
|
||||
|
||||
|
@ -138,7 +136,7 @@ cdef class StateClass:
|
|||
|
||||
def at_break(self):
|
||||
return False
|
||||
#return self.c.at_break()
|
||||
# return self.c.at_break()
|
||||
|
||||
def has_head(self, int i):
|
||||
return self.c.has_head(i)
|
||||
|
|
|
@ -20,11 +20,15 @@ cdef struct Transition:
|
|||
int (*do)(StateC* state, attr_t label) nogil
|
||||
|
||||
|
||||
ctypedef weight_t (*get_cost_func_t)(const StateC* state, const void* gold,
|
||||
attr_tlabel) nogil
|
||||
ctypedef weight_t (*move_cost_func_t)(const StateC* state, const void* gold) nogil
|
||||
ctypedef weight_t (*label_cost_func_t)(const StateC* state, const void*
|
||||
gold, attr_t label) nogil
|
||||
ctypedef weight_t (*get_cost_func_t)(
|
||||
const StateC* state, const void* gold, attr_tlabel
|
||||
) nogil
|
||||
ctypedef weight_t (*move_cost_func_t)(
|
||||
const StateC* state, const void* gold
|
||||
) nogil
|
||||
ctypedef weight_t (*label_cost_func_t)(
|
||||
const StateC* state, const void* gold, attr_t label
|
||||
) nogil
|
||||
|
||||
ctypedef int (*do_func_t)(StateC* state, attr_t label) nogil
|
||||
|
||||
|
@ -56,7 +60,7 @@ cdef class TransitionSystem:
|
|||
|
||||
|
||||
cdef void c_apply_actions(TransitionSystem moves, StateC** states, const int* actions,
|
||||
int batch_size) nogil
|
||||
int batch_size) nogil
|
||||
|
||||
cdef void c_transition_batch(TransitionSystem moves, StateC** states, const float* scores,
|
||||
int nr_class, int batch_size) nogil
|
||||
int nr_class, int batch_size) nogil
|
||||
|
|
|
@ -10,9 +10,7 @@ from collections import Counter
|
|||
import srsly
|
||||
|
||||
from ...structs cimport TokenC
|
||||
from ...tokens.doc cimport Doc
|
||||
from ...typedefs cimport attr_t, weight_t
|
||||
from . cimport _beam_utils
|
||||
from ._parser_utils cimport arg_max_if_valid
|
||||
from .stateclass cimport StateClass
|
||||
|
||||
|
@ -270,7 +268,6 @@ cdef class TransitionSystem:
|
|||
return self
|
||||
|
||||
def to_bytes(self, exclude=tuple()):
|
||||
transitions = []
|
||||
serializers = {
|
||||
'moves': lambda: srsly.json_dumps(self.labels),
|
||||
'strings': lambda: self.strings.to_bytes(),
|
||||
|
@ -294,19 +291,19 @@ cdef class TransitionSystem:
|
|||
|
||||
|
||||
cdef void c_apply_actions(TransitionSystem moves, StateC** states, const int* actions,
|
||||
int batch_size) nogil:
|
||||
cdef int i
|
||||
cdef Transition action
|
||||
cdef StateC* state
|
||||
for i in range(batch_size):
|
||||
state = states[i]
|
||||
action = moves.c[actions[i]]
|
||||
action.do(state, action.label)
|
||||
state.history.push_back(action.clas)
|
||||
int batch_size) nogil:
|
||||
cdef int i
|
||||
cdef Transition action
|
||||
cdef StateC* state
|
||||
for i in range(batch_size):
|
||||
state = states[i]
|
||||
action = moves.c[actions[i]]
|
||||
action.do(state, action.label)
|
||||
state.history.push_back(action.clas)
|
||||
|
||||
|
||||
cdef void c_transition_batch(TransitionSystem moves, StateC** states, const float* scores,
|
||||
int nr_class, int batch_size) nogil:
|
||||
int nr_class, int batch_size) nogil:
|
||||
is_valid = <int*>calloc(moves.n_moves, sizeof(int))
|
||||
cdef int i, guess
|
||||
cdef Transition action
|
||||
|
@ -322,4 +319,3 @@ cdef void c_transition_batch(TransitionSystem moves, StateC** states, const floa
|
|||
action.do(states[i], action.label)
|
||||
states[i].history.push_back(guess)
|
||||
free(is_valid)
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from collections import defaultdict
|
||||
from typing import Callable, Iterable, Optional
|
||||
from typing import Callable, Optional
|
||||
|
||||
from thinc.api import Config, Model
|
||||
|
||||
|
|
|
@ -1,11 +1,9 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from itertools import islice
|
||||
from typing import Callable, Dict, Iterable, List, Optional, Union
|
||||
from typing import Callable, Dict, Iterable, Optional, Union
|
||||
|
||||
import srsly
|
||||
from thinc.api import Config, Model
|
||||
from thinc.legacy import LegacySequenceCategoricalCrossentropy
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
|
||||
from ..morphology cimport Morphology
|
||||
from ..tokens.doc cimport Doc
|
||||
|
@ -16,10 +14,8 @@ from ..errors import Errors
|
|||
from ..language import Language
|
||||
from ..parts_of_speech import IDS as POS_IDS
|
||||
from ..scorer import Scorer
|
||||
from ..symbols import POS
|
||||
from ..training import validate_examples, validate_get_examples
|
||||
from ..util import registry
|
||||
from .pipe import deserialize_config
|
||||
from .tagger import ActivationsT, Tagger
|
||||
|
||||
# See #9050
|
||||
|
@ -86,8 +82,11 @@ def morphologizer_score(examples, **kwargs):
|
|||
results = {}
|
||||
results.update(Scorer.score_token_attr(examples, "pos", **kwargs))
|
||||
results.update(Scorer.score_token_attr(examples, "morph", getter=morph_key_getter, **kwargs))
|
||||
results.update(Scorer.score_token_attr_per_feat(examples,
|
||||
"morph", getter=morph_key_getter, **kwargs))
|
||||
results.update(
|
||||
Scorer.score_token_attr_per_feat(
|
||||
examples, "morph", getter=morph_key_getter, **kwargs
|
||||
)
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
|
@ -249,7 +248,6 @@ class Morphologizer(Tagger):
|
|||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
cdef Vocab vocab = self.vocab
|
||||
cdef bint overwrite = self.cfg["overwrite"]
|
||||
cdef bint extend = self.cfg["extend"]
|
||||
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from collections import defaultdict
|
||||
from typing import Callable, Iterable, Optional
|
||||
from typing import Callable, Optional
|
||||
|
||||
from thinc.api import Config, Model
|
||||
|
||||
from ..language import Language
|
||||
from ..scorer import PRFScore, get_ner_prf
|
||||
from ..training import remove_bilu_prefix, validate_examples
|
||||
from ..scorer import get_ner_prf
|
||||
from ..training import remove_bilu_prefix
|
||||
from ..util import registry
|
||||
from ._parser_internals.ner import BiluoPushDown
|
||||
from ._parser_internals.transition_system import TransitionSystem
|
||||
|
|
|
@ -1,12 +1,11 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
import warnings
|
||||
from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple, Union
|
||||
from typing import Callable, Dict, Iterable, Iterator, Tuple, Union
|
||||
|
||||
import srsly
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
from ..errors import Errors, Warnings
|
||||
from ..errors import Errors
|
||||
from ..language import Language
|
||||
from ..training import Example
|
||||
from ..util import raise_error
|
||||
|
@ -33,7 +32,7 @@ cdef class Pipe:
|
|||
"""
|
||||
raise NotImplementedError(Errors.E931.format(parent="Pipe", method="__call__", name=self.name))
|
||||
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int=128) -> Iterator[Doc]:
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
@ -52,7 +51,7 @@ cdef class Pipe:
|
|||
except Exception as e:
|
||||
error_handler(self.name, self, [doc], e)
|
||||
|
||||
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language=None):
|
||||
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language = None):
|
||||
"""Initialize the pipe. For non-trainable components, this method
|
||||
is optional. For trainable components, which should inherit
|
||||
from the subclass TrainablePipe, the provided data examples
|
||||
|
|
|
@ -7,7 +7,6 @@ from ..tokens.doc cimport Doc
|
|||
|
||||
from .. import util
|
||||
from ..language import Language
|
||||
from ..scorer import Scorer
|
||||
from .pipe import Pipe
|
||||
from .senter import senter_score
|
||||
|
||||
|
@ -34,17 +33,19 @@ class Sentencizer(Pipe):
|
|||
DOCS: https://spacy.io/api/sentencizer
|
||||
"""
|
||||
|
||||
default_punct_chars = ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹',
|
||||
'।', '॥', '၊', '။', '።', '፧', '፨', '᙮', '᜵', '᜶', '᠃', '᠉', '᥄',
|
||||
'᥅', '᪨', '᪩', '᪪', '᪫', '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿',
|
||||
'‼', '‽', '⁇', '⁈', '⁉', '⸮', '⸼', '꓿', '꘎', '꘏', '꛳', '꛷', '꡶',
|
||||
'꡷', '꣎', '꣏', '꤯', '꧈', '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒',
|
||||
'﹖', '﹗', '!', '.', '?', '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀',
|
||||
'𑃁', '𑅁', '𑅂', '𑅃', '𑇅', '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼',
|
||||
'𑊩', '𑑋', '𑑌', '𑗂', '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐',
|
||||
'𑗑', '𑗒', '𑗓', '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂',
|
||||
'𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈',
|
||||
'。', '。']
|
||||
default_punct_chars = [
|
||||
'!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹',
|
||||
'।', '॥', '၊', '။', '።', '፧', '፨', '᙮', '᜵', '᜶', '᠃', '᠉', '᥄',
|
||||
'᥅', '᪨', '᪩', '᪪', '᪫', '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿',
|
||||
'‼', '‽', '⁇', '⁈', '⁉', '⸮', '⸼', '꓿', '꘎', '꘏', '꛳', '꛷', '꡶',
|
||||
'꡷', '꣎', '꣏', '꤯', '꧈', '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒',
|
||||
'﹖', '﹗', '!', '.', '?', '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀',
|
||||
'𑃁', '𑅁', '𑅂', '𑅃', '𑇅', '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼',
|
||||
'𑊩', '𑑋', '𑑌', '𑗂', '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐',
|
||||
'𑗑', '𑗒', '𑗓', '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂',
|
||||
'𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈',
|
||||
'。', '。'
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -127,7 +128,6 @@ class Sentencizer(Pipe):
|
|||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
cdef int idx = 0
|
||||
for i, doc in enumerate(docs):
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
for j, tag_id in enumerate(doc_tag_ids):
|
||||
|
@ -168,7 +168,6 @@ class Sentencizer(Pipe):
|
|||
path = path.with_suffix(".json")
|
||||
srsly.write_json(path, {"punct_chars": list(self.punct_chars), "overwrite": self.overwrite})
|
||||
|
||||
|
||||
def from_disk(self, path, *, exclude=tuple()):
|
||||
"""Load the sentencizer from disk.
|
||||
|
||||
|
|
|
@ -1,11 +1,9 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from itertools import islice
|
||||
from typing import Callable, Dict, Iterable, List, Optional, Union
|
||||
from typing import Callable, Iterable, Optional
|
||||
|
||||
import srsly
|
||||
from thinc.api import Config, Model
|
||||
from thinc.legacy import LegacySequenceCategoricalCrossentropy
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
|
|
|
@ -48,14 +48,14 @@ DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model
|
|||
"threshold": 0.5,
|
||||
"model": DEFAULT_SPAN_FINDER_MODEL,
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"max_length": None,
|
||||
"max_length": 25,
|
||||
"min_length": None,
|
||||
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
f"span_finder_{DEFAULT_SPANS_KEY}_f": 1.0,
|
||||
f"span_finder_{DEFAULT_SPANS_KEY}_p": 0.0,
|
||||
f"span_finder_{DEFAULT_SPANS_KEY}_r": 0.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
||||
},
|
||||
)
|
||||
def make_span_finder(
|
||||
|
@ -104,7 +104,7 @@ def make_span_finder_scorer():
|
|||
|
||||
def span_finder_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
||||
kwargs = dict(kwargs)
|
||||
attr_prefix = "span_finder_"
|
||||
attr_prefix = "spans_"
|
||||
key = kwargs["spans_key"]
|
||||
kwargs.setdefault("attr", f"{attr_prefix}{key}")
|
||||
kwargs.setdefault(
|
||||
|
|
|
@ -1,27 +1,20 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
import warnings
|
||||
from itertools import islice
|
||||
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy
|
||||
import srsly
|
||||
from thinc.api import Config, Model, set_dropout_rate
|
||||
from thinc.legacy import LegacySequenceCategoricalCrossentropy
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
|
||||
from ..morphology cimport Morphology
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..vocab cimport Vocab
|
||||
|
||||
from .. import util
|
||||
from ..attrs import ID, POS
|
||||
from ..errors import Errors, Warnings
|
||||
from ..errors import Errors
|
||||
from ..language import Language
|
||||
from ..parts_of_speech import X
|
||||
from ..scorer import Scorer
|
||||
from ..training import validate_examples, validate_get_examples
|
||||
from ..util import registry
|
||||
from .pipe import deserialize_config
|
||||
from .trainable_pipe import TrainablePipe
|
||||
|
||||
ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]]
|
||||
|
@ -188,7 +181,6 @@ class Tagger(TrainablePipe):
|
|||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
cdef Vocab vocab = self.vocab
|
||||
cdef bint overwrite = self.cfg["overwrite"]
|
||||
labels = self.labels
|
||||
for i, doc in enumerate(docs):
|
||||
|
@ -281,7 +273,7 @@ class Tagger(TrainablePipe):
|
|||
student_scores: Scores representing the student model's predictions.
|
||||
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
|
||||
DOCS: https://spacy.io/api/tagger#get_teacher_student_loss
|
||||
"""
|
||||
loss_func = LegacySequenceCategoricalCrossentropy(normalize=False)
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
import warnings
|
||||
from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple
|
||||
|
||||
import srsly
|
||||
|
@ -8,7 +7,7 @@ from thinc.api import Model, Optimizer, set_dropout_rate
|
|||
from ..tokens.doc cimport Doc
|
||||
|
||||
from .. import util
|
||||
from ..errors import Errors, Warnings
|
||||
from ..errors import Errors
|
||||
from ..language import Language
|
||||
from ..training import Example, validate_distillation_examples, validate_examples
|
||||
from ..vocab import Vocab
|
||||
|
@ -56,14 +55,14 @@ cdef class TrainablePipe(Pipe):
|
|||
except Exception as e:
|
||||
error_handler(self.name, self, [doc], e)
|
||||
|
||||
|
||||
def distill(self,
|
||||
teacher_pipe: Optional["TrainablePipe"],
|
||||
examples: Iterable["Example"],
|
||||
*,
|
||||
drop: float=0.0,
|
||||
sgd: Optional[Optimizer]=None,
|
||||
losses: Optional[Dict[str, float]]=None) -> Dict[str, float]:
|
||||
teacher_pipe: Optional["TrainablePipe"],
|
||||
examples: Iterable["Example"],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None
|
||||
) -> Dict[str, float]:
|
||||
"""Train a pipe (the student) on the predictions of another pipe
|
||||
(the teacher). The student is typically trained on the probability
|
||||
distribution of the teacher, but details may differ per pipe.
|
||||
|
@ -79,7 +78,7 @@ cdef class TrainablePipe(Pipe):
|
|||
losses (Optional[Dict[str, float]]): Optional record of loss during
|
||||
distillation.
|
||||
RETURNS: The updated losses dictionary.
|
||||
|
||||
|
||||
DOCS: https://spacy.io/api/pipe#distill
|
||||
"""
|
||||
# By default we require a teacher pipe, but there are downstream
|
||||
|
@ -103,7 +102,7 @@ cdef class TrainablePipe(Pipe):
|
|||
losses[self.name] += loss
|
||||
return losses
|
||||
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int=128) -> Iterator[Doc]:
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
@ -150,9 +149,9 @@ cdef class TrainablePipe(Pipe):
|
|||
def update(self,
|
||||
examples: Iterable["Example"],
|
||||
*,
|
||||
drop: float=0.0,
|
||||
sgd: Optimizer=None,
|
||||
losses: Optional[Dict[str, float]]=None) -> Dict[str, float]:
|
||||
drop: float = 0.0,
|
||||
sgd: Optimizer = None,
|
||||
losses: Optional[Dict[str, float]] = None) -> Dict[str, float]:
|
||||
"""Learn from a batch of documents and gold-standard information,
|
||||
updating the pipe's model. Delegates to predict and get_loss.
|
||||
|
||||
|
@ -186,8 +185,8 @@ cdef class TrainablePipe(Pipe):
|
|||
def rehearse(self,
|
||||
examples: Iterable[Example],
|
||||
*,
|
||||
sgd: Optimizer=None,
|
||||
losses: Dict[str, float]=None,
|
||||
sgd: Optimizer = None,
|
||||
losses: Dict[str, float] = None,
|
||||
**config) -> Dict[str, float]:
|
||||
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
|
||||
teach the current model to make predictions similar to an initial model,
|
||||
|
@ -224,7 +223,7 @@ cdef class TrainablePipe(Pipe):
|
|||
student_scores: Scores representing the student model's predictions.
|
||||
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
|
||||
DOCS: https://spacy.io/api/pipe#get_teacher_student_loss
|
||||
"""
|
||||
raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="get_teacher_student_loss", name=self.name))
|
||||
|
@ -238,7 +237,7 @@ cdef class TrainablePipe(Pipe):
|
|||
"""
|
||||
return util.create_default_optimizer()
|
||||
|
||||
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language=None):
|
||||
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language = None):
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
This method needs to be implemented by each TrainablePipe component,
|
||||
ensuring the internal model (if available) is initialized properly
|
||||
|
|
|
@ -6,15 +6,9 @@ from typing import Dict, Iterable, List, Optional, Tuple
|
|||
cimport numpy as np
|
||||
from cymem.cymem cimport Pool
|
||||
|
||||
from itertools import islice
|
||||
|
||||
from libc.stdlib cimport calloc, free
|
||||
from libc.string cimport memcpy, memset
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
import contextlib
|
||||
import random
|
||||
import warnings
|
||||
from itertools import islice
|
||||
|
||||
import numpy
|
||||
import numpy.random
|
||||
|
@ -23,44 +17,36 @@ from thinc.api import (
|
|||
CupyOps,
|
||||
NumpyOps,
|
||||
Optimizer,
|
||||
chain,
|
||||
get_array_module,
|
||||
get_ops,
|
||||
set_dropout_rate,
|
||||
softmax_activation,
|
||||
use_ops,
|
||||
)
|
||||
from thinc.legacy import LegacySequenceCategoricalCrossentropy
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
|
||||
from ..ml.tb_framework import TransitionModelInputs
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
from ._parser_internals cimport _beam_utils
|
||||
from ._parser_internals.search cimport Beam
|
||||
from ._parser_internals.stateclass cimport StateC, StateClass
|
||||
from .trainable_pipe cimport TrainablePipe
|
||||
|
||||
from ._parser_internals import _beam_utils
|
||||
|
||||
from ..typedefs cimport weight_t
|
||||
from ..vocab cimport Vocab
|
||||
from ._parser_internals cimport _beam_utils
|
||||
from ._parser_internals.stateclass cimport StateC, StateClass
|
||||
from ._parser_internals.transition_system cimport Transition, TransitionSystem
|
||||
from .trainable_pipe cimport TrainablePipe
|
||||
|
||||
from .. import util
|
||||
from ..errors import Errors, Warnings
|
||||
from ..errors import Errors
|
||||
from ..training import (
|
||||
validate_distillation_examples,
|
||||
validate_examples,
|
||||
validate_get_examples,
|
||||
)
|
||||
from ._parser_internals import _beam_utils
|
||||
|
||||
|
||||
# TODO: Remove when we switch to Cython 3.
|
||||
cdef extern from "<algorithm>" namespace "std" nogil:
|
||||
bint equal[InputIt1, InputIt2](InputIt1 first1, InputIt1 last1, InputIt2 first2) except +
|
||||
|
||||
|
||||
NUMPY_OPS = NumpyOps()
|
||||
|
||||
|
||||
|
@ -236,12 +222,13 @@ class Parser(TrainablePipe):
|
|||
raise NotImplementedError
|
||||
|
||||
def distill(self,
|
||||
teacher_pipe: Optional[TrainablePipe],
|
||||
examples: Iterable["Example"],
|
||||
*,
|
||||
drop: float=0.0,
|
||||
sgd: Optional[Optimizer]=None,
|
||||
losses: Optional[Dict[str, float]]=None):
|
||||
teacher_pipe: Optional[TrainablePipe],
|
||||
examples: Iterable["Example"],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None
|
||||
):
|
||||
"""Train a pipe (the student) on the predictions of another pipe
|
||||
(the teacher). The student is trained on the transition probabilities
|
||||
of the teacher.
|
||||
|
@ -257,7 +244,7 @@ class Parser(TrainablePipe):
|
|||
losses (Optional[Dict[str, float]]): Optional record of loss during
|
||||
distillation.
|
||||
RETURNS: The updated losses dictionary.
|
||||
|
||||
|
||||
DOCS: https://spacy.io/api/dependencyparser#distill
|
||||
"""
|
||||
if teacher_pipe is None:
|
||||
|
@ -291,11 +278,13 @@ class Parser(TrainablePipe):
|
|||
# teacher's distributions.
|
||||
|
||||
student_inputs = TransitionModelInputs(docs=student_docs,
|
||||
states=[state.copy() for state in states], moves=self.moves, max_moves=max_moves)
|
||||
states=[state.copy() for state in states],
|
||||
moves=self.moves,
|
||||
max_moves=max_moves)
|
||||
(student_states, student_scores), backprop_scores = self.model.begin_update(student_inputs)
|
||||
actions = _states_diff_to_actions(states, student_states)
|
||||
teacher_inputs = TransitionModelInputs(docs=[eg.reference for eg in examples],
|
||||
states=states, moves=teacher_pipe.moves, actions=actions)
|
||||
states=states, moves=teacher_pipe.moves, actions=actions)
|
||||
(_, teacher_scores) = teacher_pipe.model.predict(teacher_inputs)
|
||||
|
||||
loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores)
|
||||
|
@ -308,10 +297,9 @@ class Parser(TrainablePipe):
|
|||
|
||||
return losses
|
||||
|
||||
|
||||
def get_teacher_student_loss(
|
||||
self, teacher_scores: List[Floats2d], student_scores: List[Floats2d],
|
||||
normalize: bool=False,
|
||||
self, teacher_scores: List[Floats2d], student_scores: List[Floats2d],
|
||||
normalize: bool = False,
|
||||
) -> Tuple[float, List[Floats2d]]:
|
||||
"""Calculate the loss and its gradient for a batch of student
|
||||
scores, relative to teacher scores.
|
||||
|
@ -320,7 +308,7 @@ class Parser(TrainablePipe):
|
|||
student_scores: Scores representing the student model's predictions.
|
||||
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
|
||||
DOCS: https://spacy.io/api/dependencyparser#get_teacher_student_loss
|
||||
"""
|
||||
|
||||
|
@ -334,9 +322,9 @@ class Parser(TrainablePipe):
|
|||
# ourselves.
|
||||
|
||||
teacher_scores = self.model.ops.softmax(self.model.ops.xp.vstack(teacher_scores),
|
||||
axis=-1, inplace=True)
|
||||
axis=-1, inplace=True)
|
||||
student_scores = self.model.ops.softmax(self.model.ops.xp.vstack(student_scores),
|
||||
axis=-1, inplace=True)
|
||||
axis=-1, inplace=True)
|
||||
|
||||
assert teacher_scores.shape == student_scores.shape
|
||||
|
||||
|
@ -384,7 +372,6 @@ class Parser(TrainablePipe):
|
|||
except Exception as e:
|
||||
error_handler(self.name, self, batch_in_order, e)
|
||||
|
||||
|
||||
def predict(self, docs):
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
@ -414,7 +401,6 @@ class Parser(TrainablePipe):
|
|||
|
||||
def set_annotations(self, docs, states_or_beams):
|
||||
cdef StateClass state
|
||||
cdef Beam beam
|
||||
cdef Doc doc
|
||||
states = _beam_utils.collect_states(states_or_beams, docs)
|
||||
for i, (state, doc) in enumerate(zip(states, docs)):
|
||||
|
@ -423,7 +409,6 @@ class Parser(TrainablePipe):
|
|||
hook(doc)
|
||||
|
||||
def update(self, examples, *, drop=0., sgd=None, losses=None):
|
||||
cdef StateClass state
|
||||
if losses is None:
|
||||
losses = {}
|
||||
losses.setdefault(self.name, 0.)
|
||||
|
@ -453,13 +438,15 @@ class Parser(TrainablePipe):
|
|||
else:
|
||||
init_states, gold_states, _ = self.moves.init_gold_batch(examples)
|
||||
|
||||
inputs = TransitionModelInputs(docs=docs, moves=self.moves,
|
||||
max_moves=max_moves, states=[state.copy() for state in init_states])
|
||||
inputs = TransitionModelInputs(docs=docs,
|
||||
moves=self.moves,
|
||||
max_moves=max_moves,
|
||||
states=[state.copy() for state in init_states])
|
||||
(pred_states, scores), backprop_scores = self.model.begin_update(inputs)
|
||||
if sum(s.shape[0] for s in scores) == 0:
|
||||
return losses
|
||||
d_scores = self.get_loss((gold_states, init_states, pred_states, scores),
|
||||
examples, max_moves)
|
||||
examples, max_moves)
|
||||
backprop_scores((pred_states, d_scores))
|
||||
if sgd not in (None, False):
|
||||
self.finish_update(sgd)
|
||||
|
@ -500,9 +487,7 @@ class Parser(TrainablePipe):
|
|||
cdef TransitionSystem moves = self.moves
|
||||
cdef StateClass state
|
||||
cdef int clas
|
||||
cdef int nF = self.model.get_dim("nF")
|
||||
cdef int nO = moves.n_moves
|
||||
cdef int nS = sum([len(history) for history in histories])
|
||||
cdef Pool mem = Pool()
|
||||
cdef np.ndarray costs_i
|
||||
is_valid = <int*>mem.alloc(nO, sizeof(int))
|
||||
|
@ -569,8 +554,8 @@ class Parser(TrainablePipe):
|
|||
|
||||
return losses
|
||||
|
||||
def update_beam(self, examples, *, beam_width,
|
||||
drop=0., sgd=None, losses=None, beam_density=0.0):
|
||||
def update_beam(self, examples, *, beam_width, drop=0.,
|
||||
sgd=None, losses=None, beam_density=0.0):
|
||||
raise NotImplementedError
|
||||
|
||||
def set_output(self, nO):
|
||||
|
@ -695,9 +680,10 @@ class Parser(TrainablePipe):
|
|||
return states
|
||||
|
||||
# Parse the states that are too long with the teacher's parsing model.
|
||||
teacher_inputs = TransitionModelInputs(docs=docs, moves=moves,
|
||||
states=[state.copy() for state in to_cut])
|
||||
(teacher_states, _ ) = teacher_pipe.model.predict(teacher_inputs)
|
||||
teacher_inputs = TransitionModelInputs(docs=docs,
|
||||
moves=moves,
|
||||
states=[state.copy() for state in to_cut])
|
||||
(teacher_states, _) = teacher_pipe.model.predict(teacher_inputs)
|
||||
|
||||
# Step through the teacher's actions and store every state after
|
||||
# each multiple of max_length.
|
||||
|
@ -795,6 +781,7 @@ def _states_to_actions(states: List[StateClass]) -> List[Ints1d]:
|
|||
|
||||
return actions
|
||||
|
||||
|
||||
def _states_diff_to_actions(
|
||||
before_states: List[StateClass],
|
||||
after_states: List[StateClass]
|
||||
|
@ -815,8 +802,9 @@ def _states_diff_to_actions(
|
|||
c_state_before = before_state.c
|
||||
c_state_after = after_state.c
|
||||
|
||||
assert equal(c_state_before.history.begin(), c_state_before.history.end(),
|
||||
c_state_after.history.begin())
|
||||
assert equal(c_state_before.history.begin(),
|
||||
c_state_before.history.end(),
|
||||
c_state_after.history.begin())
|
||||
|
||||
actions = []
|
||||
while True:
|
||||
|
|
|
@ -1,10 +1,8 @@
|
|||
# cython: infer_types=True
|
||||
from typing import Any, Callable, Iterable, Iterator, List, Optional, Tuple, Union
|
||||
from typing import Iterable, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
cimport cython
|
||||
from libc.stdint cimport uint32_t
|
||||
from libc.string cimport memcpy
|
||||
from libcpp.set cimport set
|
||||
from murmurhash.mrmr cimport hash64
|
||||
|
||||
import srsly
|
||||
|
@ -244,7 +242,6 @@ cdef class StringStore:
|
|||
cdef int n_length_bytes
|
||||
cdef int i
|
||||
cdef Utf8Str* string = <Utf8Str*>self.mem.alloc(1, sizeof(Utf8Str))
|
||||
cdef uint32_t ulength = length
|
||||
if length < sizeof(string.s):
|
||||
string.s[0] = <unsigned char>length
|
||||
memcpy(&string.s[1], chars, length)
|
||||
|
@ -302,7 +299,7 @@ cpdef hash_t get_string_id(object string_or_hash) except -1:
|
|||
|
||||
try:
|
||||
return hash_string(string_or_hash)
|
||||
except:
|
||||
except: # no-cython-lint
|
||||
if _try_coerce_to_hash(string_or_hash, &str_hash):
|
||||
# Coerce the integral key to the expected primitive hash type.
|
||||
# This ensures that custom/overloaded "primitive" data types
|
||||
|
@ -319,6 +316,5 @@ cdef inline bint _try_coerce_to_hash(object key, hash_t* out_hash):
|
|||
try:
|
||||
out_hash[0] = key
|
||||
return True
|
||||
except:
|
||||
except: # no-cython-lint
|
||||
return False
|
||||
|
||||
|
|
|
@ -52,7 +52,7 @@ cdef struct TokenC:
|
|||
|
||||
int sent_start
|
||||
int ent_iob
|
||||
attr_t ent_type # TODO: Is there a better way to do this? Multiple sources of truth..
|
||||
attr_t ent_type # TODO: Is there a better way to do this? Multiple sources of truth..
|
||||
attr_t ent_kb_id
|
||||
hash_t ent_id
|
||||
|
||||
|
|
|
@ -93,7 +93,7 @@ cdef enum symbol_t:
|
|||
ADV
|
||||
AUX
|
||||
CONJ
|
||||
CCONJ # U20
|
||||
CCONJ # U20
|
||||
DET
|
||||
INTJ
|
||||
NOUN
|
||||
|
@ -419,7 +419,7 @@ cdef enum symbol_t:
|
|||
ccomp
|
||||
complm
|
||||
conj
|
||||
cop # U20
|
||||
cop # U20
|
||||
csubj
|
||||
csubjpass
|
||||
dep
|
||||
|
@ -442,8 +442,8 @@ cdef enum symbol_t:
|
|||
num
|
||||
number
|
||||
oprd
|
||||
obj # U20
|
||||
obl # U20
|
||||
obj # U20
|
||||
obl # U20
|
||||
parataxis
|
||||
partmod
|
||||
pcomp
|
||||
|
|
|
@ -96,7 +96,7 @@ IDS = {
|
|||
"ADV": ADV,
|
||||
"AUX": AUX,
|
||||
"CONJ": CONJ,
|
||||
"CCONJ": CCONJ, # U20
|
||||
"CCONJ": CCONJ, # U20
|
||||
"DET": DET,
|
||||
"INTJ": INTJ,
|
||||
"NOUN": NOUN,
|
||||
|
@ -421,7 +421,7 @@ IDS = {
|
|||
"ccomp": ccomp,
|
||||
"complm": complm,
|
||||
"conj": conj,
|
||||
"cop": cop, # U20
|
||||
"cop": cop, # U20
|
||||
"csubj": csubj,
|
||||
"csubjpass": csubjpass,
|
||||
"dep": dep,
|
||||
|
@ -444,8 +444,8 @@ IDS = {
|
|||
"num": num,
|
||||
"number": number,
|
||||
"oprd": oprd,
|
||||
"obj": obj, # U20
|
||||
"obl": obl, # U20
|
||||
"obj": obj, # U20
|
||||
"obl": obl, # U20
|
||||
"parataxis": parataxis,
|
||||
"partmod": partmod,
|
||||
"pcomp": pcomp,
|
||||
|
|
|
@ -52,7 +52,8 @@ TEST_PATTERNS = [
|
|||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"pattern", [[{"XX": "y"}, {"LENGTH": "2"}, {"TEXT": {"IN": 5}}]]
|
||||
"pattern",
|
||||
[[{"XX": "y"}], [{"LENGTH": "2"}], [{"TEXT": {"IN": 5}}], [{"text": {"in": 6}}]],
|
||||
)
|
||||
def test_matcher_pattern_validation(en_vocab, pattern):
|
||||
matcher = Matcher(en_vocab, validate=True)
|
||||
|
|
|
@ -11,6 +11,7 @@ def test_build_dependencies():
|
|||
"flake8",
|
||||
"hypothesis",
|
||||
"pre-commit",
|
||||
"cython-lint",
|
||||
"black",
|
||||
"isort",
|
||||
"mypy",
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
from cymem.cymem cimport Pool
|
||||
|
||||
from spacy.pipeline._parser_internals.search cimport Beam, MaxViolation
|
||||
from spacy.typedefs cimport class_t, weight_t
|
||||
from spacy.typedefs cimport class_t
|
||||
|
||||
import pytest
|
||||
|
||||
|
@ -42,32 +42,35 @@ cdef int destroy(Pool mem, void* state, void* extra_args) except -1:
|
|||
state = <TestState*>state
|
||||
mem.free(state)
|
||||
|
||||
|
||||
@cytest
|
||||
@pytest.mark.parametrize("nr_class,beam_width",
|
||||
[
|
||||
(2, 3),
|
||||
(3, 6),
|
||||
(4, 20),
|
||||
]
|
||||
)
|
||||
[
|
||||
(2, 3),
|
||||
(3, 6),
|
||||
(4, 20),
|
||||
]
|
||||
)
|
||||
def test_init(nr_class, beam_width):
|
||||
b = Beam(nr_class, beam_width)
|
||||
assert b.size == 1
|
||||
assert b.width == beam_width
|
||||
assert b.nr_class == nr_class
|
||||
|
||||
|
||||
@cytest
|
||||
def test_init_violn():
|
||||
MaxViolation()
|
||||
|
||||
|
||||
@cytest
|
||||
@pytest.mark.parametrize("nr_class,beam_width,length",
|
||||
[
|
||||
(2, 3, 3),
|
||||
(3, 6, 15),
|
||||
(4, 20, 32),
|
||||
]
|
||||
)
|
||||
[
|
||||
(2, 3, 3),
|
||||
(3, 6, 15),
|
||||
(4, 20, 32),
|
||||
]
|
||||
)
|
||||
def test_initialize(nr_class, beam_width, length):
|
||||
b = Beam(nr_class, beam_width)
|
||||
b.initialize(initialize, destroy, length, NULL)
|
||||
|
@ -79,11 +82,11 @@ def test_initialize(nr_class, beam_width, length):
|
|||
|
||||
@cytest
|
||||
@pytest.mark.parametrize("nr_class,beam_width,length,extra",
|
||||
[
|
||||
(2, 3, 4, None),
|
||||
(3, 6, 15, u"test beam 1"),
|
||||
]
|
||||
)
|
||||
[
|
||||
(2, 3, 4, None),
|
||||
(3, 6, 15, u"test beam 1"),
|
||||
]
|
||||
)
|
||||
def test_initialize_extra(nr_class, beam_width, length, extra):
|
||||
b = Beam(nr_class, beam_width)
|
||||
if extra is None:
|
||||
|
@ -97,11 +100,11 @@ def test_initialize_extra(nr_class, beam_width, length, extra):
|
|||
|
||||
@cytest
|
||||
@pytest.mark.parametrize("nr_class,beam_width,length",
|
||||
[
|
||||
(3, 6, 15),
|
||||
(4, 20, 32),
|
||||
]
|
||||
)
|
||||
[
|
||||
(3, 6, 15),
|
||||
(4, 20, 32),
|
||||
]
|
||||
)
|
||||
def test_transition(nr_class, beam_width, length):
|
||||
b = Beam(nr_class, beam_width)
|
||||
b.initialize(initialize, destroy, length, NULL)
|
||||
|
|
|
@ -230,10 +230,10 @@ def test_overfitting_IO():
|
|||
|
||||
# Test scoring
|
||||
scores = nlp.evaluate(train_examples)
|
||||
assert f"span_finder_{SPANS_KEY}_f" in scores
|
||||
assert f"spans_{SPANS_KEY}_f" in scores
|
||||
# It's not perfect 1.0 F1 because it's designed to overgenerate for now.
|
||||
assert scores[f"span_finder_{SPANS_KEY}_p"] == 0.75
|
||||
assert scores[f"span_finder_{SPANS_KEY}_r"] == 1.0
|
||||
assert scores[f"spans_{SPANS_KEY}_p"] == 0.75
|
||||
assert scores[f"spans_{SPANS_KEY}_r"] == 1.0
|
||||
|
||||
# also test that the spancat works for just a single entity in a sentence
|
||||
doc = nlp("London")
|
||||
|
|
|
@ -192,8 +192,7 @@ def test_tok2vec_listener(with_vectors):
|
|||
for tag in t[1]["tags"]:
|
||||
tagger.add_label(tag)
|
||||
|
||||
# Check that the Tok2Vec component finds it listeners
|
||||
assert tok2vec.listeners == []
|
||||
# Check that the Tok2Vec component finds its listeners
|
||||
optimizer = nlp.initialize(lambda: train_examples)
|
||||
assert tok2vec.listeners == [tagger_tok2vec]
|
||||
|
||||
|
@ -221,7 +220,6 @@ def test_tok2vec_listener_callback():
|
|||
assert nlp.pipe_names == ["tok2vec", "tagger"]
|
||||
tagger = nlp.get_pipe("tagger")
|
||||
tok2vec = nlp.get_pipe("tok2vec")
|
||||
nlp._link_components()
|
||||
docs = [nlp.make_doc("A random sentence")]
|
||||
tok2vec.model.initialize(X=docs)
|
||||
gold_array = [[1.0 for tag in ["V", "Z"]] for word in docs]
|
||||
|
@ -430,29 +428,46 @@ def test_replace_listeners_from_config():
|
|||
nlp.to_disk(dir_path)
|
||||
base_model = str(dir_path)
|
||||
new_config = {
|
||||
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
|
||||
"nlp": {
|
||||
"lang": "en",
|
||||
"pipeline": ["tok2vec", "tagger2", "ner3", "tagger4"],
|
||||
},
|
||||
"components": {
|
||||
"tok2vec": {"source": base_model},
|
||||
"tagger": {
|
||||
"tagger2": {
|
||||
"source": base_model,
|
||||
"component": "tagger",
|
||||
"replace_listeners": ["model.tok2vec"],
|
||||
},
|
||||
"ner": {"source": base_model},
|
||||
"ner3": {
|
||||
"source": base_model,
|
||||
"component": "ner",
|
||||
},
|
||||
"tagger4": {
|
||||
"source": base_model,
|
||||
"component": "tagger",
|
||||
},
|
||||
},
|
||||
}
|
||||
new_nlp = util.load_model_from_config(new_config, auto_fill=True)
|
||||
new_nlp.initialize(lambda: examples)
|
||||
tok2vec = new_nlp.get_pipe("tok2vec")
|
||||
tagger = new_nlp.get_pipe("tagger")
|
||||
ner = new_nlp.get_pipe("ner")
|
||||
assert tok2vec.listening_components == ["ner"]
|
||||
tagger = new_nlp.get_pipe("tagger2")
|
||||
ner = new_nlp.get_pipe("ner3")
|
||||
assert "ner" not in new_nlp.pipe_names
|
||||
assert "tagger" not in new_nlp.pipe_names
|
||||
assert tok2vec.listening_components == ["ner3", "tagger4"]
|
||||
assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk())
|
||||
assert not any(isinstance(node, Tok2VecListener) for node in tagger.model.walk())
|
||||
t2v_cfg = new_nlp.config["components"]["tok2vec"]["model"]
|
||||
assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2"
|
||||
assert new_nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg
|
||||
assert new_nlp.config["components"]["tagger2"]["model"]["tok2vec"] == t2v_cfg
|
||||
assert (
|
||||
new_nlp.config["components"]["ner"]["model"]["tok2vec"]["@architectures"]
|
||||
new_nlp.config["components"]["ner3"]["model"]["tok2vec"]["@architectures"]
|
||||
== "spacy.Tok2VecListener.v1"
|
||||
)
|
||||
assert (
|
||||
new_nlp.config["components"]["tagger4"]["model"]["tok2vec"]["@architectures"]
|
||||
== "spacy.Tok2VecListener.v1"
|
||||
)
|
||||
|
||||
|
@ -627,3 +642,57 @@ def test_tok2vec_distillation_teacher_annotations():
|
|||
|
||||
student_tok2vec.distill = tok2vec_distill_wrapper.__get__(student_tok2vec, Tok2Vec)
|
||||
student_nlp.distill(teacher_nlp, train_examples_student, sgd=optimizer, losses={})
|
||||
|
||||
|
||||
def test_tok2vec_listener_source_link_name():
|
||||
"""The component's internal name and the tok2vec listener map correspond
|
||||
to the most recently modified pipeline.
|
||||
"""
|
||||
orig_config = Config().from_str(cfg_string_multi)
|
||||
nlp1 = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == ["tagger", "ner"]
|
||||
|
||||
nlp2 = English()
|
||||
nlp2.add_pipe("tok2vec", source=nlp1)
|
||||
nlp2.add_pipe("tagger", name="tagger2", source=nlp1)
|
||||
|
||||
# there is no way to have the component have the right name for both
|
||||
# pipelines, right now the most recently modified pipeline is prioritized
|
||||
assert nlp1.get_pipe("tagger").name == nlp2.get_pipe("tagger2").name == "tagger2"
|
||||
|
||||
# there is no way to have the tok2vec have the right listener map for both
|
||||
# pipelines, right now the most recently modified pipeline is prioritized
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == ["tagger2"]
|
||||
nlp2.add_pipe("ner", name="ner3", source=nlp1)
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == ["tagger2", "ner3"]
|
||||
nlp2.remove_pipe("ner3")
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == ["tagger2"]
|
||||
nlp2.remove_pipe("tagger2")
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == []
|
||||
|
||||
# at this point the tok2vec component corresponds to nlp2
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == []
|
||||
|
||||
# modifying the nlp1 pipeline syncs the tok2vec listener map back to nlp1
|
||||
nlp1.add_pipe("sentencizer")
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == ["tagger", "ner"]
|
||||
|
||||
# modifying nlp2 syncs it back to nlp2
|
||||
nlp2.add_pipe("sentencizer")
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == []
|
||||
|
||||
|
||||
def test_tok2vec_listener_source_replace_listeners():
|
||||
orig_config = Config().from_str(cfg_string_multi)
|
||||
nlp1 = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == ["tagger", "ner"]
|
||||
nlp1.replace_listeners("tok2vec", "tagger", ["model.tok2vec"])
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == ["ner"]
|
||||
|
||||
nlp2 = English()
|
||||
nlp2.add_pipe("tok2vec", source=nlp1)
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == []
|
||||
nlp2.add_pipe("tagger", source=nlp1)
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == []
|
||||
nlp2.add_pipe("ner", name="ner2", source=nlp1)
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == ["ner2"]
|
||||
|
|
|
@ -18,6 +18,7 @@ from spacy.ml.models import (
|
|||
build_Tok2Vec_model,
|
||||
)
|
||||
from spacy.schemas import ConfigSchema, ConfigSchemaDistill, ConfigSchemaPretrain
|
||||
from spacy.training import Example
|
||||
from spacy.util import (
|
||||
load_config,
|
||||
load_config_from_str,
|
||||
|
@ -469,6 +470,55 @@ def test_config_overrides():
|
|||
assert nlp.pipe_names == ["tok2vec", "tagger"]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore:\\[W036")
|
||||
def test_config_overrides_registered_functions():
|
||||
nlp = spacy.blank("en")
|
||||
nlp.add_pipe("attribute_ruler")
|
||||
with make_tempdir() as d:
|
||||
nlp.to_disk(d)
|
||||
nlp_re1 = spacy.load(
|
||||
d,
|
||||
config={
|
||||
"components": {
|
||||
"attribute_ruler": {
|
||||
"scorer": {"@scorers": "spacy.tagger_scorer.v1"}
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
assert (
|
||||
nlp_re1.config["components"]["attribute_ruler"]["scorer"]["@scorers"]
|
||||
== "spacy.tagger_scorer.v1"
|
||||
)
|
||||
|
||||
@registry.misc("test_some_other_key")
|
||||
def misc_some_other_key():
|
||||
return "some_other_key"
|
||||
|
||||
nlp_re2 = spacy.load(
|
||||
d,
|
||||
config={
|
||||
"components": {
|
||||
"attribute_ruler": {
|
||||
"scorer": {
|
||||
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
||||
"spans_key": {"@misc": "test_some_other_key"},
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
assert nlp_re2.config["components"]["attribute_ruler"]["scorer"][
|
||||
"spans_key"
|
||||
] == {"@misc": "test_some_other_key"}
|
||||
# run dummy evaluation (will return None scores) in order to test that
|
||||
# the spans_key value in the nested override is working as intended in
|
||||
# the config
|
||||
example = Example.from_dict(nlp_re2.make_doc("a b c"), {})
|
||||
scores = nlp_re2.evaluate([example])
|
||||
assert "spans_some_other_key_f" in scores
|
||||
|
||||
|
||||
def test_config_interpolation():
|
||||
config = Config().from_str(nlp_config_string, interpolate=False)
|
||||
assert config["corpora"]["train"]["path"] == "${paths.train}"
|
||||
|
|
|
@ -697,7 +697,6 @@ def test_string_to_list_intify(value):
|
|||
assert string_to_list(value, intify=True) == [1, 2, 3]
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Temporarily skip before models are published")
|
||||
def test_download_compatibility():
|
||||
spec = SpecifierSet("==" + about.__version__)
|
||||
spec.prereleases = False
|
||||
|
@ -708,7 +707,6 @@ def test_download_compatibility():
|
|||
assert get_minor_version(about.__version__) == get_minor_version(version)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Temporarily skip before models are published")
|
||||
def test_validate_compatibility_table():
|
||||
spec = SpecifierSet("==" + about.__version__)
|
||||
spec.prereleases = False
|
||||
|
|
|
@ -377,3 +377,22 @@ def test_displacy_manual_sorted_entities():
|
|||
|
||||
html = displacy.render(doc, style="ent", manual=True)
|
||||
assert html.find("FIRST") < html.find("SECOND")
|
||||
|
||||
|
||||
@pytest.mark.issue(12816)
|
||||
def test_issue12816(en_vocab) -> None:
|
||||
"""Test that displaCy's span visualizer escapes annotated HTML tags correctly."""
|
||||
# Create a doc containing an annotated word and an unannotated HTML tag
|
||||
doc = Doc(en_vocab, words=["test", "<TEST>"])
|
||||
doc.spans["sc"] = [Span(doc, 0, 1, label="test")]
|
||||
|
||||
# Verify that the HTML tag is escaped when unannotated
|
||||
html = displacy.render(doc, style="span")
|
||||
assert "<TEST>" in html
|
||||
|
||||
# Annotate the HTML tag
|
||||
doc.spans["sc"].append(Span(doc, 1, 2, label="test"))
|
||||
|
||||
# Verify that the HTML tag is still escaped
|
||||
html = displacy.render(doc, style="span")
|
||||
assert "<TEST>" in html
|
||||
|
|
|
@ -220,6 +220,10 @@ def test_minor_version(a1, a2, b1, b2, is_match):
|
|||
{"training.batch_size": 128, "training.optimizer.learn_rate": 0.01},
|
||||
{"training": {"batch_size": 128, "optimizer": {"learn_rate": 0.01}}},
|
||||
),
|
||||
(
|
||||
{"attribute_ruler.scorer.@scorers": "spacy.tagger_scorer.v1"},
|
||||
{"attribute_ruler": {"scorer": {"@scorers": "spacy.tagger_scorer.v1"}}},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_dot_to_dict(dot_notation, expected):
|
||||
|
@ -228,6 +232,29 @@ def test_dot_to_dict(dot_notation, expected):
|
|||
assert util.dict_to_dot(result) == dot_notation
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dot_notation,expected",
|
||||
[
|
||||
(
|
||||
{"token.pos": True, "token._.xyz": True},
|
||||
{"token": {"pos": True, "_": {"xyz": True}}},
|
||||
),
|
||||
(
|
||||
{"training.batch_size": 128, "training.optimizer.learn_rate": 0.01},
|
||||
{"training": {"batch_size": 128, "optimizer": {"learn_rate": 0.01}}},
|
||||
),
|
||||
(
|
||||
{"attribute_ruler.scorer": {"@scorers": "spacy.tagger_scorer.v1"}},
|
||||
{"attribute_ruler": {"scorer": {"@scorers": "spacy.tagger_scorer.v1"}}},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_dot_to_dict_overrides(dot_notation, expected):
|
||||
result = util.dot_to_dict(dot_notation)
|
||||
assert result == expected
|
||||
assert util.dict_to_dot(result, for_overrides=True) == dot_notation
|
||||
|
||||
|
||||
def test_set_dot_to_object():
|
||||
config = {"foo": {"bar": 1, "baz": {"x": "y"}}, "test": {"a": {"b": "c"}}}
|
||||
with pytest.raises(KeyError):
|
||||
|
|
|
@ -401,6 +401,7 @@ def test_vectors_serialize():
|
|||
row_r = v_r.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f"))
|
||||
assert row == row_r
|
||||
assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data))
|
||||
assert v.attr == v_r.attr
|
||||
|
||||
|
||||
def test_vector_is_oov():
|
||||
|
@ -645,3 +646,32 @@ def test_equality():
|
|||
vectors1.resize((5, 9))
|
||||
vectors2.resize((5, 9))
|
||||
assert vectors1 == vectors2
|
||||
|
||||
|
||||
def test_vectors_attr():
|
||||
data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f")
|
||||
# default ORTH
|
||||
nlp = English()
|
||||
nlp.vocab.vectors = Vectors(data=data, keys=["A", "B", "C"])
|
||||
assert nlp.vocab.strings["A"] in nlp.vocab.vectors.key2row
|
||||
assert nlp.vocab.strings["a"] not in nlp.vocab.vectors.key2row
|
||||
assert nlp.vocab["A"].has_vector is True
|
||||
assert nlp.vocab["a"].has_vector is False
|
||||
assert nlp("A")[0].has_vector is True
|
||||
assert nlp("a")[0].has_vector is False
|
||||
|
||||
# custom LOWER
|
||||
nlp = English()
|
||||
nlp.vocab.vectors = Vectors(data=data, keys=["a", "b", "c"], attr="LOWER")
|
||||
assert nlp.vocab.strings["A"] not in nlp.vocab.vectors.key2row
|
||||
assert nlp.vocab.strings["a"] in nlp.vocab.vectors.key2row
|
||||
assert nlp.vocab["A"].has_vector is True
|
||||
assert nlp.vocab["a"].has_vector is True
|
||||
assert nlp("A")[0].has_vector is True
|
||||
assert nlp("a")[0].has_vector is True
|
||||
# add a new vectors entry
|
||||
assert nlp.vocab["D"].has_vector is False
|
||||
assert nlp.vocab["d"].has_vector is False
|
||||
nlp.vocab.set_vector("D", numpy.asarray([4, 5, 6]))
|
||||
assert nlp.vocab["D"].has_vector is True
|
||||
assert nlp.vocab["d"].has_vector is True
|
||||
|
|
|
@ -26,24 +26,57 @@ cdef class Tokenizer:
|
|||
|
||||
cdef Doc _tokenize_affixes(self, str string, bint with_special_cases)
|
||||
cdef int _apply_special_cases(self, Doc doc) except -1
|
||||
cdef void _filter_special_spans(self, vector[SpanC] &original,
|
||||
vector[SpanC] &filtered, int doc_len) nogil
|
||||
cdef object _prepare_special_spans(self, Doc doc,
|
||||
vector[SpanC] &filtered)
|
||||
cdef int _retokenize_special_spans(self, Doc doc, TokenC* tokens,
|
||||
object span_data)
|
||||
cdef int _try_specials_and_cache(self, hash_t key, Doc tokens,
|
||||
int* has_special,
|
||||
bint with_special_cases) except -1
|
||||
cdef int _tokenize(self, Doc tokens, str span, hash_t key,
|
||||
int* has_special, bint with_special_cases) except -1
|
||||
cdef str _split_affixes(self, str string,
|
||||
vector[LexemeC*] *prefixes,
|
||||
vector[LexemeC*] *suffixes, int* has_special,
|
||||
bint with_special_cases)
|
||||
cdef int _attach_tokens(self, Doc tokens, str string,
|
||||
vector[LexemeC*] *prefixes,
|
||||
vector[LexemeC*] *suffixes, int* has_special,
|
||||
bint with_special_cases) except -1
|
||||
cdef int _save_cached(self, const TokenC* tokens, hash_t key,
|
||||
int* has_special, int n) except -1
|
||||
cdef void _filter_special_spans(
|
||||
self,
|
||||
vector[SpanC] &original,
|
||||
vector[SpanC] &filtered,
|
||||
int doc_len,
|
||||
) nogil
|
||||
cdef object _prepare_special_spans(
|
||||
self,
|
||||
Doc doc,
|
||||
vector[SpanC] &filtered,
|
||||
)
|
||||
cdef int _retokenize_special_spans(
|
||||
self,
|
||||
Doc doc,
|
||||
TokenC* tokens,
|
||||
object span_data,
|
||||
)
|
||||
cdef int _try_specials_and_cache(
|
||||
self,
|
||||
hash_t key,
|
||||
Doc tokens,
|
||||
int* has_special,
|
||||
bint with_special_cases,
|
||||
) except -1
|
||||
cdef int _tokenize(
|
||||
self,
|
||||
Doc tokens,
|
||||
str span,
|
||||
hash_t key,
|
||||
int* has_special,
|
||||
bint with_special_cases,
|
||||
) except -1
|
||||
cdef str _split_affixes(
|
||||
self,
|
||||
str string,
|
||||
vector[LexemeC*] *prefixes,
|
||||
vector[LexemeC*] *suffixes, int* has_special,
|
||||
bint with_special_cases,
|
||||
)
|
||||
cdef int _attach_tokens(
|
||||
self,
|
||||
Doc tokens,
|
||||
str string,
|
||||
vector[LexemeC*] *prefixes,
|
||||
vector[LexemeC*] *suffixes, int* has_special,
|
||||
bint with_special_cases,
|
||||
) except -1
|
||||
cdef int _save_cached(
|
||||
self,
|
||||
const TokenC* tokens,
|
||||
hash_t key,
|
||||
int* has_special,
|
||||
int n,
|
||||
) except -1
|
||||
|
|
|
@ -323,7 +323,7 @@ cdef class Tokenizer:
|
|||
cdef int span_start
|
||||
cdef int span_end
|
||||
while i < doc.length:
|
||||
if not i in span_data:
|
||||
if i not in span_data:
|
||||
tokens[i + offset] = doc.c[i]
|
||||
i += 1
|
||||
else:
|
||||
|
@ -394,12 +394,14 @@ cdef class Tokenizer:
|
|||
self._save_cached(&tokens.c[orig_size], orig_key, has_special,
|
||||
tokens.length - orig_size)
|
||||
|
||||
cdef str _split_affixes(self, str string,
|
||||
vector[const LexemeC*] *prefixes,
|
||||
vector[const LexemeC*] *suffixes,
|
||||
int* has_special,
|
||||
bint with_special_cases):
|
||||
cdef size_t i
|
||||
cdef str _split_affixes(
|
||||
self,
|
||||
str string,
|
||||
vector[const LexemeC*] *prefixes,
|
||||
vector[const LexemeC*] *suffixes,
|
||||
int* has_special,
|
||||
bint with_special_cases
|
||||
):
|
||||
cdef str prefix
|
||||
cdef str suffix
|
||||
cdef str minus_pre
|
||||
|
@ -444,10 +446,6 @@ cdef class Tokenizer:
|
|||
vector[const LexemeC*] *suffixes,
|
||||
int* has_special,
|
||||
bint with_special_cases) except -1:
|
||||
cdef bint specials_hit = 0
|
||||
cdef bint cache_hit = 0
|
||||
cdef int split, end
|
||||
cdef const LexemeC* const* lexemes
|
||||
cdef const LexemeC* lexeme
|
||||
cdef str span
|
||||
cdef int i
|
||||
|
@ -457,9 +455,11 @@ cdef class Tokenizer:
|
|||
if string:
|
||||
if self._try_specials_and_cache(hash_string(string), tokens, has_special, with_special_cases):
|
||||
pass
|
||||
elif (self.token_match and self.token_match(string)) or \
|
||||
(self.url_match and \
|
||||
self.url_match(string)):
|
||||
elif (
|
||||
(self.token_match and self.token_match(string)) or
|
||||
(self.url_match and self.url_match(string))
|
||||
):
|
||||
|
||||
# We're always saying 'no' to spaces here -- the caller will
|
||||
# fix up the outermost one, with reference to the original.
|
||||
# See Issue #859
|
||||
|
@ -820,7 +820,7 @@ cdef class Tokenizer:
|
|||
self.infix_finditer = None
|
||||
self.token_match = None
|
||||
self.url_match = None
|
||||
msg = util.from_bytes(bytes_data, deserializers, exclude)
|
||||
util.from_bytes(bytes_data, deserializers, exclude)
|
||||
if "prefix_search" in data and isinstance(data["prefix_search"], str):
|
||||
self.prefix_search = re.compile(data["prefix_search"]).search
|
||||
if "suffix_search" in data and isinstance(data["suffix_search"], str):
|
||||
|
|
|
@ -31,7 +31,7 @@ cdef int token_by_start(const TokenC* tokens, int length, int start_char) except
|
|||
cdef int token_by_end(const TokenC* tokens, int length, int end_char) except -2
|
||||
|
||||
|
||||
cdef int [:,:] _get_lca_matrix(Doc, int start, int end)
|
||||
cdef int [:, :] _get_lca_matrix(Doc, int start, int end)
|
||||
|
||||
|
||||
cdef class Doc:
|
||||
|
@ -61,7 +61,6 @@ cdef class Doc:
|
|||
cdef int length
|
||||
cdef int max_length
|
||||
|
||||
|
||||
cdef public object noun_chunks_iterator
|
||||
|
||||
cdef object __weakref__
|
||||
|
|
|
@ -35,6 +35,7 @@ from ..attrs cimport (
|
|||
LENGTH,
|
||||
MORPH,
|
||||
NORM,
|
||||
ORTH,
|
||||
POS,
|
||||
SENT_START,
|
||||
SPACY,
|
||||
|
@ -42,14 +43,13 @@ from ..attrs cimport (
|
|||
attr_id_t,
|
||||
)
|
||||
from ..lexeme cimport EMPTY_LEXEME, Lexeme
|
||||
from ..typedefs cimport attr_t, flags_t
|
||||
from ..typedefs cimport attr_t
|
||||
from .token cimport Token
|
||||
|
||||
from .. import parts_of_speech, schemas, util
|
||||
from ..attrs import IDS, intify_attr
|
||||
from ..compat import copy_reg, pickle
|
||||
from ..compat import copy_reg
|
||||
from ..errors import Errors, Warnings
|
||||
from ..morphology import Morphology
|
||||
from ..util import get_words_and_spaces
|
||||
from .retokenizer import Retokenizer
|
||||
from .underscore import Underscore, get_ext_args
|
||||
|
@ -613,13 +613,26 @@ cdef class Doc:
|
|||
"""
|
||||
if "similarity" in self.user_hooks:
|
||||
return self.user_hooks["similarity"](self, other)
|
||||
if isinstance(other, (Lexeme, Token)) and self.length == 1:
|
||||
if self.c[0].lex.orth == other.orth:
|
||||
attr = getattr(self.vocab.vectors, "attr", ORTH)
|
||||
cdef Token this_token
|
||||
cdef Token other_token
|
||||
cdef Lexeme other_lex
|
||||
if len(self) == 1 and isinstance(other, Token):
|
||||
this_token = self[0]
|
||||
other_token = other
|
||||
if Token.get_struct_attr(this_token.c, attr) == Token.get_struct_attr(other_token.c, attr):
|
||||
return 1.0
|
||||
elif isinstance(other, (Span, Doc)) and len(self) == len(other):
|
||||
elif len(self) == 1 and isinstance(other, Lexeme):
|
||||
this_token = self[0]
|
||||
other_lex = other
|
||||
if Token.get_struct_attr(this_token.c, attr) == Lexeme.get_struct_attr(other_lex.c, attr):
|
||||
return 1.0
|
||||
elif isinstance(other, (Doc, Span)) and len(self) == len(other):
|
||||
similar = True
|
||||
for i in range(self.length):
|
||||
if self[i].orth != other[i].orth:
|
||||
for i in range(len(self)):
|
||||
this_token = self[i]
|
||||
other_token = other[i]
|
||||
if Token.get_struct_attr(this_token.c, attr) != Token.get_struct_attr(other_token.c, attr):
|
||||
similar = False
|
||||
break
|
||||
if similar:
|
||||
|
@ -767,7 +780,7 @@ cdef class Doc:
|
|||
# TODO:
|
||||
# 1. Test basic data-driven ORTH gazetteer
|
||||
# 2. Test more nuanced date and currency regex
|
||||
cdef attr_t entity_type, kb_id, ent_id
|
||||
cdef attr_t kb_id, ent_id
|
||||
cdef int ent_start, ent_end
|
||||
ent_spans = []
|
||||
for ent_info in ents:
|
||||
|
@ -975,7 +988,6 @@ cdef class Doc:
|
|||
>>> np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||||
"""
|
||||
cdef int i, j
|
||||
cdef attr_id_t feature
|
||||
cdef np.ndarray[attr_t, ndim=2] output
|
||||
# Handle scalar/list inputs of strings/ints for py_attr_ids
|
||||
# See also #3064
|
||||
|
@ -987,8 +999,10 @@ cdef class Doc:
|
|||
py_attr_ids = [py_attr_ids]
|
||||
# Allow strings, e.g. 'lemma' or 'LEMMA'
|
||||
try:
|
||||
py_attr_ids = [(IDS[id_.upper()] if hasattr(id_, "upper") else id_)
|
||||
for id_ in py_attr_ids]
|
||||
py_attr_ids = [
|
||||
(IDS[id_.upper()] if hasattr(id_, "upper") else id_)
|
||||
for id_ in py_attr_ids
|
||||
]
|
||||
except KeyError as msg:
|
||||
keys = list(IDS.keys())
|
||||
raise KeyError(Errors.E983.format(dict="IDS", key=msg, keys=keys)) from None
|
||||
|
@ -1022,8 +1036,6 @@ cdef class Doc:
|
|||
DOCS: https://spacy.io/api/doc#count_by
|
||||
"""
|
||||
cdef int i
|
||||
cdef attr_t attr
|
||||
cdef size_t count
|
||||
|
||||
if counts is None:
|
||||
counts = Counter()
|
||||
|
@ -1085,7 +1097,6 @@ cdef class Doc:
|
|||
cdef int i, col
|
||||
cdef int32_t abs_head_index
|
||||
cdef attr_id_t attr_id
|
||||
cdef TokenC* tokens = self.c
|
||||
cdef int length = len(array)
|
||||
if length != len(self):
|
||||
raise ValueError(Errors.E971.format(array_length=length, doc_length=len(self)))
|
||||
|
@ -1226,7 +1237,7 @@ cdef class Doc:
|
|||
span.label,
|
||||
span.kb_id,
|
||||
span.id,
|
||||
span.text, # included as a check
|
||||
span.text, # included as a check
|
||||
))
|
||||
char_offset += len(doc.text)
|
||||
if len(doc) > 0 and ensure_whitespace and not doc[-1].is_space and not bool(doc[-1].whitespace_):
|
||||
|
@ -1505,7 +1516,6 @@ cdef class Doc:
|
|||
attributes are inherited from the syntactic root of the span.
|
||||
RETURNS (Token): The first newly merged token.
|
||||
"""
|
||||
cdef str tag, lemma, ent_type
|
||||
attr_len = len(attributes)
|
||||
span_len = len(spans)
|
||||
if not attr_len == span_len:
|
||||
|
@ -1621,7 +1631,6 @@ cdef class Doc:
|
|||
for token in char_span[1:]:
|
||||
token.is_sent_start = False
|
||||
|
||||
|
||||
for span_group in doc_json.get("spans", {}):
|
||||
spans = []
|
||||
for span in doc_json["spans"][span_group]:
|
||||
|
@ -1653,7 +1662,7 @@ cdef class Doc:
|
|||
start = token_by_char(self.c, self.length, token_data["start"])
|
||||
value = token_data["value"]
|
||||
self[start]._.set(token_attr, value)
|
||||
|
||||
|
||||
for span_attr in doc_json.get("underscore_span", {}):
|
||||
if not Span.has_extension(span_attr):
|
||||
Span.set_extension(span_attr)
|
||||
|
@ -1699,7 +1708,7 @@ cdef class Doc:
|
|||
token_data["dep"] = token.dep_
|
||||
token_data["head"] = token.head.i
|
||||
data["tokens"].append(token_data)
|
||||
|
||||
|
||||
if self.spans:
|
||||
data["spans"] = {}
|
||||
for span_group in self.spans:
|
||||
|
@ -1750,7 +1759,7 @@ cdef class Doc:
|
|||
data["underscore_span"] = {}
|
||||
if attr not in data["underscore_span"]:
|
||||
data["underscore_span"][attr] = []
|
||||
data["underscore_span"][attr].append({"start": start, "end": end, "value": value, "label": _label, "kb_id": _kb_id, "id":_span_id})
|
||||
data["underscore_span"][attr].append({"start": start, "end": end, "value": value, "label": _label, "kb_id": _kb_id, "id": _span_id})
|
||||
|
||||
for attr in underscore:
|
||||
if attr not in user_keys:
|
||||
|
@ -1773,7 +1782,6 @@ cdef class Doc:
|
|||
output.fill(255)
|
||||
cdef int i, j, start_idx, end_idx
|
||||
cdef bytes byte_string
|
||||
cdef unsigned char utf8_char
|
||||
for i, byte_string in enumerate(byte_strings):
|
||||
j = 0
|
||||
start_idx = 0
|
||||
|
@ -1826,8 +1834,6 @@ cdef int token_by_char(const TokenC* tokens, int length, int char_idx) except -2
|
|||
|
||||
cdef int set_children_from_heads(TokenC* tokens, int start, int end) except -1:
|
||||
# note: end is exclusive
|
||||
cdef TokenC* head
|
||||
cdef TokenC* child
|
||||
cdef int i
|
||||
# Set number of left/right children to 0. We'll increment it in the loops.
|
||||
for i in range(start, end):
|
||||
|
@ -1927,7 +1933,7 @@ cdef int _get_tokens_lca(Token token_j, Token token_k):
|
|||
return -1
|
||||
|
||||
|
||||
cdef int [:,:] _get_lca_matrix(Doc doc, int start, int end):
|
||||
cdef int [:, :] _get_lca_matrix(Doc doc, int start, int end):
|
||||
"""Given a doc and a start and end position defining a set of contiguous
|
||||
tokens within it, returns a matrix of Lowest Common Ancestors (LCA), where
|
||||
LCA[i, j] is the index of the lowest common ancestor among token i and j.
|
||||
|
@ -1940,7 +1946,7 @@ cdef int [:,:] _get_lca_matrix(Doc doc, int start, int end):
|
|||
RETURNS (int [:, :]): memoryview of numpy.array[ndim=2, dtype=numpy.int32],
|
||||
with shape (n, n), where n = len(doc).
|
||||
"""
|
||||
cdef int [:,:] lca_matrix
|
||||
cdef int [:, :] lca_matrix
|
||||
cdef int j, k
|
||||
n_tokens= end - start
|
||||
lca_mat = numpy.empty((n_tokens, n_tokens), dtype=numpy.int32)
|
||||
|
|
|
@ -3,7 +3,7 @@ from typing import Generator, List, Tuple
|
|||
|
||||
cimport cython
|
||||
from cython.operator cimport dereference
|
||||
from libc.stdint cimport int32_t, int64_t
|
||||
from libc.stdint cimport int32_t
|
||||
from libcpp.pair cimport pair
|
||||
from libcpp.unordered_map cimport unordered_map
|
||||
from libcpp.unordered_set cimport unordered_set
|
||||
|
@ -11,7 +11,6 @@ from libcpp.unordered_set cimport unordered_set
|
|||
import weakref
|
||||
|
||||
from murmurhash.mrmr cimport hash64
|
||||
from preshed.maps cimport map_get_unless_missing
|
||||
|
||||
from .. import Errors
|
||||
|
||||
|
@ -26,7 +25,7 @@ from .token import Token
|
|||
cdef class Edge:
|
||||
cdef readonly Graph graph
|
||||
cdef readonly int i
|
||||
|
||||
|
||||
def __init__(self, Graph graph, int i):
|
||||
self.graph = graph
|
||||
self.i = i
|
||||
|
@ -42,7 +41,7 @@ cdef class Edge:
|
|||
@property
|
||||
def head(self) -> "Node":
|
||||
return Node(self.graph, self.graph.c.edges[self.i].head)
|
||||
|
||||
|
||||
@property
|
||||
def tail(self) -> "Tail":
|
||||
return Node(self.graph, self.graph.c.edges[self.i].tail)
|
||||
|
@ -68,7 +67,7 @@ cdef class Node:
|
|||
def __init__(self, Graph graph, int i):
|
||||
"""A reference to a node of an annotation graph. Each node is made up of
|
||||
an ordered set of zero or more token indices.
|
||||
|
||||
|
||||
Node references are usually created by the Graph object itself, or from
|
||||
the Node or Edge objects. You usually won't need to instantiate this
|
||||
class yourself.
|
||||
|
@ -107,13 +106,13 @@ cdef class Node:
|
|||
@property
|
||||
def is_none(self) -> bool:
|
||||
"""Whether the node is a special value, indicating 'none'.
|
||||
|
||||
|
||||
The NoneNode type is returned by the Graph, Edge and Node objects when
|
||||
there is no match to a query. It has the same API as Node, but it always
|
||||
returns NoneNode, NoneEdge or empty lists for its queries.
|
||||
"""
|
||||
return False
|
||||
|
||||
|
||||
@property
|
||||
def doc(self) -> "Doc":
|
||||
"""The Doc object that the graph refers to."""
|
||||
|
@ -128,19 +127,19 @@ cdef class Node:
|
|||
def head(self, i=None, label=None) -> "Node":
|
||||
"""Get the head of the first matching edge, searching by index, label,
|
||||
both or neither.
|
||||
|
||||
|
||||
For instance, `node.head(i=1)` will get the head of the second edge that
|
||||
this node is a tail of. `node.head(i=1, label="ARG0")` will further
|
||||
check that the second edge has the label `"ARG0"`.
|
||||
|
||||
|
||||
If no matching node can be found, the graph's NoneNode is returned.
|
||||
"""
|
||||
return self.headed(i=i, label=label)
|
||||
|
||||
|
||||
def tail(self, i=None, label=None) -> "Node":
|
||||
"""Get the tail of the first matching edge, searching by index, label,
|
||||
both or neither.
|
||||
|
||||
|
||||
If no matching node can be found, the graph's NoneNode is returned.
|
||||
"""
|
||||
return self.tailed(i=i, label=label).tail
|
||||
|
@ -169,7 +168,7 @@ cdef class Node:
|
|||
cdef vector[int] edge_indices
|
||||
self._find_edges(edge_indices, "head", label)
|
||||
return [Node(self.graph, self.graph.c.edges[i].head) for i in edge_indices]
|
||||
|
||||
|
||||
def tails(self, label=None) -> List["Node"]:
|
||||
"""Find all matching tails of this node."""
|
||||
cdef vector[int] edge_indices
|
||||
|
@ -198,7 +197,7 @@ cdef class Node:
|
|||
return NoneEdge(self.graph)
|
||||
else:
|
||||
return Edge(self.graph, idx)
|
||||
|
||||
|
||||
def tailed(self, i=None, label=None) -> Edge:
|
||||
"""Find the first matching edge tailed by this node.
|
||||
If no matching edge can be found, the graph's NoneEdge is returned.
|
||||
|
@ -281,7 +280,7 @@ cdef class NoneEdge(Edge):
|
|||
def __init__(self, graph):
|
||||
self.graph = graph
|
||||
self.i = -1
|
||||
|
||||
|
||||
@property
|
||||
def doc(self) -> "Doc":
|
||||
return self.graph.doc
|
||||
|
@ -289,7 +288,7 @@ cdef class NoneEdge(Edge):
|
|||
@property
|
||||
def head(self) -> "NoneNode":
|
||||
return NoneNode(self.graph)
|
||||
|
||||
|
||||
@property
|
||||
def tail(self) -> "NoneNode":
|
||||
return NoneNode(self.graph)
|
||||
|
@ -317,7 +316,7 @@ cdef class NoneNode(Node):
|
|||
|
||||
def __len__(self):
|
||||
return 0
|
||||
|
||||
|
||||
@property
|
||||
def is_none(self):
|
||||
return -1
|
||||
|
@ -338,14 +337,14 @@ cdef class NoneNode(Node):
|
|||
|
||||
def walk_heads(self):
|
||||
yield from []
|
||||
|
||||
|
||||
def walk_tails(self):
|
||||
yield from []
|
||||
|
||||
|
||||
|
||||
cdef class Graph:
|
||||
"""A set of directed labelled relationships between sets of tokens.
|
||||
|
||||
|
||||
EXAMPLE:
|
||||
Construction 1
|
||||
>>> graph = Graph(doc, name="srl")
|
||||
|
@ -370,7 +369,9 @@ cdef class Graph:
|
|||
>>> assert graph.has_node((0,))
|
||||
>>> assert graph.has_edge((0,), (1,3), label="agent")
|
||||
"""
|
||||
def __init__(self, doc, *, name="", nodes=[], edges=[], labels=None, weights=None):
|
||||
def __init__(
|
||||
self, doc, *, name="", nodes=[], edges=[], labels=None, weights=None # no-cython-lint
|
||||
):
|
||||
"""Create a Graph object.
|
||||
|
||||
doc (Doc): The Doc object the graph will refer to.
|
||||
|
@ -436,13 +437,11 @@ cdef class Graph:
|
|||
|
||||
def add_edge(self, head, tail, *, label="", weight=None) -> Edge:
|
||||
"""Add an edge to the graph, connecting two groups of tokens.
|
||||
|
||||
|
||||
If there is already an edge for the (head, tail, label) triple, it will
|
||||
be returned, and no new edge will be created. The weight of the edge
|
||||
will be updated if a weight is specified.
|
||||
"""
|
||||
label_hash = self.doc.vocab.strings.as_int(label)
|
||||
weight_float = weight if weight is not None else 0.0
|
||||
edge_index = add_edge(
|
||||
&self.c,
|
||||
EdgeC(
|
||||
|
@ -476,11 +475,11 @@ cdef class Graph:
|
|||
def has_edge(self, head, tail, label) -> bool:
|
||||
"""Check whether a (head, tail, label) triple is an edge in the graph."""
|
||||
return not self.get_edge(head, tail, label=label).is_none
|
||||
|
||||
|
||||
def add_node(self, indices) -> Node:
|
||||
"""Add a node to the graph and return it. Nodes refer to ordered sets
|
||||
of token indices.
|
||||
|
||||
|
||||
This method is idempotent: if there is already a node for the given
|
||||
indices, it is returned without a new node being created.
|
||||
"""
|
||||
|
@ -508,7 +507,7 @@ cdef class Graph:
|
|||
return NoneNode(self)
|
||||
else:
|
||||
return Node(self, node_index)
|
||||
|
||||
|
||||
def has_node(self, tuple indices) -> bool:
|
||||
"""Check whether the graph has a node for the given indices."""
|
||||
return not self.get_node(indices).is_none
|
||||
|
@ -568,7 +567,7 @@ cdef int add_node(GraphC* graph, vector[int32_t]& node) nogil:
|
|||
graph.roots.insert(index)
|
||||
graph.node_map.insert(pair[hash_t, int](key, index))
|
||||
return index
|
||||
|
||||
|
||||
|
||||
cdef int get_node(const GraphC* graph, vector[int32_t] node) nogil:
|
||||
key = hash64(&node[0], node.size() * sizeof(node[0]), 0)
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
cimport numpy as np
|
||||
from libc.string cimport memset
|
||||
|
||||
from ..errors import Errors
|
||||
from ..morphology import Morphology
|
||||
|
@ -94,4 +93,3 @@ cdef class MorphAnalysis:
|
|||
|
||||
def __repr__(self):
|
||||
return self.to_json()
|
||||
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
# cython: infer_types=True, bounds_check=False, profile=True
|
||||
from cymem.cymem cimport Pool
|
||||
from libc.stdlib cimport free, malloc
|
||||
from libc.string cimport memcpy, memset
|
||||
from libc.string cimport memset
|
||||
|
||||
import numpy
|
||||
from thinc.api import get_array_module
|
||||
|
@ -10,7 +9,7 @@ from ..attrs cimport MORPH, NORM
|
|||
from ..lexeme cimport EMPTY_LEXEME, Lexeme
|
||||
from ..structs cimport LexemeC, TokenC
|
||||
from ..vocab cimport Vocab
|
||||
from .doc cimport Doc, set_children_from_heads, token_by_end, token_by_start
|
||||
from .doc cimport Doc, set_children_from_heads, token_by_start
|
||||
from .span cimport Span
|
||||
from .token cimport Token
|
||||
|
||||
|
@ -148,7 +147,7 @@ def _merge(Doc doc, merges):
|
|||
syntactic root of the span.
|
||||
RETURNS (Token): The first newly merged token.
|
||||
"""
|
||||
cdef int i, merge_index, start, end, token_index, current_span_index, current_offset, offset, span_index
|
||||
cdef int i, merge_index, start, token_index, current_span_index, current_offset, offset, span_index
|
||||
cdef Span span
|
||||
cdef const LexemeC* lex
|
||||
cdef TokenC* token
|
||||
|
@ -166,7 +165,6 @@ def _merge(Doc doc, merges):
|
|||
merges.sort(key=_get_start)
|
||||
for merge_index, (span, attributes) in enumerate(merges):
|
||||
start = span.start
|
||||
end = span.end
|
||||
spans.append(span)
|
||||
# House the new merged token where it starts
|
||||
token = &doc.c[start]
|
||||
|
@ -204,8 +202,9 @@ def _merge(Doc doc, merges):
|
|||
# for the merged region. To do this, we create a boolean array indicating
|
||||
# whether the row is to be deleted, then use numpy.delete
|
||||
if doc.tensor is not None and doc.tensor.size != 0:
|
||||
doc.tensor = _resize_tensor(doc.tensor,
|
||||
[(m[0].start, m[0].end) for m in merges])
|
||||
doc.tensor = _resize_tensor(
|
||||
doc.tensor, [(m[0].start, m[0].end) for m in merges]
|
||||
)
|
||||
# Memorize span roots and sets dependencies of the newly merged
|
||||
# tokens to the dependencies of their roots.
|
||||
span_roots = []
|
||||
|
@ -268,11 +267,11 @@ def _merge(Doc doc, merges):
|
|||
span_index += 1
|
||||
if span_index < len(spans) and i == spans[span_index].start:
|
||||
# First token in a span
|
||||
doc.c[i - offset] = doc.c[i] # move token to its place
|
||||
doc.c[i - offset] = doc.c[i] # move token to its place
|
||||
offset += (spans[span_index].end - spans[span_index].start) - 1
|
||||
in_span = True
|
||||
if not in_span:
|
||||
doc.c[i - offset] = doc.c[i] # move token to its place
|
||||
doc.c[i - offset] = doc.c[i] # move token to its place
|
||||
|
||||
for i in range(doc.length - offset, doc.length):
|
||||
memset(&doc.c[i], 0, sizeof(TokenC))
|
||||
|
@ -346,7 +345,11 @@ def _split(Doc doc, int token_index, orths, heads, attrs):
|
|||
if to_process_tensor:
|
||||
xp = get_array_module(doc.tensor)
|
||||
if xp is numpy:
|
||||
doc.tensor = xp.append(doc.tensor, xp.zeros((nb_subtokens,doc.tensor.shape[1]), dtype="float32"), axis=0)
|
||||
doc.tensor = xp.append(
|
||||
doc.tensor,
|
||||
xp.zeros((nb_subtokens, doc.tensor.shape[1]), dtype="float32"),
|
||||
axis=0
|
||||
)
|
||||
else:
|
||||
shape = (doc.tensor.shape[0] + nb_subtokens, doc.tensor.shape[1])
|
||||
resized_array = xp.zeros(shape, dtype="float32")
|
||||
|
@ -368,7 +371,8 @@ def _split(Doc doc, int token_index, orths, heads, attrs):
|
|||
token.norm = 0 # reset norm
|
||||
if to_process_tensor:
|
||||
# setting the tensors of the split tokens to array of zeros
|
||||
doc.tensor[token_index + i:token_index + i + 1] = xp.zeros((1,doc.tensor.shape[1]), dtype="float32")
|
||||
doc.tensor[token_index + i:token_index + i + 1] = \
|
||||
xp.zeros((1, doc.tensor.shape[1]), dtype="float32")
|
||||
# Update the character offset of the subtokens
|
||||
if i != 0:
|
||||
token.idx = orig_token.idx + idx_offset
|
||||
|
@ -456,7 +460,6 @@ def normalize_token_attrs(Vocab vocab, attrs):
|
|||
def set_token_attrs(Token py_token, attrs):
|
||||
cdef TokenC* token = py_token.c
|
||||
cdef const LexemeC* lex = token.lex
|
||||
cdef Doc doc = py_token.doc
|
||||
# Assign attributes
|
||||
for attr_name, attr_value in attrs.items():
|
||||
if attr_name == "_": # Set extension attributes
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
cimport numpy as np
|
||||
from libc.math cimport sqrt
|
||||
from libcpp.memory cimport make_shared
|
||||
|
||||
import copy
|
||||
|
@ -9,13 +8,13 @@ import numpy
|
|||
from thinc.api import get_array_module
|
||||
|
||||
from ..attrs cimport *
|
||||
from ..attrs cimport attr_id_t
|
||||
from ..attrs cimport ORTH, attr_id_t
|
||||
from ..lexeme cimport Lexeme
|
||||
from ..parts_of_speech cimport univ_pos_t
|
||||
from ..structs cimport LexemeC, TokenC
|
||||
from ..structs cimport TokenC
|
||||
from ..symbols cimport dep
|
||||
from ..typedefs cimport attr_t, flags_t, hash_t
|
||||
from ..typedefs cimport attr_t
|
||||
from .doc cimport _get_lca_matrix, get_token_attr, token_by_end, token_by_start
|
||||
from .token cimport Token
|
||||
|
||||
from ..errors import Errors, Warnings
|
||||
from ..util import normalize_slice
|
||||
|
@ -226,8 +225,8 @@ cdef class Span:
|
|||
|
||||
@property
|
||||
def _(self):
|
||||
cdef SpanC* span_c = self.span_c()
|
||||
"""Custom extension attributes registered via `set_extension`."""
|
||||
cdef SpanC* span_c = self.span_c()
|
||||
return Underscore(Underscore.span_extensions, self,
|
||||
start=span_c.start_char, end=span_c.end_char, label=self.label, kb_id=self.kb_id, span_id=self.id)
|
||||
|
||||
|
@ -371,13 +370,26 @@ cdef class Span:
|
|||
"""
|
||||
if "similarity" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["similarity"](self, other)
|
||||
if len(self) == 1 and hasattr(other, "orth"):
|
||||
if self[0].orth == other.orth:
|
||||
attr = getattr(self.doc.vocab.vectors, "attr", ORTH)
|
||||
cdef Token this_token
|
||||
cdef Token other_token
|
||||
cdef Lexeme other_lex
|
||||
if len(self) == 1 and isinstance(other, Token):
|
||||
this_token = self[0]
|
||||
other_token = other
|
||||
if Token.get_struct_attr(this_token.c, attr) == Token.get_struct_attr(other_token.c, attr):
|
||||
return 1.0
|
||||
elif len(self) == 1 and isinstance(other, Lexeme):
|
||||
this_token = self[0]
|
||||
other_lex = other
|
||||
if Token.get_struct_attr(this_token.c, attr) == Lexeme.get_struct_attr(other_lex.c, attr):
|
||||
return 1.0
|
||||
elif isinstance(other, (Doc, Span)) and len(self) == len(other):
|
||||
similar = True
|
||||
for i in range(len(self)):
|
||||
if self[i].orth != getattr(other[i], "orth", None):
|
||||
this_token = self[i]
|
||||
other_token = other[i]
|
||||
if Token.get_struct_attr(this_token.c, attr) != Token.get_struct_attr(other_token.c, attr):
|
||||
similar = False
|
||||
break
|
||||
if similar:
|
||||
|
@ -607,7 +619,6 @@ cdef class Span:
|
|||
"""
|
||||
return "".join([t.text_with_ws for t in self])
|
||||
|
||||
|
||||
@property
|
||||
def noun_chunks(self):
|
||||
"""Iterate over the base noun phrases in the span. Yields base
|
||||
|
@ -922,7 +933,6 @@ cdef class Span:
|
|||
self.id_ = ent_id_
|
||||
|
||||
|
||||
|
||||
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
|
||||
# Don't allow spaces to be the root, if there are
|
||||
# better candidates
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import struct
|
||||
import weakref
|
||||
from copy import deepcopy
|
||||
from typing import TYPE_CHECKING, Iterable, Optional, Tuple, Union
|
||||
from typing import Iterable, Optional, Union
|
||||
|
||||
import srsly
|
||||
|
||||
|
@ -36,7 +36,7 @@ cdef class SpanGroup:
|
|||
|
||||
DOCS: https://spacy.io/api/spangroup
|
||||
"""
|
||||
def __init__(self, doc, *, name="", attrs={}, spans=[]):
|
||||
def __init__(self, doc, *, name="", attrs={}, spans=[]): # no-cython-lint
|
||||
"""Create a SpanGroup.
|
||||
|
||||
doc (Doc): The reference Doc object.
|
||||
|
@ -315,7 +315,7 @@ cdef class SpanGroup:
|
|||
|
||||
other_attrs = deepcopy(other_group.attrs)
|
||||
span_group.attrs.update({
|
||||
key: value for key, value in other_attrs.items() \
|
||||
key: value for key, value in other_attrs.items()
|
||||
if key not in span_group.attrs
|
||||
})
|
||||
if len(other_group):
|
||||
|
|
|
@ -26,7 +26,7 @@ cdef class Token:
|
|||
cdef Token self = Token.__new__(Token, vocab, doc, offset)
|
||||
return self
|
||||
|
||||
#cdef inline TokenC struct_from_attrs(Vocab vocab, attrs):
|
||||
# cdef inline TokenC struct_from_attrs(Vocab vocab, attrs):
|
||||
# cdef TokenC token
|
||||
# attrs = normalize_attrs(attrs)
|
||||
|
||||
|
@ -98,12 +98,10 @@ cdef class Token:
|
|||
elif feat_name == SENT_START:
|
||||
token.sent_start = value
|
||||
|
||||
|
||||
@staticmethod
|
||||
cdef inline int missing_dep(const TokenC* token) nogil:
|
||||
return token.dep == MISSING_DEP
|
||||
|
||||
|
||||
@staticmethod
|
||||
cdef inline int missing_head(const TokenC* token) nogil:
|
||||
return Token.missing_dep(token)
|
||||
|
|
|
@ -1,13 +1,11 @@
|
|||
# cython: infer_types=True
|
||||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||||
cimport numpy as np
|
||||
from cython.view cimport array as cvarray
|
||||
|
||||
np.import_array()
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy
|
||||
from thinc.api import get_array_module
|
||||
|
||||
from ..attrs cimport (
|
||||
|
@ -216,11 +214,17 @@ cdef class Token:
|
|||
"""
|
||||
if "similarity" in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["similarity"](self, other)
|
||||
if hasattr(other, "__len__") and len(other) == 1 and hasattr(other, "__getitem__"):
|
||||
if self.c.lex.orth == getattr(other[0], "orth", None):
|
||||
attr = getattr(self.doc.vocab.vectors, "attr", ORTH)
|
||||
cdef Token this_token = self
|
||||
cdef Token other_token
|
||||
cdef Lexeme other_lex
|
||||
if isinstance(other, Token):
|
||||
other_token = other
|
||||
if Token.get_struct_attr(this_token.c, attr) == Token.get_struct_attr(other_token.c, attr):
|
||||
return 1.0
|
||||
elif hasattr(other, "orth"):
|
||||
if self.c.lex.orth == other.orth:
|
||||
elif isinstance(other, Lexeme):
|
||||
other_lex = other
|
||||
if Token.get_struct_attr(this_token.c, attr) == Lexeme.get_struct_attr(other_lex.c, attr):
|
||||
return 1.0
|
||||
if self.vocab.vectors.n_keys == 0:
|
||||
warnings.warn(Warnings.W007.format(obj="Token"))
|
||||
|
@ -233,7 +237,7 @@ cdef class Token:
|
|||
result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
|
||||
# ensure we get a scalar back (numpy does this automatically but cupy doesn't)
|
||||
return result.item()
|
||||
|
||||
|
||||
def has_morph(self):
|
||||
"""Check whether the token has annotated morph information.
|
||||
Return False when the morph annotation is unset/missing.
|
||||
|
@ -528,9 +532,9 @@ cdef class Token:
|
|||
def __get__(self):
|
||||
if self.i + 1 == len(self.doc):
|
||||
return True
|
||||
elif self.doc[self.i+1].is_sent_start == None:
|
||||
elif self.doc[self.i+1].is_sent_start is None:
|
||||
return None
|
||||
elif self.doc[self.i+1].is_sent_start == True:
|
||||
elif self.doc[self.i+1].is_sent_start is True:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
|
|
@ -37,10 +37,14 @@ def get_alignments(A: List[str], B: List[str]) -> Tuple[List[List[int]], List[Li
|
|||
b2a.append(set())
|
||||
# Process the alignment at the current position
|
||||
if A[token_idx_a] == B[token_idx_b] and \
|
||||
(char_idx_a == 0 or \
|
||||
char_to_token_a[char_idx_a - 1] < token_idx_a) and \
|
||||
(char_idx_b == 0 or \
|
||||
char_to_token_b[char_idx_b - 1] < token_idx_b):
|
||||
(
|
||||
char_idx_a == 0 or
|
||||
char_to_token_a[char_idx_a - 1] < token_idx_a
|
||||
) and \
|
||||
(
|
||||
char_idx_b == 0 or
|
||||
char_to_token_b[char_idx_b - 1] < token_idx_b
|
||||
):
|
||||
# Current tokens are identical and both character offsets are the
|
||||
# start of a token (either at the beginning of the document or the
|
||||
# previous character belongs to a different token)
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import warnings
|
||||
from collections.abc import Iterable as IterableInstance
|
||||
|
||||
import numpy
|
||||
|
@ -31,9 +30,9 @@ cpdef Doc annotations_to_doc(vocab, tok_annot, doc_annot):
|
|||
attrs, array = _annot2array(vocab, tok_annot, doc_annot)
|
||||
output = Doc(vocab, words=tok_annot["ORTH"], spaces=tok_annot["SPACY"])
|
||||
if "entities" in doc_annot:
|
||||
_add_entities_to_doc(output, doc_annot["entities"])
|
||||
_add_entities_to_doc(output, doc_annot["entities"])
|
||||
if "spans" in doc_annot:
|
||||
_add_spans_to_doc(output, doc_annot["spans"])
|
||||
_add_spans_to_doc(output, doc_annot["spans"])
|
||||
if array.size:
|
||||
output = output.from_array(attrs, array)
|
||||
# links are currently added with ENT_KB_ID on the token level
|
||||
|
@ -168,7 +167,6 @@ cdef class Example:
|
|||
self._y_sig = y_sig
|
||||
return self._cached_alignment
|
||||
|
||||
|
||||
def _get_aligned_vectorized(self, align, gold_values):
|
||||
# Fast path for Doc attributes/fields that are predominantly a single value,
|
||||
# i.e., TAG, POS, MORPH.
|
||||
|
@ -211,7 +209,6 @@ cdef class Example:
|
|||
|
||||
return output.tolist()
|
||||
|
||||
|
||||
def _get_aligned_non_vectorized(self, align, gold_values):
|
||||
# Slower path for fields that return multiple values (resulting
|
||||
# in ragged arrays that cannot be vectorized trivially).
|
||||
|
@ -228,7 +225,6 @@ cdef class Example:
|
|||
|
||||
return output
|
||||
|
||||
|
||||
def get_aligned(self, field, as_string=False):
|
||||
"""Return an aligned array for a token attribute."""
|
||||
align = self.alignment.x2y
|
||||
|
@ -337,7 +333,7 @@ cdef class Example:
|
|||
missing=None
|
||||
)
|
||||
# Now fill the tokens we can align to O.
|
||||
O = 2 # I=1, O=2, B=3
|
||||
O = 2 # I=1, O=2, B=3 # no-cython-lint: E741
|
||||
for i, ent_iob in enumerate(self.get_aligned("ENT_IOB")):
|
||||
if x_tags[i] is None:
|
||||
if ent_iob == O:
|
||||
|
@ -347,7 +343,7 @@ cdef class Example:
|
|||
return x_ents, x_tags
|
||||
|
||||
def get_aligned_ner(self):
|
||||
x_ents, x_tags = self.get_aligned_ents_and_ner()
|
||||
_x_ents, x_tags = self.get_aligned_ents_and_ner()
|
||||
return x_tags
|
||||
|
||||
def get_matching_ents(self, check_label=True):
|
||||
|
@ -405,7 +401,6 @@ cdef class Example:
|
|||
|
||||
return span_dict
|
||||
|
||||
|
||||
def _links_to_dict(self):
|
||||
links = {}
|
||||
for ent in self.reference.ents:
|
||||
|
@ -596,6 +591,7 @@ def _fix_legacy_dict_data(example_dict):
|
|||
"doc_annotation": doc_dict
|
||||
}
|
||||
|
||||
|
||||
def _has_field(annot, field):
|
||||
if field not in annot:
|
||||
return False
|
||||
|
@ -632,6 +628,7 @@ def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces):
|
|||
ent_types.append("")
|
||||
return ent_iobs, ent_types
|
||||
|
||||
|
||||
def _parse_links(vocab, words, spaces, links):
|
||||
reference = Doc(vocab, words=words, spaces=spaces)
|
||||
starts = {token.idx: token.i for token in reference}
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import json
|
||||
import warnings
|
||||
|
||||
import srsly
|
||||
|
@ -6,7 +5,7 @@ import srsly
|
|||
from .. import util
|
||||
from ..errors import Warnings
|
||||
from ..tokens import Doc
|
||||
from .iob_utils import offsets_to_biluo_tags, tags_to_entities
|
||||
from .iob_utils import offsets_to_biluo_tags
|
||||
|
||||
|
||||
def docs_to_json(docs, doc_id=0, ner_missing_tag="O"):
|
||||
|
@ -23,7 +22,13 @@ def docs_to_json(docs, doc_id=0, ner_missing_tag="O"):
|
|||
json_doc = {"id": doc_id, "paragraphs": []}
|
||||
for i, doc in enumerate(docs):
|
||||
raw = None if doc.has_unknown_spaces else doc.text
|
||||
json_para = {'raw': raw, "sentences": [], "cats": [], "entities": [], "links": []}
|
||||
json_para = {
|
||||
'raw': raw,
|
||||
"sentences": [],
|
||||
"cats": [],
|
||||
"entities": [],
|
||||
"links": []
|
||||
}
|
||||
for cat, val in doc.cats.items():
|
||||
json_cat = {"label": cat, "value": val}
|
||||
json_para["cats"].append(json_cat)
|
||||
|
@ -35,13 +40,17 @@ def docs_to_json(docs, doc_id=0, ner_missing_tag="O"):
|
|||
if ent.kb_id_:
|
||||
link_dict = {(ent.start_char, ent.end_char): {ent.kb_id_: 1.0}}
|
||||
json_para["links"].append(link_dict)
|
||||
biluo_tags = offsets_to_biluo_tags(doc, json_para["entities"], missing=ner_missing_tag)
|
||||
biluo_tags = offsets_to_biluo_tags(
|
||||
doc, json_para["entities"], missing=ner_missing_tag
|
||||
)
|
||||
attrs = ("TAG", "POS", "MORPH", "LEMMA", "DEP", "ENT_IOB")
|
||||
include_annotation = {attr: doc.has_annotation(attr) for attr in attrs}
|
||||
for j, sent in enumerate(doc.sents):
|
||||
json_sent = {"tokens": [], "brackets": []}
|
||||
for token in sent:
|
||||
json_token = {"id": token.i, "orth": token.text, "space": token.whitespace_}
|
||||
json_token = {
|
||||
"id": token.i, "orth": token.text, "space": token.whitespace_
|
||||
}
|
||||
if include_annotation["TAG"]:
|
||||
json_token["tag"] = token.tag_
|
||||
if include_annotation["POS"]:
|
||||
|
@ -125,9 +134,14 @@ def json_to_annotations(doc):
|
|||
else:
|
||||
sent_starts.append(-1)
|
||||
if "brackets" in sent:
|
||||
brackets.extend((b["first"] + sent_start_i,
|
||||
b["last"] + sent_start_i, b["label"])
|
||||
for b in sent["brackets"])
|
||||
brackets.extend(
|
||||
(
|
||||
b["first"] + sent_start_i,
|
||||
b["last"] + sent_start_i,
|
||||
b["label"]
|
||||
)
|
||||
for b in sent["brackets"]
|
||||
)
|
||||
|
||||
example["token_annotation"] = dict(
|
||||
ids=ids,
|
||||
|
@ -160,6 +174,7 @@ def json_to_annotations(doc):
|
|||
)
|
||||
yield example
|
||||
|
||||
|
||||
def json_iterate(bytes utf8_str):
|
||||
# We should've made these files jsonl...But since we didn't, parse out
|
||||
# the docs one-by-one to reduce memory usage.
|
||||
|
|
|
@ -71,7 +71,8 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language":
|
|||
with nlp.select_pipes(enable=resume_components):
|
||||
logger.info("Resuming training for: %s", resume_components)
|
||||
nlp.resume_training(sgd=optimizer)
|
||||
# Make sure that listeners are defined before initializing further
|
||||
# Make sure that internal component names are synced and listeners are
|
||||
# defined before initializing further
|
||||
nlp._link_components()
|
||||
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
||||
if T["max_epochs"] == -1:
|
||||
|
@ -305,9 +306,14 @@ def convert_vectors(
|
|||
truncate: int,
|
||||
prune: int,
|
||||
mode: str = VectorsMode.default,
|
||||
attr: str = "ORTH",
|
||||
) -> None:
|
||||
vectors_loc = ensure_path(vectors_loc)
|
||||
if vectors_loc and vectors_loc.parts[-1].endswith(".npz"):
|
||||
if attr != "ORTH":
|
||||
raise ValueError(
|
||||
"ORTH is the only attribute supported for vectors in .npz format."
|
||||
)
|
||||
nlp.vocab.vectors = Vectors(
|
||||
strings=nlp.vocab.strings, data=numpy.load(vectors_loc.open("rb"))
|
||||
)
|
||||
|
@ -335,11 +341,15 @@ def convert_vectors(
|
|||
nlp.vocab.vectors = Vectors(
|
||||
strings=nlp.vocab.strings,
|
||||
data=vectors_data,
|
||||
attr=attr,
|
||||
**floret_settings,
|
||||
)
|
||||
else:
|
||||
nlp.vocab.vectors = Vectors(
|
||||
strings=nlp.vocab.strings, data=vectors_data, keys=vector_keys
|
||||
strings=nlp.vocab.strings,
|
||||
data=vectors_data,
|
||||
keys=vector_keys,
|
||||
attr=attr,
|
||||
)
|
||||
nlp.vocab.deduplicate_vectors()
|
||||
if prune >= 1 and mode != VectorsMode.floret:
|
||||
|
|
|
@ -518,7 +518,7 @@ def load_model_from_path(
|
|||
if not meta:
|
||||
meta = get_model_meta(model_path)
|
||||
config_path = model_path / "config.cfg"
|
||||
overrides = dict_to_dot(config)
|
||||
overrides = dict_to_dot(config, for_overrides=True)
|
||||
config = load_config(config_path, overrides=overrides)
|
||||
nlp = load_model_from_config(
|
||||
config,
|
||||
|
@ -1486,14 +1486,19 @@ def dot_to_dict(values: Dict[str, Any]) -> Dict[str, dict]:
|
|||
return result
|
||||
|
||||
|
||||
def dict_to_dot(obj: Dict[str, dict]) -> Dict[str, Any]:
|
||||
def dict_to_dot(obj: Dict[str, dict], *, for_overrides: bool = False) -> Dict[str, Any]:
|
||||
"""Convert dot notation to a dict. For example: {"token": {"pos": True,
|
||||
"_": {"xyz": True }}} becomes {"token.pos": True, "token._.xyz": True}.
|
||||
|
||||
values (Dict[str, dict]): The dict to convert.
|
||||
obj (Dict[str, dict]): The dict to convert.
|
||||
for_overrides (bool): Whether to enable special handling for registered
|
||||
functions in overrides.
|
||||
RETURNS (Dict[str, Any]): The key/value pairs.
|
||||
"""
|
||||
return {".".join(key): value for key, value in walk_dict(obj)}
|
||||
return {
|
||||
".".join(key): value
|
||||
for key, value in walk_dict(obj, for_overrides=for_overrides)
|
||||
}
|
||||
|
||||
|
||||
def dot_to_object(config: Config, section: str):
|
||||
|
@ -1535,13 +1540,20 @@ def set_dot_to_object(config: Config, section: str, value: Any) -> None:
|
|||
|
||||
|
||||
def walk_dict(
|
||||
node: Dict[str, Any], parent: List[str] = []
|
||||
node: Dict[str, Any], parent: List[str] = [], *, for_overrides: bool = False
|
||||
) -> Iterator[Tuple[List[str], Any]]:
|
||||
"""Walk a dict and yield the path and values of the leaves."""
|
||||
"""Walk a dict and yield the path and values of the leaves.
|
||||
|
||||
for_overrides (bool): Whether to treat registered functions that start with
|
||||
@ as final values rather than dicts to traverse.
|
||||
"""
|
||||
for key, value in node.items():
|
||||
key_parent = [*parent, key]
|
||||
if isinstance(value, dict):
|
||||
yield from walk_dict(value, key_parent)
|
||||
if isinstance(value, dict) and (
|
||||
not for_overrides
|
||||
or not any(value_key.startswith("@") for value_key in value)
|
||||
):
|
||||
yield from walk_dict(value, key_parent, for_overrides=for_overrides)
|
||||
else:
|
||||
yield (key_parent, value)
|
||||
|
||||
|
|
|
@ -1,10 +1,8 @@
|
|||
cimport numpy as np
|
||||
from cython.operator cimport dereference as deref
|
||||
from libc.stdint cimport uint32_t, uint64_t
|
||||
from libcpp.set cimport set as cppset
|
||||
from murmurhash.mrmr cimport hash128_x64
|
||||
|
||||
import functools
|
||||
import warnings
|
||||
from enum import Enum
|
||||
from typing import cast
|
||||
|
@ -15,9 +13,11 @@ from thinc.api import Ops, get_array_module, get_current_ops
|
|||
from thinc.backends import get_array_ops
|
||||
from thinc.types import Floats2d
|
||||
|
||||
from .attrs cimport ORTH, attr_id_t
|
||||
from .strings cimport StringStore
|
||||
|
||||
from . import util
|
||||
from .attrs import IDS
|
||||
from .errors import Errors, Warnings
|
||||
from .strings import get_string_id
|
||||
|
||||
|
@ -63,8 +63,9 @@ cdef class Vectors:
|
|||
cdef readonly uint32_t hash_seed
|
||||
cdef readonly unicode bow
|
||||
cdef readonly unicode eow
|
||||
cdef readonly attr_id_t attr
|
||||
|
||||
def __init__(self, *, strings=None, shape=None, data=None, keys=None, mode=Mode.default, minn=0, maxn=0, hash_count=1, hash_seed=0, bow="<", eow=">"):
|
||||
def __init__(self, *, strings=None, shape=None, data=None, keys=None, mode=Mode.default, minn=0, maxn=0, hash_count=1, hash_seed=0, bow="<", eow=">", attr="ORTH"):
|
||||
"""Create a new vector store.
|
||||
|
||||
strings (StringStore): The string store.
|
||||
|
@ -78,6 +79,8 @@ cdef class Vectors:
|
|||
hash_seed (int): The floret hash seed (default: 0).
|
||||
bow (str): The floret BOW string (default: "<").
|
||||
eow (str): The floret EOW string (default: ">").
|
||||
attr (Union[int, str]): The token attribute for the vector keys
|
||||
(default: "ORTH").
|
||||
|
||||
DOCS: https://spacy.io/api/vectors#init
|
||||
"""
|
||||
|
@ -100,10 +103,18 @@ cdef class Vectors:
|
|||
self.hash_seed = hash_seed
|
||||
self.bow = bow
|
||||
self.eow = eow
|
||||
if isinstance(attr, (int, long)):
|
||||
self.attr = attr
|
||||
else:
|
||||
attr = attr.upper()
|
||||
if attr == "TEXT":
|
||||
attr = "ORTH"
|
||||
self.attr = IDS.get(attr, ORTH)
|
||||
|
||||
if self.mode == Mode.default:
|
||||
if data is None:
|
||||
if shape is None:
|
||||
shape = (0,0)
|
||||
shape = (0, 0)
|
||||
ops = get_current_ops()
|
||||
data = ops.xp.zeros(shape, dtype="f")
|
||||
self._unset = cppset[int]({i for i in range(data.shape[0])})
|
||||
|
@ -244,11 +255,10 @@ cdef class Vectors:
|
|||
def __eq__(self, other):
|
||||
# Check for equality, with faster checks first
|
||||
return (
|
||||
self.shape == other.shape
|
||||
and self.key2row == other.key2row
|
||||
and self.to_bytes(exclude=["strings"])
|
||||
== other.to_bytes(exclude=["strings"])
|
||||
)
|
||||
self.shape == other.shape
|
||||
and self.key2row == other.key2row
|
||||
and self.to_bytes(exclude=["strings"]) == other.to_bytes(exclude=["strings"])
|
||||
)
|
||||
|
||||
def resize(self, shape, inplace=False):
|
||||
"""Resize the underlying vectors array. If inplace=True, the memory
|
||||
|
@ -504,11 +514,12 @@ cdef class Vectors:
|
|||
# vectors e.g. (10000, 300)
|
||||
# sims e.g. (1024, 10000)
|
||||
sims = xp.dot(batch, vectors.T)
|
||||
best_rows[i:i+batch_size] = xp.argpartition(sims, -n, axis=1)[:,-n:]
|
||||
scores[i:i+batch_size] = xp.partition(sims, -n, axis=1)[:,-n:]
|
||||
best_rows[i:i+batch_size] = xp.argpartition(sims, -n, axis=1)[:, -n:]
|
||||
scores[i:i+batch_size] = xp.partition(sims, -n, axis=1)[:, -n:]
|
||||
|
||||
if sort and n >= 2:
|
||||
sorted_index = xp.arange(scores.shape[0])[:,None][i:i+batch_size],xp.argsort(scores[i:i+batch_size], axis=1)[:,::-1]
|
||||
sorted_index = xp.arange(scores.shape[0])[:, None][i:i+batch_size], \
|
||||
xp.argsort(scores[i:i+batch_size], axis=1)[:, ::-1]
|
||||
scores[i:i+batch_size] = scores[sorted_index]
|
||||
best_rows[i:i+batch_size] = best_rows[sorted_index]
|
||||
|
||||
|
@ -522,8 +533,12 @@ cdef class Vectors:
|
|||
|
||||
numpy_rows = get_current_ops().to_numpy(best_rows)
|
||||
keys = xp.asarray(
|
||||
[[row2key[row] for row in numpy_rows[i] if row in row2key]
|
||||
for i in range(len(queries)) ], dtype="uint64")
|
||||
[
|
||||
[row2key[row] for row in numpy_rows[i] if row in row2key]
|
||||
for i in range(len(queries))
|
||||
],
|
||||
dtype="uint64"
|
||||
)
|
||||
return (keys, best_rows, scores)
|
||||
|
||||
def to_ops(self, ops: Ops):
|
||||
|
@ -543,6 +558,7 @@ cdef class Vectors:
|
|||
"hash_seed": self.hash_seed,
|
||||
"bow": self.bow,
|
||||
"eow": self.eow,
|
||||
"attr": self.attr,
|
||||
}
|
||||
|
||||
def _set_cfg(self, cfg):
|
||||
|
@ -553,6 +569,7 @@ cdef class Vectors:
|
|||
self.hash_seed = cfg.get("hash_seed", 0)
|
||||
self.bow = cfg.get("bow", "<")
|
||||
self.eow = cfg.get("eow", ">")
|
||||
self.attr = cfg.get("attr", ORTH)
|
||||
|
||||
def to_disk(self, path, *, exclude=tuple()):
|
||||
"""Save the current state to a directory.
|
||||
|
@ -564,9 +581,9 @@ cdef class Vectors:
|
|||
"""
|
||||
xp = get_array_module(self.data)
|
||||
if xp is numpy:
|
||||
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
|
||||
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False) # no-cython-lint
|
||||
else:
|
||||
save_array = lambda arr, file_: xp.save(file_, arr)
|
||||
save_array = lambda arr, file_: xp.save(file_, arr) # no-cython-lint
|
||||
|
||||
def save_vectors(path):
|
||||
# the source of numpy.save indicates that the file object is closed after use.
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
# cython: profile=True
|
||||
from libc.string cimport memcpy
|
||||
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
|
@ -19,7 +17,6 @@ from .errors import Errors
|
|||
from .lang.lex_attrs import LEX_ATTRS, get_lang, is_stop
|
||||
from .lang.norm_exceptions import BASE_NORMS
|
||||
from .lookups import Lookups
|
||||
from .util import registry
|
||||
from .vectors import Mode as VectorsMode
|
||||
from .vectors import Vectors
|
||||
|
||||
|
@ -50,8 +47,15 @@ cdef class Vocab:
|
|||
|
||||
DOCS: https://spacy.io/api/vocab
|
||||
"""
|
||||
def __init__(self, lex_attr_getters=None, strings=None, lookups=None,
|
||||
oov_prob=-20., writing_system=None, get_noun_chunks=None):
|
||||
def __init__(
|
||||
self,
|
||||
lex_attr_getters=None,
|
||||
strings=None,
|
||||
lookups=None,
|
||||
oov_prob=-20.,
|
||||
writing_system=None,
|
||||
get_noun_chunks=None
|
||||
):
|
||||
"""Create the vocabulary.
|
||||
|
||||
lex_attr_getters (dict): A dictionary mapping attribute IDs to
|
||||
|
@ -150,7 +154,6 @@ cdef class Vocab:
|
|||
cdef LexemeC* lex
|
||||
cdef hash_t key = self.strings[string]
|
||||
lex = <LexemeC*>self._by_orth.get(key)
|
||||
cdef size_t addr
|
||||
if lex != NULL:
|
||||
assert lex.orth in self.strings
|
||||
if lex.orth != key:
|
||||
|
@ -352,8 +355,13 @@ cdef class Vocab:
|
|||
self[orth]
|
||||
# Make prob negative so it sorts by rank ascending
|
||||
# (key2row contains the rank)
|
||||
priority = [(-lex.prob, self.vectors.key2row[lex.orth], lex.orth)
|
||||
for lex in self if lex.orth in self.vectors.key2row]
|
||||
priority = []
|
||||
cdef Lexeme lex
|
||||
cdef attr_t value
|
||||
for lex in self:
|
||||
value = Lexeme.get_struct_attr(lex.c, self.vectors.attr)
|
||||
if value in self.vectors.key2row:
|
||||
priority.append((-lex.prob, self.vectors.key2row[value], value))
|
||||
priority.sort()
|
||||
indices = xp.asarray([i for (prob, i, key) in priority], dtype="uint64")
|
||||
keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64")
|
||||
|
@ -386,8 +394,10 @@ cdef class Vocab:
|
|||
"""
|
||||
if isinstance(orth, str):
|
||||
orth = self.strings.add(orth)
|
||||
if self.has_vector(orth):
|
||||
return self.vectors[orth]
|
||||
cdef Lexeme lex = self[orth]
|
||||
key = Lexeme.get_struct_attr(lex.c, self.vectors.attr)
|
||||
if self.has_vector(key):
|
||||
return self.vectors[key]
|
||||
xp = get_array_module(self.vectors.data)
|
||||
vectors = xp.zeros((self.vectors_length,), dtype="f")
|
||||
return vectors
|
||||
|
@ -403,15 +413,16 @@ cdef class Vocab:
|
|||
"""
|
||||
if isinstance(orth, str):
|
||||
orth = self.strings.add(orth)
|
||||
if self.vectors.is_full and orth not in self.vectors:
|
||||
cdef Lexeme lex = self[orth]
|
||||
key = Lexeme.get_struct_attr(lex.c, self.vectors.attr)
|
||||
if self.vectors.is_full and key not in self.vectors:
|
||||
new_rows = max(100, int(self.vectors.shape[0]*1.3))
|
||||
if self.vectors.shape[1] == 0:
|
||||
width = vector.size
|
||||
else:
|
||||
width = self.vectors.shape[1]
|
||||
self.vectors.resize((new_rows, width))
|
||||
lex = self[orth] # Add word to vocab if necessary
|
||||
row = self.vectors.add(orth, vector=vector)
|
||||
row = self.vectors.add(key, vector=vector)
|
||||
if row >= 0:
|
||||
lex.rank = row
|
||||
|
||||
|
@ -426,7 +437,9 @@ cdef class Vocab:
|
|||
"""
|
||||
if isinstance(orth, str):
|
||||
orth = self.strings.add(orth)
|
||||
return orth in self.vectors
|
||||
cdef Lexeme lex = self[orth]
|
||||
key = Lexeme.get_struct_attr(lex.c, self.vectors.attr)
|
||||
return key in self.vectors
|
||||
|
||||
property lookups:
|
||||
def __get__(self):
|
||||
|
@ -440,7 +453,6 @@ cdef class Vocab:
|
|||
self.lookups.get_table("lexeme_norm"),
|
||||
)
|
||||
|
||||
|
||||
def to_disk(self, path, *, exclude=tuple()):
|
||||
"""Save the current state to a directory.
|
||||
|
||||
|
@ -453,7 +465,6 @@ cdef class Vocab:
|
|||
path = util.ensure_path(path)
|
||||
if not path.exists():
|
||||
path.mkdir()
|
||||
setters = ["strings", "vectors"]
|
||||
if "strings" not in exclude:
|
||||
self.strings.to_disk(path / "strings.json")
|
||||
if "vectors" not in exclude:
|
||||
|
@ -472,7 +483,6 @@ cdef class Vocab:
|
|||
DOCS: https://spacy.io/api/vocab#to_disk
|
||||
"""
|
||||
path = util.ensure_path(path)
|
||||
getters = ["strings", "vectors"]
|
||||
if "strings" not in exclude:
|
||||
self.strings.from_disk(path / "strings.json") # TODO: add exclude?
|
||||
if "vectors" not in exclude:
|
||||
|
|
|
@ -303,7 +303,7 @@ mapped to a zero vector. See the documentation on
|
|||
| `nM` | The width of the static vectors. ~~Optional[int]~~ |
|
||||
| `dropout` | Optional dropout rate. If set, it's applied per dimension over the whole batch. Defaults to `None`. ~~Optional[float]~~ |
|
||||
| `init_W` | The [initialization function](https://thinc.ai/docs/api-initializers). Defaults to [`glorot_uniform_init`](https://thinc.ai/docs/api-initializers#glorot_uniform_init). ~~Callable[[Ops, Tuple[int, ...]]], FloatsXd]~~ |
|
||||
| `key_attr` | Defaults to `"ORTH"`. ~~str~~ |
|
||||
| `key_attr` | This setting is ignored in spaCy v3.6+. To set a custom key attribute for vectors, configure it through [`Vectors`](/api/vectors) or [`spacy init vectors`](/api/cli#init-vectors). Defaults to `"ORTH"`. ~~str~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Ragged]~~ |
|
||||
|
||||
### spacy.FeatureExtractor.v1 {id="FeatureExtractor"}
|
||||
|
|
|
@ -876,7 +876,7 @@ token-to-vector embedding component like [`Tok2Vec`](/api/tok2vec) or
|
|||
training a pipeline with components sourced from an existing pipeline: if
|
||||
multiple components (e.g. tagger, parser, NER) listen to the same
|
||||
token-to-vector component, but some of them are frozen and not updated, their
|
||||
performance may degrade significally as the token-to-vector component is updated
|
||||
performance may degrade significantly as the token-to-vector component is updated
|
||||
with new data. To prevent this, listeners can be replaced with a standalone
|
||||
token-to-vector layer that is owned by the component and doesn't change if the
|
||||
component isn't updated.
|
||||
|
|
|
@ -60,7 +60,7 @@ architectures and their arguments and hyperparameters.
|
|||
| `model` | A model instance that is given a list of documents and predicts a probability for each token. ~~Model[List[Doc], Floats2d]~~ |
|
||||
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||
| `threshold` | Minimum probability to consider a prediction positive. Defaults to `0.5`. ~~float~~ |
|
||||
| `max_length` | Maximum length of the produced spans, defaults to `None` meaning unlimited length. ~~Optional[int]~~ |
|
||||
| `max_length` | Maximum length of the produced spans, defaults to `25`. ~~Optional[int]~~ |
|
||||
| `min_length` | Minimum length of the produced spans, defaults to `None` meaning shortest span length is 1. ~~Optional[int]~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
||||
|
||||
|
|
|
@ -59,6 +59,7 @@ modified later.
|
|||
| `hash_seed` <Tag variant="new">3.2</Tag> | The floret hash seed (default: `0`). ~~int~~ |
|
||||
| `bow` <Tag variant="new">3.2</Tag> | The floret BOW string (default: `"<"`). ~~str~~ |
|
||||
| `eow` <Tag variant="new">3.2</Tag> | The floret EOW string (default: `">"`). ~~str~~ |
|
||||
| `attr` <Tag variant="new">3.6</Tag> | The token attribute for the vector keys (default: `"ORTH"`). ~~Union[int, str]~~ |
|
||||
|
||||
## Vectors.\_\_getitem\_\_ {id="getitem",tag="method"}
|
||||
|
||||
|
@ -452,8 +453,9 @@ Load state from a binary string.
|
|||
|
||||
## Attributes {id="attributes"}
|
||||
|
||||
| Name | Description |
|
||||
| --------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `data` | Stored vectors data. `numpy` is used for CPU vectors, `cupy` for GPU vectors. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ |
|
||||
| `key2row` | Dictionary mapping word hashes to rows in the `Vectors.data` table. ~~Dict[int, int]~~ |
|
||||
| `keys` | Array keeping the keys in order, such that `keys[vectors.key2row[key]] == key`. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ |
|
||||
| Name | Description |
|
||||
| ----------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `data` | Stored vectors data. `numpy` is used for CPU vectors, `cupy` for GPU vectors. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ |
|
||||
| `key2row` | Dictionary mapping word hashes to rows in the `Vectors.data` table. ~~Dict[int, int]~~ |
|
||||
| `keys` | Array keeping the keys in order, such that `keys[vectors.key2row[key]] == key`. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ |
|
||||
| `attr` <Tag variant="new">3.6</Tag> | The token attribute for the vector keys. ~~int~~ |
|
||||
|
|
|
@ -113,7 +113,7 @@ print(doc[2].morph) # 'Case=Nom|Person=2|PronType=Prs'
|
|||
print(doc[2].pos_) # 'PRON'
|
||||
```
|
||||
|
||||
## Lemmatization {id="lemmatization",model="lemmatizer",version="3"}
|
||||
## Lemmatization {id="lemmatization",version="3"}
|
||||
|
||||
spaCy provides two pipeline components for lemmatization:
|
||||
|
||||
|
@ -170,7 +170,7 @@ nlp = spacy.blank("sv")
|
|||
nlp.add_pipe("lemmatizer", config={"mode": "lookup"})
|
||||
```
|
||||
|
||||
### Rule-based lemmatizer {id="lemmatizer-rule"}
|
||||
### Rule-based lemmatizer {id="lemmatizer-rule",model="morphologizer"}
|
||||
|
||||
When training pipelines that include a component that assigns part-of-speech
|
||||
tags (a morphologizer or a tagger with a [POS mapping](#mappings-exceptions)), a
|
||||
|
@ -194,7 +194,7 @@ information, without consulting the context of the token. The rule-based
|
|||
lemmatizer also accepts list-based exception files. For English, these are
|
||||
acquired from [WordNet](https://wordnet.princeton.edu/).
|
||||
|
||||
### Trainable lemmatizer
|
||||
### Trainable lemmatizer {id="lemmatizer-train",model="trainable_lemmatizer"}
|
||||
|
||||
The [`EditTreeLemmatizer`](/api/edittreelemmatizer) can learn form-to-lemma
|
||||
transformations from a training corpus that includes lemma annotations. This
|
||||
|
|
|
@ -11,7 +11,6 @@ menu:
|
|||
- ['Custom Functions', 'custom-functions']
|
||||
- ['Initialization', 'initialization']
|
||||
- ['Data Utilities', 'data']
|
||||
- ['Parallel Training', 'parallel-training']
|
||||
- ['Internal API', 'api']
|
||||
---
|
||||
|
||||
|
@ -1565,77 +1564,6 @@ token-based annotations like the dependency parse or entity labels, you'll need
|
|||
to take care to adjust the `Example` object so its annotations match and remain
|
||||
valid.
|
||||
|
||||
## Parallel & distributed training with Ray {id="parallel-training"}
|
||||
|
||||
> #### Installation
|
||||
>
|
||||
> ```bash
|
||||
> $ pip install -U %%SPACY_PKG_NAME[ray]%%SPACY_PKG_FLAGS
|
||||
> # Check that the CLI is registered
|
||||
> $ python -m spacy ray --help
|
||||
> ```
|
||||
|
||||
[Ray](https://ray.io/) is a fast and simple framework for building and running
|
||||
**distributed applications**. You can use Ray to train spaCy on one or more
|
||||
remote machines, potentially speeding up your training process. Parallel
|
||||
training won't always be faster though – it depends on your batch size, models,
|
||||
and hardware.
|
||||
|
||||
<Infobox variant="warning">
|
||||
|
||||
To use Ray with spaCy, you need the
|
||||
[`spacy-ray`](https://github.com/explosion/spacy-ray) package installed.
|
||||
Installing the package will automatically add the `ray` command to the spaCy
|
||||
CLI.
|
||||
|
||||
</Infobox>
|
||||
|
||||
The [`spacy ray train`](/api/cli#ray-train) command follows the same API as
|
||||
[`spacy train`](/api/cli#train), with a few extra options to configure the Ray
|
||||
setup. You can optionally set the `--address` option to point to your Ray
|
||||
cluster. If it's not set, Ray will run locally.
|
||||
|
||||
```bash
|
||||
python -m spacy ray train config.cfg --n-workers 2
|
||||
```
|
||||
|
||||
<Project id="integrations/ray">
|
||||
|
||||
Get started with parallel training using our project template. It trains a
|
||||
simple model on a Universal Dependencies Treebank and lets you parallelize the
|
||||
training with Ray.
|
||||
|
||||
</Project>
|
||||
|
||||
### How parallel training works {id="parallel-training-details"}
|
||||
|
||||
Each worker receives a shard of the **data** and builds a copy of the **model
|
||||
and optimizer** from the [`config.cfg`](#config). It also has a communication
|
||||
channel to **pass gradients and parameters** to the other workers. Additionally,
|
||||
each worker is given ownership of a subset of the parameter arrays. Every
|
||||
parameter array is owned by exactly one worker, and the workers are given a
|
||||
mapping so they know which worker owns which parameter.
|
||||
|
||||
![Illustration of setup](/images/spacy-ray.svg)
|
||||
|
||||
As training proceeds, every worker will be computing gradients for **all** of
|
||||
the model parameters. When they compute gradients for parameters they don't own,
|
||||
they'll **send them to the worker** that does own that parameter, along with a
|
||||
version identifier so that the owner can decide whether to discard the gradient.
|
||||
Workers use the gradients they receive and the ones they compute locally to
|
||||
update the parameters they own, and then broadcast the updated array and a new
|
||||
version ID to the other workers.
|
||||
|
||||
This training procedure is **asynchronous** and **non-blocking**. Workers always
|
||||
push their gradient increments and parameter updates, they do not have to pull
|
||||
them and block on the result, so the transfers can happen in the background,
|
||||
overlapped with the actual training work. The workers also do not have to stop
|
||||
and wait for each other ("synchronize") at the start of each batch. This is very
|
||||
useful for spaCy, because spaCy is often trained on long documents, which means
|
||||
**batches can vary in size** significantly. Uneven workloads make synchronous
|
||||
gradient descent inefficient, because if one batch is slow, all of the other
|
||||
workers are stuck waiting for it to complete before they can continue.
|
||||
|
||||
## Internal training API {id="api"}
|
||||
|
||||
<Infobox variant="danger">
|
||||
|
|
143
website/docs/usage/v3-6.mdx
Normal file
143
website/docs/usage/v3-6.mdx
Normal file
|
@ -0,0 +1,143 @@
|
|||
---
|
||||
title: What's New in v3.6
|
||||
teaser: New features and how to upgrade
|
||||
menu:
|
||||
- ['New Features', 'features']
|
||||
- ['Upgrading Notes', 'upgrading']
|
||||
---
|
||||
|
||||
## New features {id="features",hidden="true"}
|
||||
|
||||
spaCy v3.6 adds the new [`SpanFinder`](/api/spanfinder) component to the core
|
||||
spaCy library and new trained pipelines for Slovenian.
|
||||
|
||||
### SpanFinder {id="spanfinder"}
|
||||
|
||||
The [`SpanFinder`](/api/spanfinder) component identifies potentially
|
||||
overlapping, unlabeled spans by identifying span start and end tokens. It is
|
||||
intended for use in combination with a component like
|
||||
[`SpanCategorizer`](/api/spancategorizer) that may further filter or label the
|
||||
spans. See our
|
||||
[Spancat blog post](https://explosion.ai/blog/spancat#span-finder) for a more
|
||||
detailed introduction to the span finder.
|
||||
|
||||
To train a pipeline with `span_finder` + `spancat`, remember to add
|
||||
`span_finder` (and its `tok2vec` or `transformer` if required) to
|
||||
`[training.annotating_components]` so that the `spancat` component can be
|
||||
trained directly from its predictions:
|
||||
|
||||
```ini
|
||||
[nlp]
|
||||
pipeline = ["tok2vec","span_finder","spancat"]
|
||||
|
||||
[training]
|
||||
annotating_components = ["tok2vec","span_finder"]
|
||||
```
|
||||
|
||||
In practice it can be helpful to initially train the `span_finder` separately
|
||||
before [sourcing](/usage/processing-pipelines#sourced-components) it (along with
|
||||
its `tok2vec`) into the `spancat` pipeline for further training. Otherwise the
|
||||
memory usage can spike for `spancat` in the first few training steps if the
|
||||
`span_finder` makes a large number of predictions.
|
||||
|
||||
### Additional features and improvements {id="additional-features-and-improvements"}
|
||||
|
||||
- Language updates:
|
||||
- Add initial support for Malay.
|
||||
- Update Latin defaults to support noun chunks, update lexical/tokenizer
|
||||
settings and add example sentences.
|
||||
- Support `spancat_singlelabel` in `spacy debug data` CLI.
|
||||
- Add `doc.spans` rendering to `spacy evaluate` CLI displaCy output.
|
||||
- Support custom token/lexeme attribute for vectors.
|
||||
- Add option to return scores separately keyed by component name with
|
||||
`spacy evaluate --per-component`, `Language.evaluate(per_component=True)` and
|
||||
`Scorer.score(per_component=True)`. This is useful when the pipeline contains
|
||||
more than one of the same component like `textcat` that may have overlapping
|
||||
scores keys.
|
||||
- Typing updates for `PhraseMatcher` and `SpanGroup`.
|
||||
|
||||
## Trained pipelines {id="pipelines"}
|
||||
|
||||
### New trained pipelines {id="new-pipelines"}
|
||||
|
||||
v3.6 introduces new pipelines for Slovenian, which use the trainable lemmatizer
|
||||
and [floret vectors](https://github.com/explosion/floret).
|
||||
|
||||
| Package | UPOS | Parser LAS | NER F |
|
||||
| ------------------------------------------------- | ---: | ---------: | ----: |
|
||||
| [`sl_core_news_sm`](/models/sl#sl_core_news_sm) | 96.9 | 82.1 | 62.9 |
|
||||
| [`sl_core_news_md`](/models/sl#sl_core_news_md) | 97.6 | 84.3 | 73.5 |
|
||||
| [`sl_core_news_lg`](/models/sl#sl_core_news_lg) | 97.7 | 84.3 | 79.0 |
|
||||
| [`sl_core_news_trf`](/models/sl#sl_core_news_trf) | 99.0 | 91.7 | 90.0 |
|
||||
|
||||
### Pipeline updates {id="pipeline-updates"}
|
||||
|
||||
The English pipelines have been updated to improve handling of contractions with
|
||||
various apostrophes and to lemmatize "get" as a passive auxiliary.
|
||||
|
||||
The Danish pipeline `da_core_news_trf` has been updated to use
|
||||
[`vesteinn/DanskBERT`](https://huggingface.co/vesteinn/DanskBERT) with
|
||||
performance improvements across the board.
|
||||
|
||||
## Notes about upgrading from v3.5 {id="upgrading"}
|
||||
|
||||
### SpanGroup spans are now required to be from the same doc {id="spangroup-spans"}
|
||||
|
||||
When initializing a `SpanGroup`, there is a new check to verify that all added
|
||||
spans refer to the current doc. Without this check, it was possible to run into
|
||||
string store or other errors.
|
||||
|
||||
One place this may crop up is when creating `Example` objects for training with
|
||||
custom spans:
|
||||
|
||||
```diff
|
||||
doc = Doc(nlp.vocab, words=tokens) # predicted doc
|
||||
example = Example.from_dict(doc, {"ner": iob_tags})
|
||||
# use the reference doc when creating reference spans
|
||||
- span = Span(doc, 0, 5, "ORG")
|
||||
+ span = Span(example.reference, 0, 5, "ORG")
|
||||
example.reference.spans[spans_key] = [span]
|
||||
```
|
||||
|
||||
### Pipeline package version compatibility {id="version-compat"}
|
||||
|
||||
> #### Using legacy implementations
|
||||
>
|
||||
> In spaCy v3, you'll still be able to load and reference legacy implementations
|
||||
> via [`spacy-legacy`](https://github.com/explosion/spacy-legacy), even if the
|
||||
> components or architectures change and newer versions are available in the
|
||||
> core library.
|
||||
|
||||
When you're loading a pipeline package trained with an earlier version of spaCy
|
||||
v3, you will see a warning telling you that the pipeline may be incompatible.
|
||||
This doesn't necessarily have to be true, but we recommend running your
|
||||
pipelines against your test suite or evaluation data to make sure there are no
|
||||
unexpected results.
|
||||
|
||||
If you're using one of the [trained pipelines](/models) we provide, you should
|
||||
run [`spacy download`](/api/cli#download) to update to the latest version. To
|
||||
see an overview of all installed packages and their compatibility, you can run
|
||||
[`spacy validate`](/api/cli#validate).
|
||||
|
||||
If you've trained your own custom pipeline and you've confirmed that it's still
|
||||
working as expected, you can update the spaCy version requirements in the
|
||||
[`meta.json`](/api/data-formats#meta):
|
||||
|
||||
```diff
|
||||
- "spacy_version": ">=3.5.0,<3.6.0",
|
||||
+ "spacy_version": ">=3.5.0,<3.7.0",
|
||||
```
|
||||
|
||||
### Updating v3.5 configs
|
||||
|
||||
To update a config from spaCy v3.5 with the new v3.6 settings, run
|
||||
[`init fill-config`](/api/cli#init-fill-config):
|
||||
|
||||
```cli
|
||||
$ python -m spacy init fill-config config-v3.5.cfg config-v3.6.cfg
|
||||
```
|
||||
|
||||
In many cases ([`spacy train`](/api/cli#train),
|
||||
[`spacy.load`](/api/top-level#spacy.load)), the new defaults will be filled in
|
||||
automatically, but you'll need to fill in the new settings to run
|
||||
[`debug config`](/api/cli#debug) and [`debug data`](/api/cli#debug-data).
|
|
@ -222,7 +222,9 @@
|
|||
},
|
||||
{
|
||||
"code": "la",
|
||||
"name": "Latin"
|
||||
"name": "Latin",
|
||||
"example": "In principio creavit Deus caelum et terram.",
|
||||
"has_examples": true
|
||||
},
|
||||
{
|
||||
"code": "lb",
|
||||
|
@ -339,7 +341,10 @@
|
|||
},
|
||||
{
|
||||
"code": "sl",
|
||||
"name": "Slovenian"
|
||||
"name": "Slovenian",
|
||||
"example": "France Prešeren je umrl 8. februarja 1849 v Kranju",
|
||||
"has_examples": true,
|
||||
"models": ["sl_core_news_sm", "sl_core_news_md", "sl_core_news_lg", "sl_core_news_trf"]
|
||||
},
|
||||
{
|
||||
"code": "sq",
|
||||
|
|
|
@ -14,7 +14,8 @@
|
|||
{ "text": "New in v3.2", "url": "/usage/v3-2" },
|
||||
{ "text": "New in v3.3", "url": "/usage/v3-3" },
|
||||
{ "text": "New in v3.4", "url": "/usage/v3-4" },
|
||||
{ "text": "New in v3.5", "url": "/usage/v3-5" }
|
||||
{ "text": "New in v3.5", "url": "/usage/v3-5" },
|
||||
{ "text": "New in v3.6", "url": "/usage/v3-6" }
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
"indexName": "spacy"
|
||||
},
|
||||
"binderUrl": "explosion/spacy-io-binder",
|
||||
"binderVersion": "3.5",
|
||||
"binderVersion": "3.6",
|
||||
"sections": [
|
||||
{ "id": "usage", "title": "Usage Documentation", "theme": "blue" },
|
||||
{ "id": "models", "title": "Models Documentation", "theme": "blue" },
|
||||
|
|
|
@ -4376,7 +4376,7 @@
|
|||
"code_example": [
|
||||
"import spacy",
|
||||
"",
|
||||
"nlp = spacy.load(\"en_core_web_sm\", disable=[\"ner\"])",
|
||||
"nlp = spacy.load(\"en_core_web_sm\", exclude=[\"ner\"])",
|
||||
"nlp.add_pipe(\"span_marker\", config={\"model\": \"tomaarsen/span-marker-roberta-large-ontonotes5\"})",
|
||||
"",
|
||||
"text = \"\"\"Cleopatra VII, also known as Cleopatra the Great, was the last active ruler of the \\",
|
||||
|
|
|
@ -13,6 +13,8 @@ import 'prismjs/components/prism-json.min.js'
|
|||
import 'prismjs/components/prism-markdown.min.js'
|
||||
import 'prismjs/components/prism-python.min.js'
|
||||
import 'prismjs/components/prism-yaml.min.js'
|
||||
import 'prismjs/components/prism-docker.min.js'
|
||||
import 'prismjs/components/prism-r.min.js'
|
||||
|
||||
import { isString } from './util'
|
||||
import Link, { OptionalLink } from './link'
|
||||
|
@ -172,7 +174,7 @@ const convertLine = ({ line, prompt, lang }) => {
|
|||
return handlePromot({ lineFlat, prompt })
|
||||
}
|
||||
|
||||
return lang === 'none' || !lineFlat ? (
|
||||
return lang === 'none' || !lineFlat || !(lang in Prism.languages) ? (
|
||||
lineFlat
|
||||
) : (
|
||||
<span
|
||||
|
|
|
@ -58,8 +58,8 @@ const AlertSpace = ({ nightly, legacy }) => {
|
|||
}
|
||||
|
||||
const navAlert = (
|
||||
<Link to="/usage/v3-5" noLinkLayout>
|
||||
<strong>💥 Out now:</strong> spaCy v3.5
|
||||
<Link to="/usage/v3-6" noLinkLayout>
|
||||
<strong>💥 Out now:</strong> spaCy v3.6
|
||||
</Link>
|
||||
)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user