mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 02:04:07 +03:00
* Add updated unsupervised_train script, from the wsd directory
This commit is contained in:
parent
1d21eebda4
commit
eb3057d806
|
@ -4,16 +4,16 @@ from __future__ import unicode_literals
|
|||
|
||||
import os
|
||||
from os import path
|
||||
import shutil
|
||||
import codecs
|
||||
import random
|
||||
import shutil
|
||||
|
||||
import plac
|
||||
import cProfile
|
||||
import pstats
|
||||
import re
|
||||
|
||||
from spacy.munge.corpus import DocsDB
|
||||
from spacy.munge.read_semcor import read_semcor
|
||||
|
||||
from spacy.en import English
|
||||
from spacy.syntax.util import Config
|
||||
|
||||
|
||||
def score_model(nlp, semcor_docs):
|
||||
|
@ -24,8 +24,11 @@ def score_model(nlp, semcor_docs):
|
|||
for pnum, para in paras:
|
||||
for snum, sent in para:
|
||||
words = [t.orth for t in sent]
|
||||
if len(words) < 2:
|
||||
continue
|
||||
tokens = nlp.tokenizer.tokens_from_list(words)
|
||||
nlp.tagger(tokens)
|
||||
nlp.parser(tokens)
|
||||
nlp.senser(tokens)
|
||||
for i, token in enumerate(tokens):
|
||||
if '_' in sent[i].orth:
|
||||
|
@ -33,40 +36,44 @@ def score_model(nlp, semcor_docs):
|
|||
elif sent[i].supersense != 'NO_SENSE':
|
||||
n_right += token.sense_ == sent[i].supersense
|
||||
n_wrong += token.sense_ != sent[i].supersense
|
||||
return n_multi, n_right, n_wrong
|
||||
return n_right / (n_right + n_wrong)
|
||||
|
||||
|
||||
def train(Language, model_dir, docs, annotations, report_every=1000, n_docs=1000):
|
||||
def train(Language, model_dir, train_docs, dev_docs,
|
||||
report_every=1000, n_docs=1000, seed=0):
|
||||
wsd_model_dir = path.join(model_dir, 'wsd')
|
||||
if path.exists(pos_model_dir):
|
||||
shutil.rmtree(pos_model_dir)
|
||||
if path.exists(wsd_model_dir):
|
||||
shutil.rmtree(wsd_model_dir)
|
||||
os.mkdir(wsd_model_dir)
|
||||
|
||||
Config.write(wsd_model_dir, 'config', seed=seed)
|
||||
|
||||
nlp = Language(data_dir=model_dir)
|
||||
nlp = Language(data_dir=model_dir, load_vectors=False)
|
||||
|
||||
for doc in corpus:
|
||||
tokens = nlp(doc, senser=False)
|
||||
loss = 0
|
||||
n_tokens = 0
|
||||
for i, doc in enumerate(train_docs):
|
||||
tokens = nlp(doc, parse=True, entity=False)
|
||||
loss += nlp.senser.train(tokens)
|
||||
if i and not i % report_every:
|
||||
n_tokens += len(tokens)
|
||||
if i and i % report_every == 0:
|
||||
acc = score_model(nlp, dev_docs)
|
||||
print loss, n_right / (n_right + n_wrong)
|
||||
print i, loss / n_tokens, acc
|
||||
nlp.senser.end_training()
|
||||
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
docs_db_loc=("Location of the documents SQLite database"),
|
||||
train_loc=("Location of the documents SQLite database"),
|
||||
dev_loc=("Location of the SemCor corpus directory"),
|
||||
model_dir=("Location of the models directory"),
|
||||
n_docs=("Number of training documents", "option", "n", int),
|
||||
verbose=("Verbose error reporting", "flag", "v", bool),
|
||||
debug=("Debug mode", "flag", "d", bool),
|
||||
seed=("Random seed", "option", "s", int),
|
||||
)
|
||||
def main(train_loc, dev_loc, model_dir, n_docs=0):
|
||||
train_docs = DocsDB(train_loc)
|
||||
def main(train_loc, dev_loc, model_dir, n_docs=1000000, seed=0):
|
||||
train_docs = DocsDB(train_loc, limit=n_docs)
|
||||
dev_docs = read_semcor(dev_loc)
|
||||
train(English, model_dir, train_docs, dev_docs, report_every=10, n_docs=1000):
|
||||
train(English, model_dir, train_docs, dev_docs, report_every=100, seed=seed)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue
Block a user