* Add updated unsupervised_train script, from the wsd directory

This commit is contained in:
Matthew Honnibal 2015-07-06 09:33:00 +02:00
parent 1d21eebda4
commit eb3057d806

View File

@ -4,16 +4,16 @@ from __future__ import unicode_literals
import os
from os import path
import shutil
import codecs
import random
import shutil
import plac
import cProfile
import pstats
import re
from spacy.munge.corpus import DocsDB
from spacy.munge.read_semcor import read_semcor
from spacy.en import English
from spacy.syntax.util import Config
def score_model(nlp, semcor_docs):
@ -24,8 +24,11 @@ def score_model(nlp, semcor_docs):
for pnum, para in paras:
for snum, sent in para:
words = [t.orth for t in sent]
if len(words) < 2:
continue
tokens = nlp.tokenizer.tokens_from_list(words)
nlp.tagger(tokens)
nlp.parser(tokens)
nlp.senser(tokens)
for i, token in enumerate(tokens):
if '_' in sent[i].orth:
@ -33,40 +36,44 @@ def score_model(nlp, semcor_docs):
elif sent[i].supersense != 'NO_SENSE':
n_right += token.sense_ == sent[i].supersense
n_wrong += token.sense_ != sent[i].supersense
return n_multi, n_right, n_wrong
return n_right / (n_right + n_wrong)
def train(Language, model_dir, docs, annotations, report_every=1000, n_docs=1000):
def train(Language, model_dir, train_docs, dev_docs,
report_every=1000, n_docs=1000, seed=0):
wsd_model_dir = path.join(model_dir, 'wsd')
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
if path.exists(wsd_model_dir):
shutil.rmtree(wsd_model_dir)
os.mkdir(wsd_model_dir)
Config.write(wsd_model_dir, 'config', seed=seed)
nlp = Language(data_dir=model_dir)
nlp = Language(data_dir=model_dir, load_vectors=False)
for doc in corpus:
tokens = nlp(doc, senser=False)
loss = 0
n_tokens = 0
for i, doc in enumerate(train_docs):
tokens = nlp(doc, parse=True, entity=False)
loss += nlp.senser.train(tokens)
if i and not i % report_every:
n_tokens += len(tokens)
if i and i % report_every == 0:
acc = score_model(nlp, dev_docs)
print loss, n_right / (n_right + n_wrong)
print i, loss / n_tokens, acc
nlp.senser.end_training()
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
@plac.annotations(
docs_db_loc=("Location of the documents SQLite database"),
train_loc=("Location of the documents SQLite database"),
dev_loc=("Location of the SemCor corpus directory"),
model_dir=("Location of the models directory"),
n_docs=("Number of training documents", "option", "n", int),
verbose=("Verbose error reporting", "flag", "v", bool),
debug=("Debug mode", "flag", "d", bool),
seed=("Random seed", "option", "s", int),
)
def main(train_loc, dev_loc, model_dir, n_docs=0):
train_docs = DocsDB(train_loc)
def main(train_loc, dev_loc, model_dir, n_docs=1000000, seed=0):
train_docs = DocsDB(train_loc, limit=n_docs)
dev_docs = read_semcor(dev_loc)
train(English, model_dir, train_docs, dev_docs, report_every=10, n_docs=1000):
train(English, model_dir, train_docs, dev_docs, report_every=100, seed=seed)
if __name__ == '__main__':