mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Fix overfitting test (#6011)
* remove unused MORPH_RULES * fix textcat architecture in overfitting test
This commit is contained in:
parent
b97d98783a
commit
eb56377799
|
@ -28,8 +28,6 @@ def test_tagger_begin_training_tag_map():
|
|||
|
||||
TAGS = ("N", "V", "J")
|
||||
|
||||
MORPH_RULES = {"V": {"like": {"lemma": "luck"}}}
|
||||
|
||||
TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
|
|
|
@ -84,9 +84,8 @@ def test_overfitting_IO():
|
|||
# Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly
|
||||
fix_random_seed(0)
|
||||
nlp = English()
|
||||
textcat = nlp.add_pipe("textcat")
|
||||
# Set exclusive labels
|
||||
textcat.model.attrs["multi_label"] = False
|
||||
textcat = nlp.add_pipe("textcat", config={"model": {"exclusive_classes": True}})
|
||||
train_examples = []
|
||||
for text, annotations in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||
|
@ -103,9 +102,8 @@ def test_overfitting_IO():
|
|||
test_text = "I am happy."
|
||||
doc = nlp(test_text)
|
||||
cats = doc.cats
|
||||
# note that by default, exclusive_classes = false so we need a bigger error margin
|
||||
assert cats["POSITIVE"] > 0.8
|
||||
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.1)
|
||||
assert cats["POSITIVE"] > 0.9
|
||||
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
|
||||
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
|
@ -113,8 +111,8 @@ def test_overfitting_IO():
|
|||
nlp2 = util.load_model_from_path(tmp_dir)
|
||||
doc2 = nlp2(test_text)
|
||||
cats2 = doc2.cats
|
||||
assert cats2["POSITIVE"] > 0.8
|
||||
assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.1)
|
||||
assert cats2["POSITIVE"] > 0.9
|
||||
assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
|
||||
|
||||
# Test scoring
|
||||
scores = nlp.evaluate(train_examples, scorer_cfg={"positive_label": "POSITIVE"})
|
||||
|
|
Loading…
Reference in New Issue
Block a user