mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	Tmp
This commit is contained in:
		
							parent
							
								
									ac63274e15
								
							
						
					
					
						commit
						eb8234181c
					
				
							
								
								
									
										13
									
								
								spacy/syntax/_neural.pxd
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								spacy/syntax/_neural.pxd
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,13 @@ | |||
| from thinc.linear.avgtron cimport AveragedPerceptron | ||||
| from thinc.neural.nn cimport NeuralNet | ||||
| from thinc.linear.features cimport ConjunctionExtracter | ||||
| from thinc.structs cimport NeuralNetC, ExampleC | ||||
| 
 | ||||
| 
 | ||||
| cdef class ParserNeuralNet(NeuralNet): | ||||
|     cdef ConjunctionExtracter extracter | ||||
|     cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil | ||||
| 
 | ||||
| 
 | ||||
| cdef class ParserPerceptron(AveragedPerceptron): | ||||
|     cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil | ||||
							
								
								
									
										189
									
								
								spacy/syntax/_neural.pyx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										189
									
								
								spacy/syntax/_neural.pyx
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,189 @@ | |||
| # cython: infer_types=True | ||||
| # cython: profile=True | ||||
| from libc.stdint cimport uint64_t | ||||
| from libc.string cimport memcpy, memset | ||||
| 
 | ||||
| from cymem.cymem cimport Pool, Address | ||||
| from murmurhash.mrmr cimport hash64 | ||||
| 
 | ||||
| from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t, idx_t | ||||
| from thinc.linear.avgtron cimport AveragedPerceptron | ||||
| from thinc.linalg cimport VecVec | ||||
| from thinc.structs cimport NeuralNetC, SparseArrayC, ExampleC | ||||
| from thinc.structs cimport FeatureC | ||||
| from thinc.extra.eg cimport Example | ||||
| 
 | ||||
| from preshed.maps cimport map_get | ||||
| from preshed.maps cimport MapStruct | ||||
| 
 | ||||
| from ..structs cimport TokenC | ||||
| from ._state cimport StateC | ||||
| from ._parse_features cimport fill_context | ||||
| from ._parse_features cimport CONTEXT_SIZE | ||||
| from ._parse_features cimport fill_context | ||||
| from ._parse_features cimport * | ||||
| 
 | ||||
| 
 | ||||
| cdef class ParserPerceptron(AveragedPerceptron): | ||||
|     @property | ||||
|     def widths(self): | ||||
|         return (self.extracter.nr_templ,) | ||||
| 
 | ||||
|     def update(self, Example eg): | ||||
|         '''Does regression on negative cost. Sort of cute?''' | ||||
|         self.time += 1 | ||||
|         cdef weight_t loss = 0.0 | ||||
|         best = eg.best | ||||
|         for clas in range(eg.c.nr_class): | ||||
|             if not eg.c.is_valid[clas]: | ||||
|                 continue | ||||
|             if eg.c.scores[clas] < eg.c.scores[best]: | ||||
|                 continue | ||||
|             loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2 | ||||
|             d_loss = 2 * (-eg.c.costs[clas] - eg.c.scores[clas]) | ||||
|             step = d_loss * 0.001 | ||||
|             for feat in eg.c.features[:eg.c.nr_feat]: | ||||
|                 self.update_weight(feat.key, clas, feat.value * step) | ||||
|         return int(loss) | ||||
| 
 | ||||
|     cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil:  | ||||
|         state = <const StateC*>_state | ||||
|         fill_context(eg.atoms, state) | ||||
|         eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms) | ||||
| 
 | ||||
| 
 | ||||
| cdef class ParserNeuralNet(NeuralNet): | ||||
|     def __init__(self, shape, **kwargs): | ||||
|         vector_widths = [4] * 76 | ||||
|         slots =  [0, 1, 2, 3] # S0 | ||||
|         slots += [4, 5, 6, 7] # S1 | ||||
|         slots += [8, 9, 10, 11] # S2 | ||||
|         slots += [12, 13, 14, 15] # S3+ | ||||
|         slots += [16, 17, 18, 19] # B0 | ||||
|         slots += [20, 21, 22, 23] # B1 | ||||
|         slots += [24, 25, 26, 27] # B2 | ||||
|         slots += [28, 29, 30, 31] # B3+ | ||||
|         slots += [32, 33, 34, 35] * 2 # S0l, S0r | ||||
|         slots += [36, 37, 38, 39] * 2 # B0l, B0r | ||||
|         slots += [40, 41, 42, 43] * 2 # S1l, S1r | ||||
|         slots += [44, 45, 46, 47] * 2 # S2l, S2r | ||||
|         slots += [48, 49, 50, 51, 52, 53, 54, 55] | ||||
|         slots += [53, 54, 55, 56] | ||||
|         input_length = sum(vector_widths[slot] for slot in slots) | ||||
|         widths = [input_length] + shape | ||||
|         NeuralNet.__init__(self, widths, embed=(vector_widths, slots), **kwargs) | ||||
| 
 | ||||
|     @property | ||||
|     def nr_feat(self): | ||||
|         return 2000 | ||||
| 
 | ||||
|     cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil:  | ||||
|         memset(eg.features, 0, 2000 * sizeof(FeatureC)) | ||||
|         state = <const StateC*>_state | ||||
|         fill_context(eg.atoms, state) | ||||
|         feats = eg.features | ||||
| 
 | ||||
|         feats = _add_token(feats, 0, state.S_(0), 1.0) | ||||
|         feats = _add_token(feats, 4, state.S_(1), 1.0) | ||||
|         feats = _add_token(feats, 8, state.S_(2), 1.0) | ||||
|         # Rest of the stack, with exponential decay | ||||
|         for i in range(3, state.stack_depth()): | ||||
|             feats = _add_token(feats, 12, state.S_(i), 1.0 * 0.5**(i-2)) | ||||
|         feats = _add_token(feats, 16, state.B_(0), 1.0) | ||||
|         feats = _add_token(feats, 20, state.B_(1), 1.0) | ||||
|         feats = _add_token(feats, 24, state.B_(2), 1.0) | ||||
|         # Rest of the buffer, with exponential decay | ||||
|         for i in range(3, min(8, state.buffer_length())): | ||||
|             feats = _add_token(feats, 28, state.B_(i), 1.0 * 0.5**(i-2)) | ||||
|         feats = _add_subtree(feats, 32, state, state.S(0)) | ||||
|         feats = _add_subtree(feats, 40, state, state.B(0)) | ||||
|         feats = _add_subtree(feats, 48, state, state.S(1)) | ||||
|         feats = _add_subtree(feats, 56, state, state.S(2)) | ||||
|         feats = _add_pos_bigram(feats, 64, state.S_(0), state.B_(0)) | ||||
|         feats = _add_pos_bigram(feats, 65, state.S_(1), state.S_(0)) | ||||
|         feats = _add_pos_bigram(feats, 66, state.S_(1), state.B_(0)) | ||||
|         feats = _add_pos_bigram(feats, 67, state.S_(0), state.B_(1)) | ||||
|         feats = _add_pos_bigram(feats, 68, state.S_(0), state.R_(state.S(0), 1)) | ||||
|         feats = _add_pos_bigram(feats, 69, state.S_(0), state.R_(state.S(0), 2)) | ||||
|         feats = _add_pos_bigram(feats, 70, state.S_(0), state.L_(state.S(0), 1)) | ||||
|         feats = _add_pos_bigram(feats, 71, state.S_(0), state.L_(state.S(0), 2)) | ||||
|         feats = _add_pos_trigram(feats, 72, state.S_(1), state.S_(0), state.B_(0)) | ||||
|         feats = _add_pos_trigram(feats, 73, state.S_(0), state.B_(0), state.B_(1)) | ||||
|         feats = _add_pos_trigram(feats, 74, state.S_(0), state.R_(state.S(0), 1), | ||||
|                                  state.R_(state.S(0), 2)) | ||||
|         feats = _add_pos_trigram(feats, 75, state.S_(0), state.L_(state.S(0), 1), | ||||
|                                  state.L_(state.S(0), 2)) | ||||
|         eg.nr_feat = feats - eg.features | ||||
| 
 | ||||
|     cdef void _set_delta_lossC(self, weight_t* delta_loss, | ||||
|             const weight_t* cost, const weight_t* scores) nogil: | ||||
|         for i in range(self.c.widths[self.c.nr_layer-1]): | ||||
|             delta_loss[i] = cost[i] | ||||
| 
 | ||||
|     cdef void _softmaxC(self, weight_t* out) nogil: | ||||
|         pass | ||||
| 
 | ||||
| 
 | ||||
| cdef inline FeatureC* _add_token(FeatureC* feats, | ||||
|         int slot, const TokenC* token, weight_t value) nogil: | ||||
|     # Word | ||||
|     feats.i = slot | ||||
|     feats.key = token.lex.norm | ||||
|     feats.value = value | ||||
|     feats += 1 | ||||
|     # POS tag | ||||
|     feats.i = slot+1 | ||||
|     feats.key = token.tag | ||||
|     feats.value = value | ||||
|     feats += 1 | ||||
|     # Dependency label  | ||||
|     feats.i = slot+2 | ||||
|     feats.key = token.dep | ||||
|     feats.value = value | ||||
|     feats += 1 | ||||
|     # Word, label, tag | ||||
|     feats.i = slot+3 | ||||
|     cdef uint64_t key[3] | ||||
|     key[0] = token.lex.cluster | ||||
|     key[1] = token.tag | ||||
|     key[2] = token.dep | ||||
|     feats.key = hash64(key, sizeof(key), 0) | ||||
|     feats.value = value | ||||
|     feats += 1 | ||||
|     return feats | ||||
| 
 | ||||
| 
 | ||||
| cdef inline FeatureC* _add_subtree(FeatureC* feats, int slot, const StateC* state, int t) nogil: | ||||
|     value = 1.0 | ||||
|     for i in range(state.n_R(t)): | ||||
|         feats = _add_token(feats, slot, state.R_(t, i+1), value) | ||||
|         value *= 0.5 | ||||
|     slot += 4 | ||||
|     value = 1.0 | ||||
|     for i in range(state.n_L(t)): | ||||
|         feats = _add_token(feats, slot, state.L_(t, i+1), value) | ||||
|         value *= 0.5 | ||||
|     return feats | ||||
| 
 | ||||
| 
 | ||||
| cdef inline FeatureC* _add_pos_bigram(FeatureC* feat, int slot, | ||||
|         const TokenC* t1, const TokenC* t2) nogil: | ||||
|     cdef uint64_t[2] key | ||||
|     key[0] = t1.tag | ||||
|     key[1] = t2.tag | ||||
|     feat.i = slot | ||||
|     feat.key = hash64(key, sizeof(key), slot) | ||||
|     feat.value = 1.0 | ||||
|     return feat+1 | ||||
|   | ||||
| 
 | ||||
| cdef inline FeatureC* _add_pos_trigram(FeatureC* feat, int slot, | ||||
|         const TokenC* t1, const TokenC* t2, const TokenC* t3) nogil: | ||||
|     cdef uint64_t[3] key | ||||
|     key[0] = t1.tag | ||||
|     key[1] = t2.tag | ||||
|     key[2] = t3.tag | ||||
|     feat.i = slot | ||||
|     feat.key = hash64(key, sizeof(key), slot) | ||||
|     feat.value = 1.0 | ||||
|     return feat+1 | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user