mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	Add textcat docstring
This commit is contained in:
		
							parent
							
								
									8a13f510d6
								
							
						
					
					
						commit
						ebf9a7acbf
					
				|  | @ -69,8 +69,19 @@ subword_features = true | ||||||
|     default_score_weights={"cats_score": 1.0}, |     default_score_weights={"cats_score": 1.0}, | ||||||
| ) | ) | ||||||
| def make_textcat( | def make_textcat( | ||||||
|     nlp: Language, name: str, model: Model, labels: Iterable[str] |     nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], labels: Iterable[str] | ||||||
| ) -> "TextCategorizer": | ) -> "TextCategorizer": | ||||||
|  |     """Create a TextCategorizer compoment. The text categorizer predicts categories | ||||||
|  |     over a whole document. It can learn one or more labels, and the labels can | ||||||
|  |     be mutually exclusive (i.e. one true label per doc) or non-mutually exclusive | ||||||
|  |     (i.e. zero or more labels may be true per doc). The multi-label setting is | ||||||
|  |     controlled by the model instance that's provided. | ||||||
|  | 
 | ||||||
|  |     model (Model[List[Doc], List[Floats2d]]): A model instance that predicts | ||||||
|  |         scores for each category. | ||||||
|  |     labels (list): A list of categories to learn. If empty, the model infers the | ||||||
|  |         categories from the data. | ||||||
|  |     """ | ||||||
|     return TextCategorizer(nlp.vocab, model, name, labels=labels) |     return TextCategorizer(nlp.vocab, model, name, labels=labels) | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user