mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
Add textcat docstring
This commit is contained in:
parent
8a13f510d6
commit
ebf9a7acbf
|
@ -69,8 +69,19 @@ subword_features = true
|
|||
default_score_weights={"cats_score": 1.0},
|
||||
)
|
||||
def make_textcat(
|
||||
nlp: Language, name: str, model: Model, labels: Iterable[str]
|
||||
nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], labels: Iterable[str]
|
||||
) -> "TextCategorizer":
|
||||
"""Create a TextCategorizer compoment. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels can
|
||||
be mutually exclusive (i.e. one true label per doc) or non-mutually exclusive
|
||||
(i.e. zero or more labels may be true per doc). The multi-label setting is
|
||||
controlled by the model instance that's provided.
|
||||
|
||||
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
||||
scores for each category.
|
||||
labels (list): A list of categories to learn. If empty, the model infers the
|
||||
categories from the data.
|
||||
"""
|
||||
return TextCategorizer(nlp.vocab, model, name, labels=labels)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user