mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Rename Transformer listener (#6001)
* rename to spacy-transformers.TransformerListener * add some more tok2vec tests * use select_pipes * fix docs - annotation setter was not changed in the end
This commit is contained in:
parent
6ac3299e2e
commit
ec14744ee4
|
@ -42,7 +42,7 @@ factory = "tagger"
|
|||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy-transformers.Tok2VecListener.v1"
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.tagger.model.tok2vec.pooling]
|
||||
|
@ -62,7 +62,7 @@ use_upper = false
|
|||
nO = null
|
||||
|
||||
[components.parser.model.tok2vec]
|
||||
@architectures = "spacy-transformers.Tok2VecListener.v1"
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.parser.model.tok2vec.pooling]
|
||||
|
@ -82,7 +82,7 @@ use_upper = false
|
|||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy-transformers.Tok2VecListener.v1"
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.ner.model.tok2vec.pooling]
|
||||
|
|
|
@ -37,7 +37,7 @@ cdef class Pipe:
|
|||
and returned. This usually happens under the hood when the nlp object
|
||||
is called on a text and all components are applied to the Doc.
|
||||
|
||||
docs (Doc): The Doc to preocess.
|
||||
docs (Doc): The Doc to process.
|
||||
RETURNS (Doc): The processed Doc.
|
||||
|
||||
DOCS: https://spacy.io/api/pipe#call
|
||||
|
|
|
@ -88,7 +88,7 @@ class Tok2Vec(Pipe):
|
|||
"""Add context-sensitive embeddings to the Doc.tensor attribute, allowing
|
||||
them to be used as features by downstream components.
|
||||
|
||||
docs (Doc): The Doc to preocess.
|
||||
docs (Doc): The Doc to process.
|
||||
RETURNS (Doc): The processed Doc.
|
||||
|
||||
DOCS: https://spacy.io/api/tok2vec#call
|
||||
|
|
|
@ -3,11 +3,18 @@ import pytest
|
|||
from spacy.ml.models.tok2vec import build_Tok2Vec_model
|
||||
from spacy.ml.models.tok2vec import MultiHashEmbed, CharacterEmbed
|
||||
from spacy.ml.models.tok2vec import MishWindowEncoder, MaxoutWindowEncoder
|
||||
from spacy.pipeline.tok2vec import Tok2Vec, Tok2VecListener
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.tokens import Doc
|
||||
|
||||
from spacy.gold import Example
|
||||
from spacy import util
|
||||
from spacy.lang.en import English
|
||||
from .util import get_batch
|
||||
|
||||
from thinc.api import Config
|
||||
|
||||
from numpy.testing import assert_equal
|
||||
|
||||
|
||||
def test_empty_doc():
|
||||
width = 128
|
||||
|
@ -41,7 +48,7 @@ def test_tok2vec_batch_sizes(batch_size, width, embed_size):
|
|||
also_use_static_vectors=False,
|
||||
also_embed_subwords=True,
|
||||
),
|
||||
MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3,),
|
||||
MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3),
|
||||
)
|
||||
tok2vec.initialize()
|
||||
vectors, backprop = tok2vec.begin_update(batch)
|
||||
|
@ -74,3 +81,89 @@ def test_tok2vec_configs(width, embed_arch, embed_config, encode_arch, encode_co
|
|||
assert len(vectors) == len(docs)
|
||||
assert vectors[0].shape == (len(docs[0]), width)
|
||||
backprop(vectors)
|
||||
|
||||
|
||||
def test_init_tok2vec():
|
||||
# Simple test to initialize the default tok2vec
|
||||
nlp = English()
|
||||
tok2vec = nlp.add_pipe("tok2vec")
|
||||
assert tok2vec.listeners == []
|
||||
nlp.begin_training()
|
||||
|
||||
|
||||
cfg_string = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec","tagger"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
rows = 2000
|
||||
also_embed_subwords = true
|
||||
also_use_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
"""
|
||||
|
||||
TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
]
|
||||
|
||||
def test_tok2vec_listener():
|
||||
orig_config = Config().from_str(cfg_string)
|
||||
nlp, config = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
||||
assert nlp.pipe_names == ["tok2vec", "tagger"]
|
||||
tagger = nlp.get_pipe("tagger")
|
||||
tok2vec = nlp.get_pipe("tok2vec")
|
||||
tagger_tok2vec = tagger.model.get_ref("tok2vec")
|
||||
assert isinstance(tok2vec, Tok2Vec)
|
||||
assert isinstance(tagger_tok2vec, Tok2VecListener)
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
for tag in t[1]["tags"]:
|
||||
tagger.add_label(tag)
|
||||
|
||||
# Check that the Tok2Vec component finds it listeners
|
||||
assert tok2vec.listeners == []
|
||||
optimizer = nlp.begin_training(lambda: train_examples)
|
||||
assert tok2vec.listeners == [tagger_tok2vec]
|
||||
|
||||
for i in range(5):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
|
||||
doc = nlp("Running the pipeline as a whole.")
|
||||
doc_tensor = tagger_tok2vec.predict([doc])[0]
|
||||
assert_equal(doc.tensor, doc_tensor)
|
||||
|
||||
# TODO: should this warn or error?
|
||||
nlp.select_pipes(disable="tok2vec")
|
||||
assert nlp.pipe_names == ["tagger"]
|
||||
nlp("Running the pipeline with the Tok2Vec component disabled.")
|
||||
|
|
|
@ -346,13 +346,13 @@ in other components, see
|
|||
| `tokenizer_config` | Tokenizer settings passed to [`transformers.AutoTokenizer`](https://huggingface.co/transformers/model_doc/auto.html#transformers.AutoTokenizer). ~~Dict[str, Any]~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], FullTransformerBatch]~~ |
|
||||
|
||||
### spacy-transformers.Tok2VecListener.v1 {#transformers-Tok2VecListener}
|
||||
### spacy-transformers.TransformerListener.v1 {#TransformerListener}
|
||||
|
||||
> #### Example Config
|
||||
>
|
||||
> ```ini
|
||||
> [model]
|
||||
> @architectures = "spacy-transformers.Tok2VecListener.v1"
|
||||
> @architectures = "spacy-transformers.TransformerListener.v1"
|
||||
> grad_factor = 1.0
|
||||
>
|
||||
> [model.pooling]
|
||||
|
|
|
@ -225,7 +225,7 @@ transformers as subnetworks directly, you can also use them via the
|
|||
|
||||
![The processing pipeline with the transformer component](../images/pipeline_transformer.svg)
|
||||
|
||||
By default, the `Transformer` component sets the
|
||||
The `Transformer` component sets the
|
||||
[`Doc._.trf_data`](/api/transformer#custom_attributes) extension attribute,
|
||||
which lets you access the transformers outputs at runtime.
|
||||
|
||||
|
@ -303,7 +303,7 @@ component:
|
|||
>
|
||||
> ```python
|
||||
> from spacy_transformers import Transformer, TransformerModel
|
||||
> from spacy_transformers.annotation_setters import configure_trfdata_setter
|
||||
> from spacy_transformers.annotation_setters import null_annotation_setter
|
||||
> from spacy_transformers.span_getters import get_doc_spans
|
||||
>
|
||||
> trf = Transformer(
|
||||
|
@ -313,7 +313,7 @@ component:
|
|||
> get_spans=get_doc_spans,
|
||||
> tokenizer_config={"use_fast": True},
|
||||
> ),
|
||||
> annotation_setter=configure_trfdata_setter(),
|
||||
> annotation_setter=null_annotation_setter,
|
||||
> max_batch_items=4096,
|
||||
> )
|
||||
> ```
|
||||
|
@ -333,7 +333,7 @@ tokenizer_config = {"use_fast": true}
|
|||
@span_getters = "doc_spans.v1"
|
||||
|
||||
[components.transformer.annotation_setter]
|
||||
@annotation_setters = "spacy-transformers.trfdata_setter.v1"
|
||||
@annotation_setters = "spacy-transformers.null_annotation_setter.v1"
|
||||
|
||||
```
|
||||
|
||||
|
|
|
@ -64,7 +64,7 @@ menu:
|
|||
[`TransformerData`](/api/transformer#transformerdata),
|
||||
[`FullTransformerBatch`](/api/transformer#fulltransformerbatch)
|
||||
- **Architectures: ** [TransformerModel](/api/architectures#TransformerModel),
|
||||
[Tok2VecListener](/api/architectures#transformers-Tok2VecListener),
|
||||
[TransformerListener](/api/architectures#TransformerListener),
|
||||
[Tok2VecTransformer](/api/architectures#Tok2VecTransformer)
|
||||
- **Models:** [`en_core_trf_lg_sm`](/models/en)
|
||||
- **Implementation:**
|
||||
|
|
Loading…
Reference in New Issue
Block a user