mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Restore changes to pipeline.pyx from nn-beam-parser branch
This commit is contained in:
parent
931509d96a
commit
ec482580b5
|
@ -42,7 +42,7 @@ from .compat import json_dumps
|
|||
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
|
||||
from ._ml import rebatch, Tok2Vec, flatten, get_col, doc2feats
|
||||
from ._ml import build_text_classifier
|
||||
from ._ml import build_text_classifier, build_tagger_model
|
||||
from .parts_of_speech import X
|
||||
|
||||
|
||||
|
@ -138,7 +138,7 @@ class TokenVectorEncoder(BaseThincComponent):
|
|||
name = 'tensorizer'
|
||||
|
||||
@classmethod
|
||||
def Model(cls, width=128, embed_size=7500, **cfg):
|
||||
def Model(cls, width=128, embed_size=4000, **cfg):
|
||||
"""Create a new statistical model for the class.
|
||||
|
||||
width (int): Output size of the model.
|
||||
|
@ -253,23 +253,25 @@ class NeuralTagger(BaseThincComponent):
|
|||
self.cfg = dict(cfg)
|
||||
|
||||
def __call__(self, doc):
|
||||
tags = self.predict([doc.tensor])
|
||||
tags = self.predict(([doc], [doc.tensor]))
|
||||
self.set_annotations([doc], tags)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
for docs in cytoolz.partition_all(batch_size, stream):
|
||||
docs = list(docs)
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
tag_ids = self.predict(tokvecs)
|
||||
tag_ids = self.predict((docs, tokvecs))
|
||||
self.set_annotations(docs, tag_ids)
|
||||
yield from docs
|
||||
|
||||
def predict(self, tokvecs):
|
||||
scores = self.model(tokvecs)
|
||||
def predict(self, docs_tokvecs):
|
||||
scores = self.model(docs_tokvecs)
|
||||
scores = self.model.ops.flatten(scores)
|
||||
guesses = scores.argmax(axis=1)
|
||||
if not isinstance(guesses, numpy.ndarray):
|
||||
guesses = guesses.get()
|
||||
tokvecs = docs_tokvecs[1]
|
||||
guesses = self.model.ops.unflatten(guesses,
|
||||
[tv.shape[0] for tv in tokvecs])
|
||||
return guesses
|
||||
|
@ -282,6 +284,8 @@ class NeuralTagger(BaseThincComponent):
|
|||
cdef Vocab vocab = self.vocab
|
||||
for i, doc in enumerate(docs):
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, 'get'):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
for j, tag_id in enumerate(doc_tag_ids):
|
||||
# Don't clobber preset POS tags
|
||||
if doc.c[j].tag == 0 and doc.c[j].pos == 0:
|
||||
|
@ -294,8 +298,7 @@ class NeuralTagger(BaseThincComponent):
|
|||
|
||||
if self.model.nI is None:
|
||||
self.model.nI = tokvecs[0].shape[1]
|
||||
|
||||
tag_scores, bp_tag_scores = self.model.begin_update(tokvecs, drop=drop)
|
||||
tag_scores, bp_tag_scores = self.model.begin_update(docs_tokvecs, drop=drop)
|
||||
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
||||
|
||||
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
|
||||
|
@ -346,10 +349,8 @@ class NeuralTagger(BaseThincComponent):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return with_flatten(
|
||||
chain(Maxout(token_vector_width, token_vector_width),
|
||||
Softmax(n_tags, token_vector_width)))
|
||||
|
||||
return build_tagger_model(n_tags, token_vector_width)
|
||||
|
||||
def use_params(self, params):
|
||||
with self.model.use_params(params):
|
||||
yield
|
||||
|
@ -432,7 +433,7 @@ class NeuralLabeller(NeuralTagger):
|
|||
|
||||
@property
|
||||
def labels(self):
|
||||
return self.cfg.get('labels', {})
|
||||
return self.cfg.setdefault('labels', {})
|
||||
|
||||
@labels.setter
|
||||
def labels(self, value):
|
||||
|
@ -455,10 +456,8 @@ class NeuralLabeller(NeuralTagger):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return with_flatten(
|
||||
chain(Maxout(token_vector_width, token_vector_width),
|
||||
Softmax(n_tags, token_vector_width)))
|
||||
|
||||
return build_tagger_model(n_tags, token_vector_width)
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
scores = self.model.ops.flatten(scores)
|
||||
cdef int idx = 0
|
||||
|
@ -654,6 +653,14 @@ cdef class NeuralEntityRecognizer(NeuralParser):
|
|||
|
||||
nr_feature = 6
|
||||
|
||||
def predict_confidences(self, docs):
|
||||
tensors = [d.tensor for d in docs]
|
||||
samples = []
|
||||
for i in range(10):
|
||||
states = self.parse_batch(docs, tensors, drop=0.3)
|
||||
for state in states:
|
||||
samples.append(self._get_entities(state))
|
||||
|
||||
def __reduce__(self):
|
||||
return (NeuralEntityRecognizer, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user