mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-14 03:26:24 +03:00
Support beam parser
This commit is contained in:
parent
ea53647362
commit
ecf91a2dbb
259
spacy/syntax/beam_parser.pyx
Normal file
259
spacy/syntax/beam_parser.pyx
Normal file
|
@ -0,0 +1,259 @@
|
||||||
|
# cython: profile=True
|
||||||
|
# cython: experimental_cpp_class_def=True
|
||||||
|
# cython: cdivision=True
|
||||||
|
# cython: infer_types=True
|
||||||
|
"""
|
||||||
|
MALT-style dependency parser
|
||||||
|
"""
|
||||||
|
from __future__ import unicode_literals
|
||||||
|
cimport cython
|
||||||
|
|
||||||
|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
||||||
|
|
||||||
|
from libc.stdint cimport uint32_t, uint64_t
|
||||||
|
from libc.string cimport memset, memcpy
|
||||||
|
from libc.stdlib cimport rand
|
||||||
|
from libc.math cimport log, exp, isnan, isinf
|
||||||
|
import random
|
||||||
|
import os.path
|
||||||
|
from os import path
|
||||||
|
import shutil
|
||||||
|
import json
|
||||||
|
import math
|
||||||
|
|
||||||
|
from cymem.cymem cimport Pool, Address
|
||||||
|
from murmurhash.mrmr cimport real_hash64 as hash64
|
||||||
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||||
|
|
||||||
|
|
||||||
|
from util import Config
|
||||||
|
|
||||||
|
from thinc.linear.features cimport ConjunctionExtracter
|
||||||
|
from thinc.structs cimport FeatureC, ExampleC
|
||||||
|
|
||||||
|
from thinc.extra.search cimport Beam
|
||||||
|
from thinc.extra.search cimport MaxViolation
|
||||||
|
from thinc.extra.eg cimport Example
|
||||||
|
from thinc.extra.mb cimport Minibatch
|
||||||
|
|
||||||
|
from ..structs cimport TokenC
|
||||||
|
|
||||||
|
from ..tokens.doc cimport Doc
|
||||||
|
from ..strings cimport StringStore
|
||||||
|
|
||||||
|
from .transition_system cimport TransitionSystem, Transition
|
||||||
|
|
||||||
|
from ..gold cimport GoldParse
|
||||||
|
|
||||||
|
from . import _parse_features
|
||||||
|
from ._parse_features cimport CONTEXT_SIZE
|
||||||
|
from ._parse_features cimport fill_context
|
||||||
|
from .stateclass cimport StateClass
|
||||||
|
from .parser cimport Parser
|
||||||
|
|
||||||
|
|
||||||
|
DEBUG = False
|
||||||
|
def set_debug(val):
|
||||||
|
global DEBUG
|
||||||
|
DEBUG = val
|
||||||
|
|
||||||
|
|
||||||
|
def get_templates(name):
|
||||||
|
pf = _parse_features
|
||||||
|
if name == 'ner':
|
||||||
|
return pf.ner
|
||||||
|
elif name == 'debug':
|
||||||
|
return pf.unigrams
|
||||||
|
else:
|
||||||
|
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
|
||||||
|
pf.tree_shape + pf.trigrams)
|
||||||
|
|
||||||
|
|
||||||
|
cdef int BEAM_WIDTH = 16
|
||||||
|
cdef weight_t BEAM_DENSITY = 0.01
|
||||||
|
|
||||||
|
cdef class BeamParser(Parser):
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
self.beam_width = kwargs.get('beam_width', BEAM_WIDTH)
|
||||||
|
self.beam_density = kwargs.get('beam_density', BEAM_DENSITY)
|
||||||
|
Parser.__init__(self, *args, **kwargs)
|
||||||
|
|
||||||
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
|
||||||
|
self._parseC(tokens, length, nr_feat, nr_class)
|
||||||
|
|
||||||
|
cdef int _parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) except -1:
|
||||||
|
cdef Beam beam = Beam(self.moves.n_moves, self.beam_width, min_density=self.beam_density)
|
||||||
|
beam.initialize(_init_state, length, tokens)
|
||||||
|
beam.check_done(_check_final_state, NULL)
|
||||||
|
if beam.is_done:
|
||||||
|
_cleanup(beam)
|
||||||
|
return 0
|
||||||
|
while not beam.is_done:
|
||||||
|
self._advance_beam(beam, None, False)
|
||||||
|
state = <StateClass>beam.at(0)
|
||||||
|
self.moves.finalize_state(state.c)
|
||||||
|
for i in range(length):
|
||||||
|
tokens[i] = state.c._sent[i]
|
||||||
|
_cleanup(beam)
|
||||||
|
|
||||||
|
def train(self, Doc tokens, GoldParse gold_parse, itn=0):
|
||||||
|
self.moves.preprocess_gold(gold_parse)
|
||||||
|
cdef Beam pred = Beam(self.moves.n_moves, self.beam_width)
|
||||||
|
pred.initialize(_init_state, tokens.length, tokens.c)
|
||||||
|
pred.check_done(_check_final_state, NULL)
|
||||||
|
|
||||||
|
cdef Beam gold = Beam(self.moves.n_moves, self.beam_width, min_density=0.0)
|
||||||
|
gold.initialize(_init_state, tokens.length, tokens.c)
|
||||||
|
gold.check_done(_check_final_state, NULL)
|
||||||
|
violn = MaxViolation()
|
||||||
|
itn = 0
|
||||||
|
while not pred.is_done and not gold.is_done:
|
||||||
|
# We search separately here, to allow for ambiguity in the gold parse.
|
||||||
|
self._advance_beam(pred, gold_parse, False)
|
||||||
|
self._advance_beam(gold, gold_parse, True)
|
||||||
|
violn.check_crf(pred, gold)
|
||||||
|
if pred.loss > 0 and pred.min_score > (gold.score + self.model.time):
|
||||||
|
break
|
||||||
|
itn += 1
|
||||||
|
else:
|
||||||
|
# The non-monotonic oracle makes it difficult to ensure final costs are
|
||||||
|
# correct. Therefore do final correction
|
||||||
|
for i in range(pred.size):
|
||||||
|
if is_gold(<StateClass>pred.at(i), gold_parse, self.moves.strings):
|
||||||
|
pred._states[i].loss = 0.0
|
||||||
|
elif pred._states[i].loss == 0.0:
|
||||||
|
pred._states[i].loss = 1.0
|
||||||
|
violn.check_crf(pred, gold)
|
||||||
|
assert pred.size >= 1
|
||||||
|
assert gold.size >= 1
|
||||||
|
#_check_train_integrity(pred, gold, gold_parse, self.moves)
|
||||||
|
histories = zip(violn.p_probs, violn.p_hist) + zip(violn.g_probs, violn.g_hist)
|
||||||
|
min_grad = 0.001 ** (itn+1)
|
||||||
|
histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad]
|
||||||
|
random.shuffle(histories)
|
||||||
|
for grad, hist in histories:
|
||||||
|
assert not math.isnan(grad) and not math.isinf(grad), hist
|
||||||
|
self.model._update_from_history(self.moves, tokens, hist, grad)
|
||||||
|
_cleanup(pred)
|
||||||
|
_cleanup(gold)
|
||||||
|
return pred.loss
|
||||||
|
|
||||||
|
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold):
|
||||||
|
cdef atom_t[CONTEXT_SIZE] context
|
||||||
|
cdef Pool mem = Pool()
|
||||||
|
features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
|
||||||
|
if False:
|
||||||
|
mb = Minibatch(self.model.widths, beam.size)
|
||||||
|
for i in range(beam.size):
|
||||||
|
stcls = <StateClass>beam.at(i)
|
||||||
|
if stcls.c.is_final():
|
||||||
|
nr_feat = 0
|
||||||
|
else:
|
||||||
|
nr_feat = self.model.set_featuresC(context, features, stcls.c)
|
||||||
|
self.moves.set_valid(beam.is_valid[i], stcls.c)
|
||||||
|
mb.c.push_back(features, nr_feat, beam.costs[i], beam.is_valid[i], 0)
|
||||||
|
self.model(mb)
|
||||||
|
for i in range(beam.size):
|
||||||
|
memcpy(beam.scores[i], mb.c.scores(i), mb.c.nr_out() * sizeof(beam.scores[i][0]))
|
||||||
|
else:
|
||||||
|
for i in range(beam.size):
|
||||||
|
stcls = <StateClass>beam.at(i)
|
||||||
|
if not stcls.is_final():
|
||||||
|
nr_feat = self.model.set_featuresC(context, features, stcls.c)
|
||||||
|
self.moves.set_valid(beam.is_valid[i], stcls.c)
|
||||||
|
self.model.set_scoresC(beam.scores[i], features, nr_feat)
|
||||||
|
if gold is not None:
|
||||||
|
for i in range(beam.size):
|
||||||
|
stcls = <StateClass>beam.at(i)
|
||||||
|
if not stcls.c.is_final():
|
||||||
|
self.moves.set_costs(beam.is_valid[i], beam.costs[i], stcls, gold)
|
||||||
|
if follow_gold:
|
||||||
|
for j in range(self.moves.n_moves):
|
||||||
|
beam.is_valid[i][j] *= beam.costs[i][j] < 1
|
||||||
|
if follow_gold:
|
||||||
|
beam.advance(_transition_state, NULL, <void*>self.moves.c)
|
||||||
|
else:
|
||||||
|
beam.advance(_transition_state, NULL, <void*>self.moves.c)
|
||||||
|
beam.check_done(_check_final_state, NULL)
|
||||||
|
|
||||||
|
|
||||||
|
# These are passed as callbacks to thinc.search.Beam
|
||||||
|
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
|
||||||
|
dest = <StateClass>_dest
|
||||||
|
src = <StateClass>_src
|
||||||
|
moves = <const Transition*>_moves
|
||||||
|
dest.clone(src)
|
||||||
|
moves[clas].do(dest.c, moves[clas].label)
|
||||||
|
|
||||||
|
|
||||||
|
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
|
||||||
|
cdef StateClass st = StateClass.init(<const TokenC*>tokens, length)
|
||||||
|
# Ensure sent_start is set to 0 throughout
|
||||||
|
for i in range(st.c.length):
|
||||||
|
st.c._sent[i].sent_start = False
|
||||||
|
st.c._sent[i].l_edge = i
|
||||||
|
st.c._sent[i].r_edge = i
|
||||||
|
st.fast_forward()
|
||||||
|
Py_INCREF(st)
|
||||||
|
return <void*>st
|
||||||
|
|
||||||
|
|
||||||
|
cdef int _check_final_state(void* _state, void* extra_args) except -1:
|
||||||
|
return (<StateClass>_state).is_final()
|
||||||
|
|
||||||
|
|
||||||
|
def _cleanup(Beam beam):
|
||||||
|
for i in range(beam.width):
|
||||||
|
Py_XDECREF(<PyObject*>beam._states[i].content)
|
||||||
|
Py_XDECREF(<PyObject*>beam._parents[i].content)
|
||||||
|
|
||||||
|
|
||||||
|
cdef hash_t _hash_state(void* _state, void* _) except 0:
|
||||||
|
state = <StateClass>_state
|
||||||
|
if state.c.is_final():
|
||||||
|
return 1
|
||||||
|
else:
|
||||||
|
return state.c.hash()
|
||||||
|
|
||||||
|
|
||||||
|
def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, TransitionSystem moves):
|
||||||
|
for i in range(pred.size):
|
||||||
|
if not pred._states[i].is_done or pred._states[i].loss == 0:
|
||||||
|
continue
|
||||||
|
state = <StateClass>pred.at(i)
|
||||||
|
if is_gold(state, gold_parse, moves.strings) == True:
|
||||||
|
for dep in gold_parse.orig_annot:
|
||||||
|
print(dep[1], dep[3], dep[4])
|
||||||
|
print("Cost", pred._states[i].loss)
|
||||||
|
for j in range(gold_parse.length):
|
||||||
|
print(gold_parse.orig_annot[j][1], state.H(j), moves.strings[state.safe_get(j).dep])
|
||||||
|
acts = [moves.c[clas].move for clas in pred.histories[i]]
|
||||||
|
labels = [moves.c[clas].label for clas in pred.histories[i]]
|
||||||
|
print([moves.move_name(move, label) for move, label in zip(acts, labels)])
|
||||||
|
raise Exception("Predicted state is gold-standard")
|
||||||
|
for i in range(gold.size):
|
||||||
|
if not gold._states[i].is_done:
|
||||||
|
continue
|
||||||
|
state = <StateClass>gold.at(i)
|
||||||
|
if is_gold(state, gold_parse, moves.strings) == False:
|
||||||
|
print("Truth")
|
||||||
|
for dep in gold_parse.orig_annot:
|
||||||
|
print(dep[1], dep[3], dep[4])
|
||||||
|
print("Predicted good")
|
||||||
|
for j in range(gold_parse.length):
|
||||||
|
print(gold_parse.orig_annot[j][1], state.H(j), moves.strings[state.safe_get(j).dep])
|
||||||
|
raise Exception("Gold parse is not gold-standard")
|
||||||
|
|
||||||
|
|
||||||
|
def is_gold(StateClass state, GoldParse gold, StringStore strings):
|
||||||
|
predicted = set()
|
||||||
|
truth = set()
|
||||||
|
for i in range(gold.length):
|
||||||
|
if state.safe_get(i).dep:
|
||||||
|
predicted.add((i, state.H(i), strings[state.safe_get(i).dep]))
|
||||||
|
else:
|
||||||
|
predicted.add((i, state.H(i), 'ROOT'))
|
||||||
|
id_, word, tag, head, dep, ner = gold.orig_annot[i]
|
||||||
|
truth.add((id_, head, dep))
|
||||||
|
return truth == predicted
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||||
from thinc.extra.eg cimport Example
|
from thinc.typedefs cimport atom_t
|
||||||
from thinc.structs cimport ExampleC
|
from thinc.structs cimport FeatureC
|
||||||
|
|
||||||
from .stateclass cimport StateClass
|
from .stateclass cimport StateClass
|
||||||
from .arc_eager cimport TransitionSystem
|
from .arc_eager cimport TransitionSystem
|
||||||
|
@ -11,7 +11,8 @@ from ._state cimport StateC
|
||||||
|
|
||||||
|
|
||||||
cdef class ParserModel(AveragedPerceptron):
|
cdef class ParserModel(AveragedPerceptron):
|
||||||
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil
|
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
|
||||||
|
const StateC* state) nogil
|
||||||
|
|
||||||
|
|
||||||
cdef class Parser:
|
cdef class Parser:
|
||||||
|
@ -20,4 +21,4 @@ cdef class Parser:
|
||||||
cdef readonly TransitionSystem moves
|
cdef readonly TransitionSystem moves
|
||||||
cdef readonly object cfg
|
cdef readonly object cfg
|
||||||
|
|
||||||
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil
|
||||||
|
|
|
@ -27,7 +27,10 @@ from thinc.linalg cimport VecVec
|
||||||
from thinc.structs cimport SparseArrayC
|
from thinc.structs cimport SparseArrayC
|
||||||
from preshed.maps cimport MapStruct
|
from preshed.maps cimport MapStruct
|
||||||
from preshed.maps cimport map_get
|
from preshed.maps cimport map_get
|
||||||
|
|
||||||
from thinc.structs cimport FeatureC
|
from thinc.structs cimport FeatureC
|
||||||
|
from thinc.structs cimport ExampleC
|
||||||
|
from thinc.extra.eg cimport Example
|
||||||
|
|
||||||
from util import Config
|
from util import Config
|
||||||
|
|
||||||
|
@ -68,9 +71,43 @@ def get_templates(name):
|
||||||
|
|
||||||
|
|
||||||
cdef class ParserModel(AveragedPerceptron):
|
cdef class ParserModel(AveragedPerceptron):
|
||||||
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil:
|
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
|
||||||
fill_context(eg.atoms, state)
|
const StateC* state) nogil:
|
||||||
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
fill_context(context, state)
|
||||||
|
nr_feat = self.extracter.set_features(features, context)
|
||||||
|
return nr_feat
|
||||||
|
|
||||||
|
def update(self, Example eg):
|
||||||
|
'''Does regression on negative cost. Sort of cute?'''
|
||||||
|
self.time += 1
|
||||||
|
cdef weight_t loss = 0.0
|
||||||
|
best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
|
||||||
|
for clas in range(eg.c.nr_class):
|
||||||
|
if not eg.c.is_valid[clas]:
|
||||||
|
continue
|
||||||
|
if eg.c.scores[clas] < eg.c.scores[best]:
|
||||||
|
continue
|
||||||
|
loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2
|
||||||
|
d_loss = -2 * (-eg.c.costs[clas] - eg.c.scores[clas])
|
||||||
|
for feat in eg.c.features[:eg.c.nr_feat]:
|
||||||
|
self.update_weight_ftrl(feat.key, clas, feat.value * d_loss)
|
||||||
|
return int(loss)
|
||||||
|
|
||||||
|
def update_from_history(self, TransitionSystem moves, Doc doc, history, weight_t grad):
|
||||||
|
cdef Pool mem = Pool()
|
||||||
|
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
|
||||||
|
|
||||||
|
cdef StateClass stcls = StateClass.init(doc.c, doc.length)
|
||||||
|
moves.initialize_state(stcls.c)
|
||||||
|
|
||||||
|
cdef class_t clas
|
||||||
|
self.time += 1
|
||||||
|
cdef atom_t[CONTEXT_SIZE] atoms
|
||||||
|
for clas in history:
|
||||||
|
nr_feat = self.set_featuresC(atoms, features, stcls.c)
|
||||||
|
for feat in features[:nr_feat]:
|
||||||
|
self.update_weight(feat.key, clas, feat.value * grad)
|
||||||
|
moves.c[clas].do(stcls.c, moves.c[clas].label)
|
||||||
|
|
||||||
|
|
||||||
cdef class Parser:
|
cdef class Parser:
|
||||||
|
@ -141,7 +178,7 @@ cdef class Parser:
|
||||||
"""
|
"""
|
||||||
cdef int nr_feat = self.model.nr_feat
|
cdef int nr_feat = self.model.nr_feat
|
||||||
with nogil:
|
with nogil:
|
||||||
status = self.parseC(tokens.c, tokens.length, nr_feat)
|
status = self.parseC(tokens.c, tokens.length, nr_feat, self.moves.n_moves)
|
||||||
# Check for KeyboardInterrupt etc. Untested
|
# Check for KeyboardInterrupt etc. Untested
|
||||||
PyErr_CheckSignals()
|
PyErr_CheckSignals()
|
||||||
if status != 0:
|
if status != 0:
|
||||||
|
@ -174,7 +211,7 @@ cdef class Parser:
|
||||||
if len(queue) == batch_size:
|
if len(queue) == batch_size:
|
||||||
with nogil:
|
with nogil:
|
||||||
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
||||||
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
|
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, self.moves.n_moves)
|
||||||
if status != 0:
|
if status != 0:
|
||||||
with gil:
|
with gil:
|
||||||
raise ParserStateError(queue[i])
|
raise ParserStateError(queue[i])
|
||||||
|
@ -186,7 +223,7 @@ cdef class Parser:
|
||||||
batch_size = len(queue)
|
batch_size = len(queue)
|
||||||
with nogil:
|
with nogil:
|
||||||
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
||||||
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
|
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, self.moves.n_moves)
|
||||||
if status != 0:
|
if status != 0:
|
||||||
with gil:
|
with gil:
|
||||||
raise ParserStateError(queue[i])
|
raise ParserStateError(queue[i])
|
||||||
|
@ -195,11 +232,10 @@ cdef class Parser:
|
||||||
self.moves.finalize_doc(doc)
|
self.moves.finalize_doc(doc)
|
||||||
yield doc
|
yield doc
|
||||||
|
|
||||||
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil:
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
|
||||||
state = new StateC(tokens, length)
|
state = new StateC(tokens, length)
|
||||||
# NB: This can change self.moves.n_moves!
|
# NB: This can change self.moves.n_moves!
|
||||||
self.moves.initialize_state(state)
|
self.moves.initialize_state(state)
|
||||||
nr_class = self.moves.n_moves
|
|
||||||
|
|
||||||
cdef ExampleC eg
|
cdef ExampleC eg
|
||||||
eg.nr_feat = nr_feat
|
eg.nr_feat = nr_feat
|
||||||
|
@ -211,7 +247,7 @@ cdef class Parser:
|
||||||
eg.is_valid = <int*>calloc(sizeof(int), nr_class)
|
eg.is_valid = <int*>calloc(sizeof(int), nr_class)
|
||||||
cdef int i
|
cdef int i
|
||||||
while not state.is_final():
|
while not state.is_final():
|
||||||
self.model.set_featuresC(&eg, state)
|
eg.nr_feat = self.model.set_featuresC(eg.atoms, eg.features, state)
|
||||||
self.moves.set_valid(eg.is_valid, state)
|
self.moves.set_valid(eg.is_valid, state)
|
||||||
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
|
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
|
||||||
|
|
||||||
|
@ -257,16 +293,17 @@ cdef class Parser:
|
||||||
cdef weight_t loss = 0
|
cdef weight_t loss = 0
|
||||||
cdef Transition action
|
cdef Transition action
|
||||||
while not stcls.is_final():
|
while not stcls.is_final():
|
||||||
self.model.set_featuresC(&eg.c, stcls.c)
|
eg.c.nr_feat = self.model.set_featuresC(eg.c.atoms, eg.c.features,
|
||||||
|
stcls.c)
|
||||||
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
||||||
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
|
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
|
||||||
self.model.time += 1
|
|
||||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
||||||
if eg.c.costs[guess] > 0:
|
if eg.c.costs[guess] > 0:
|
||||||
best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
|
self.model.update(eg)
|
||||||
for feat in eg.c.features[:eg.c.nr_feat]:
|
#best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
|
||||||
self.model.update_weight_ftrl(feat.key, best, -feat.value * eg.c.costs[guess])
|
#for feat in eg.c.features[:eg.c.nr_feat]:
|
||||||
self.model.update_weight_ftrl(feat.key, guess, feat.value * eg.c.costs[guess])
|
# self.model.update_weight_ftrl(feat.key, best, -feat.value * eg.c.costs[guess])
|
||||||
|
# self.model.update_weight_ftrl(feat.key, guess, feat.value * eg.c.costs[guess])
|
||||||
|
|
||||||
action = self.moves.c[guess]
|
action = self.moves.c[guess]
|
||||||
action.do(stcls.c, action.label)
|
action.do(stcls.c, action.label)
|
||||||
|
@ -350,7 +387,8 @@ cdef class StepwiseState:
|
||||||
|
|
||||||
def predict(self):
|
def predict(self):
|
||||||
self.eg.reset()
|
self.eg.reset()
|
||||||
self.parser.model.set_featuresC(&self.eg.c, self.stcls.c)
|
self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
|
||||||
|
self.stcls.c)
|
||||||
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
||||||
self.parser.model.set_scoresC(self.eg.c.scores,
|
self.parser.model.set_scoresC(self.eg.c.scores,
|
||||||
self.eg.c.features, self.eg.c.nr_feat)
|
self.eg.c.features, self.eg.c.nr_feat)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user