mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 01:16:28 +03:00
Merge branch 'master' into pr/5060
This commit is contained in:
commit
ed9358420e
|
@ -1,3 +1,11 @@
|
|||
[build-system]
|
||||
requires = ["setuptools"]
|
||||
requires = [
|
||||
"setuptools",
|
||||
"wheel",
|
||||
"cython>=0.25",
|
||||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc==7.4.0.dev0",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
|
|
@ -59,7 +59,7 @@ install_requires =
|
|||
|
||||
[options.extras_require]
|
||||
lookups =
|
||||
spacy_lookups_data>=0.0.5<0.2.0
|
||||
spacy_lookups_data>=0.0.5,<0.2.0
|
||||
cuda =
|
||||
cupy>=5.0.0b4
|
||||
cuda80 =
|
||||
|
|
|
@ -26,6 +26,7 @@ BLANK_MODEL_THRESHOLD = 2000
|
|||
lang=("model language", "positional", None, str),
|
||||
train_path=("location of JSON-formatted training data", "positional", None, Path),
|
||||
dev_path=("location of JSON-formatted development data", "positional", None, Path),
|
||||
tag_map_path=("Location of JSON-formatted tag map", "option", "tm", Path),
|
||||
base_model=("name of model to update (optional)", "option", "b", str),
|
||||
pipeline=(
|
||||
"Comma-separated names of pipeline components to train",
|
||||
|
@ -41,6 +42,7 @@ def debug_data(
|
|||
lang,
|
||||
train_path,
|
||||
dev_path,
|
||||
tag_map_path=None,
|
||||
base_model=None,
|
||||
pipeline="tagger,parser,ner",
|
||||
ignore_warnings=False,
|
||||
|
@ -60,6 +62,10 @@ def debug_data(
|
|||
if not dev_path.exists():
|
||||
msg.fail("Development data not found", dev_path, exits=1)
|
||||
|
||||
tag_map = {}
|
||||
if tag_map_path is not None:
|
||||
tag_map = srsly.read_json(tag_map_path)
|
||||
|
||||
# Initialize the model and pipeline
|
||||
pipeline = [p.strip() for p in pipeline.split(",")]
|
||||
if base_model:
|
||||
|
@ -67,6 +73,8 @@ def debug_data(
|
|||
else:
|
||||
lang_cls = get_lang_class(lang)
|
||||
nlp = lang_cls()
|
||||
# Update tag map with provided mapping
|
||||
nlp.vocab.morphology.tag_map.update(tag_map)
|
||||
|
||||
msg.divider("Data format validation")
|
||||
|
||||
|
@ -344,7 +352,7 @@ def debug_data(
|
|||
if "tagger" in pipeline:
|
||||
msg.divider("Part-of-speech Tagging")
|
||||
labels = [label for label in gold_train_data["tags"]]
|
||||
tag_map = nlp.Defaults.tag_map
|
||||
tag_map = nlp.vocab.morphology.tag_map
|
||||
msg.info(
|
||||
"{} {} in data ({} {} in tag map)".format(
|
||||
len(labels),
|
||||
|
|
|
@ -57,6 +57,7 @@ from .. import about
|
|||
textcat_multilabel=("Textcat classes aren't mutually exclusive (multilabel)", "flag", "TML", bool),
|
||||
textcat_arch=("Textcat model architecture", "option", "ta", str),
|
||||
textcat_positive_label=("Textcat positive label for binary classes with two labels", "option", "tpl", str),
|
||||
tag_map_path=("Location of JSON-formatted tag map", "option", "tm", Path),
|
||||
verbose=("Display more information for debug", "flag", "VV", bool),
|
||||
debug=("Run data diagnostics before training", "flag", "D", bool),
|
||||
# fmt: on
|
||||
|
@ -95,6 +96,7 @@ def train(
|
|||
textcat_multilabel=False,
|
||||
textcat_arch="bow",
|
||||
textcat_positive_label=None,
|
||||
tag_map_path=None,
|
||||
verbose=False,
|
||||
debug=False,
|
||||
):
|
||||
|
@ -132,6 +134,9 @@ def train(
|
|||
output_path.mkdir()
|
||||
msg.good("Created output directory: {}".format(output_path))
|
||||
|
||||
tag_map = {}
|
||||
if tag_map_path is not None:
|
||||
tag_map = srsly.read_json(tag_map_path)
|
||||
# Take dropout and batch size as generators of values -- dropout
|
||||
# starts high and decays sharply, to force the optimizer to explore.
|
||||
# Batch size starts at 1 and grows, so that we make updates quickly
|
||||
|
@ -238,6 +243,9 @@ def train(
|
|||
pipe_cfg = {}
|
||||
nlp.add_pipe(nlp.create_pipe(pipe, config=pipe_cfg))
|
||||
|
||||
# Update tag map with provided mapping
|
||||
nlp.vocab.morphology.tag_map.update(tag_map)
|
||||
|
||||
if vectors:
|
||||
msg.text("Loading vector from model '{}'".format(vectors))
|
||||
_load_vectors(nlp, vectors)
|
||||
|
|
|
@ -5,11 +5,13 @@ from ..char_classes import LIST_ELLIPSES, LIST_ICONS, ALPHA, ALPHA_LOWER, ALPHA_
|
|||
|
||||
ELISION = " ' ’ ".strip().replace(" ", "")
|
||||
|
||||
abbrev = ("d", "D")
|
||||
|
||||
_infixes = (
|
||||
LIST_ELLIPSES
|
||||
+ LIST_ICONS
|
||||
+ [
|
||||
r"(?<=[{a}][{el}])(?=[{a}])".format(a=ALPHA, el=ELISION),
|
||||
r"(?<=^[{ab}][{el}])(?=[{a}])".format(ab=abbrev, a=ALPHA, el=ELISION),
|
||||
r"(?<=[{al}])\.(?=[{au}])".format(al=ALPHA_LOWER, au=ALPHA_UPPER),
|
||||
r"(?<=[{a}])[,!?](?=[{a}])".format(a=ALPHA),
|
||||
r"(?<=[{a}])[:<>=](?=[{a}])".format(a=ALPHA),
|
||||
|
|
|
@ -10,6 +10,8 @@ _exc = {}
|
|||
|
||||
# translate / delete what is not necessary
|
||||
for exc_data in [
|
||||
{ORTH: "’t", LEMMA: "et", NORM: "et"},
|
||||
{ORTH: "’T", LEMMA: "et", NORM: "et"},
|
||||
{ORTH: "'t", LEMMA: "et", NORM: "et"},
|
||||
{ORTH: "'T", LEMMA: "et", NORM: "et"},
|
||||
{ORTH: "wgl.", LEMMA: "wannechgelift", NORM: "wannechgelift"},
|
||||
|
|
|
@ -15,6 +15,7 @@ import multiprocessing as mp
|
|||
from itertools import chain, cycle
|
||||
|
||||
from .tokenizer import Tokenizer
|
||||
from .tokens.underscore import Underscore
|
||||
from .vocab import Vocab
|
||||
from .lemmatizer import Lemmatizer
|
||||
from .lookups import Lookups
|
||||
|
@ -853,7 +854,10 @@ class Language(object):
|
|||
sender.send()
|
||||
|
||||
procs = [
|
||||
mp.Process(target=_apply_pipes, args=(self.make_doc, pipes, rch, sch))
|
||||
mp.Process(
|
||||
target=_apply_pipes,
|
||||
args=(self.make_doc, pipes, rch, sch, Underscore.get_state()),
|
||||
)
|
||||
for rch, sch in zip(texts_q, bytedocs_send_ch)
|
||||
]
|
||||
for proc in procs:
|
||||
|
@ -1108,16 +1112,18 @@ def _pipe(docs, proc, kwargs):
|
|||
yield doc
|
||||
|
||||
|
||||
def _apply_pipes(make_doc, pipes, reciever, sender):
|
||||
def _apply_pipes(make_doc, pipes, receiver, sender, underscore_state):
|
||||
"""Worker for Language.pipe
|
||||
|
||||
receiver (multiprocessing.Connection): Pipe to receive text. Usually
|
||||
created by `multiprocessing.Pipe()`
|
||||
sender (multiprocessing.Connection): Pipe to send doc. Usually created by
|
||||
`multiprocessing.Pipe()`
|
||||
underscore_state (tuple): The data in the Underscore class of the parent
|
||||
"""
|
||||
Underscore.load_state(underscore_state)
|
||||
while True:
|
||||
texts = reciever.get()
|
||||
texts = receiver.get()
|
||||
docs = (make_doc(text) for text in texts)
|
||||
for pipe in pipes:
|
||||
docs = pipe(docs)
|
||||
|
|
|
@ -7,6 +7,15 @@ from spacy.tokens import Doc, Span, Token
|
|||
from spacy.tokens.underscore import Underscore
|
||||
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def clean_underscore():
|
||||
# reset the Underscore object after the test, to avoid having state copied across tests
|
||||
yield
|
||||
Underscore.doc_extensions = {}
|
||||
Underscore.span_extensions = {}
|
||||
Underscore.token_extensions = {}
|
||||
|
||||
|
||||
def test_create_doc_underscore():
|
||||
doc = Mock()
|
||||
doc.doc = doc
|
||||
|
|
|
@ -6,6 +6,7 @@ import re
|
|||
from mock import Mock
|
||||
from spacy.matcher import Matcher, DependencyMatcher
|
||||
from spacy.tokens import Doc, Token
|
||||
from ..doc.test_underscore import clean_underscore
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -200,6 +201,7 @@ def test_matcher_any_token_operator(en_vocab):
|
|||
assert matches[2] == "test hello world"
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("clean_underscore")
|
||||
def test_matcher_extension_attribute(en_vocab):
|
||||
matcher = Matcher(en_vocab)
|
||||
get_is_fruit = lambda token: token.text in ("apple", "banana")
|
||||
|
|
|
@ -3,6 +3,7 @@ from __future__ import unicode_literals
|
|||
|
||||
from spacy.lang.en import English
|
||||
from spacy.pipeline import EntityRuler
|
||||
from spacy.tokens.underscore import Underscore
|
||||
|
||||
|
||||
def test_issue4849():
|
||||
|
|
45
spacy/tests/regression/test_issue4903.py
Normal file
45
spacy/tests/regression/test_issue4903.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import spacy
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens import Span, Doc
|
||||
from spacy.tokens.underscore import Underscore
|
||||
|
||||
|
||||
class CustomPipe:
|
||||
name = "my_pipe"
|
||||
|
||||
def __init__(self):
|
||||
Span.set_extension("my_ext", getter=self._get_my_ext)
|
||||
Doc.set_extension("my_ext", default=None)
|
||||
|
||||
def __call__(self, doc):
|
||||
gathered_ext = []
|
||||
for sent in doc.sents:
|
||||
sent_ext = self._get_my_ext(sent)
|
||||
sent._.set("my_ext", sent_ext)
|
||||
gathered_ext.append(sent_ext)
|
||||
|
||||
doc._.set("my_ext", "\n".join(gathered_ext))
|
||||
|
||||
return doc
|
||||
|
||||
@staticmethod
|
||||
def _get_my_ext(span):
|
||||
return str(span.end)
|
||||
|
||||
|
||||
def test_issue4903():
|
||||
# ensures that this runs correctly and doesn't hang or crash on Windows / macOS
|
||||
|
||||
nlp = English()
|
||||
custom_component = CustomPipe()
|
||||
nlp.add_pipe(nlp.create_pipe("sentencizer"))
|
||||
nlp.add_pipe(custom_component, after="sentencizer")
|
||||
|
||||
text = ["I like bananas.", "Do you like them?", "No, I prefer wasabi."]
|
||||
docs = list(nlp.pipe(text, n_process=2))
|
||||
assert docs[0].text == "I like bananas."
|
||||
assert docs[1].text == "Do you like them?"
|
||||
assert docs[2].text == "No, I prefer wasabi."
|
|
@ -11,6 +11,6 @@ def nlp():
|
|||
return spacy.blank("en")
|
||||
|
||||
|
||||
def test_evaluate(nlp):
|
||||
def test_issue4924(nlp):
|
||||
docs_golds = [("", {})]
|
||||
nlp.evaluate(docs_golds)
|
||||
|
|
|
@ -79,6 +79,14 @@ class Underscore(object):
|
|||
def _get_key(self, name):
|
||||
return ("._.", name, self._start, self._end)
|
||||
|
||||
@classmethod
|
||||
def get_state(cls):
|
||||
return cls.token_extensions, cls.span_extensions, cls.doc_extensions
|
||||
|
||||
@classmethod
|
||||
def load_state(cls, state):
|
||||
cls.token_extensions, cls.span_extensions, cls.doc_extensions = state
|
||||
|
||||
|
||||
def get_ext_args(**kwargs):
|
||||
"""Validate and convert arguments. Reused in Doc, Token and Span."""
|
||||
|
|
|
@ -437,8 +437,8 @@ The L2 norm of the token's vector representation.
|
|||
| `norm_` | unicode | The token's norm, i.e. a normalized form of the token text. Usually set in the language's [tokenizer exceptions](/usage/adding-languages#tokenizer-exceptions) or [norm exceptions](/usage/adding-languages#norm-exceptions). |
|
||||
| `lower` | int | Lowercase form of the token. |
|
||||
| `lower_` | unicode | Lowercase form of the token text. Equivalent to `Token.text.lower()`. |
|
||||
| `shape` | int | Transform of the tokens's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. |
|
||||
| `shape_` | unicode | Transform of the tokens's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. |
|
||||
| `shape` | int | Transform of the tokens's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. |
|
||||
| `shape_` | unicode | Transform of the tokens's string, to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. |
|
||||
| `prefix` | int | Hash value of a length-N substring from the start of the token. Defaults to `N=1`. |
|
||||
| `prefix_` | unicode | A length-N substring from the start of the token. Defaults to `N=1`. |
|
||||
| `suffix` | int | Hash value of a length-N substring from the end of the token. Defaults to `N=3`. |
|
||||
|
|
Loading…
Reference in New Issue
Block a user