mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-15 18:52:29 +03:00
add docstrings
This commit is contained in:
parent
079f09b97c
commit
edf9134e45
|
@ -149,7 +149,9 @@ def make_spancat(
|
|||
threshold: float,
|
||||
max_positive: Optional[int],
|
||||
) -> "SpanCategorizer":
|
||||
"""Create a SpanCategorizer component. The span categorizer consists of two
|
||||
"""Create a SpanCategorizer component and configure it for multilabel
|
||||
classification to be able to assign multiple labels for each span.
|
||||
The span categorizer consists of two
|
||||
parts: a suggester function that proposes candidate spans, and a labeller
|
||||
model that predicts one or more labels for each span.
|
||||
|
||||
|
@ -207,7 +209,9 @@ def make_spancat_singlelabel(
|
|||
allow_overlap: bool,
|
||||
scorer: Optional[Callable],
|
||||
) -> "SpanCategorizer":
|
||||
"""Create a SpanCategorizer component. The span categorizer consists of two
|
||||
"""Create a SpanCategorizer component and configure it for multiclass
|
||||
classification. With this configuration each span can get at most one
|
||||
label. The span categorizer consists of two
|
||||
parts: a suggester function that proposes candidate spans, and a labeller
|
||||
model that predicts one or more labels for each span.
|
||||
|
||||
|
@ -224,11 +228,11 @@ def make_spancat_singlelabel(
|
|||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||
spans allowed.
|
||||
threshold (float): Minimum probability to consider a prediction positive.
|
||||
Spans with a positive prediction will be saved on the Doc. Defaults to
|
||||
0.5.
|
||||
max_positive (Optional[int]): Maximum number of labels to consider positive
|
||||
per span. Defaults to None, indicating no limit.
|
||||
negative_weight (float): Multiplier for the loss terms.
|
||||
Can be used to downweight the negative samples if there are too many.
|
||||
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
|
||||
Otherwise it produces non-overlapping spans greedily prioritizing
|
||||
higher assigned label scores.
|
||||
"""
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
|
@ -317,11 +321,16 @@ class SpanCategorizer(TrainablePipe):
|
|||
During initialization and training, the component will look for
|
||||
spans on the reference document under the same key. Defaults to
|
||||
`"spans"`.
|
||||
threshold (float): Minimum probability to consider a prediction
|
||||
threshold (Optional[float]): Minimum probability to consider a prediction
|
||||
positive. Spans with a positive prediction will be saved on the Doc.
|
||||
Defaults to 0.5.
|
||||
max_positive (Optional[int]): Maximum number of labels to consider
|
||||
positive per span. Defaults to None, indicating no limit.
|
||||
negative_weight (float): Multiplier for the loss terms.
|
||||
Can be used to downweight the negative samples if there are too many.
|
||||
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
|
||||
Otherwise it produces non-overlapping spans greedily prioritizing
|
||||
higher assigned label scores.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||
spans allowed.
|
||||
|
@ -640,6 +649,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
indices: Ints2d,
|
||||
scores: Floats2d,
|
||||
labels: List[str],
|
||||
# XXX Unused, does it make sense?
|
||||
allow_overlap: bool = True,
|
||||
) -> SpanGroup:
|
||||
spans = SpanGroup(doc, name=self.key)
|
||||
|
|
Loading…
Reference in New Issue
Block a user