bool -> float

This commit is contained in:
vinit 2023-02-20 16:54:37 +05:30
parent b0929271a8
commit ee5332eba5
3 changed files with 11 additions and 12 deletions

View File

@ -7,7 +7,7 @@ import srsly
from wasabi import Printer, MESSAGES, msg
import typer
import math
import numpy as np
import numpy
from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
from ._util import import_code, debug_cli, _format_number
@ -524,9 +524,9 @@ def debug_data(
msg.divider("Part-of-speech Tagging")
label_list, counts = zip(*gold_train_data["tags"].items())
msg.info(f"{len(label_list)} label(s) in train data")
p = np.array(counts)
p = numpy.array(counts)
p = p / p.sum()
norm_entropy = (-p * np.log2(p)).sum() / np.log2(len(label_list))
norm_entropy = (-p * numpy.log2(p)).sum() / numpy.log2(len(label_list))
msg.info(f"{norm_entropy} is the normalised label entropy")
model_labels = _get_labels_from_model(nlp, "tagger")
labels = set(label_list)

View File

@ -45,7 +45,7 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"tagger",
assigns=["token.tag"],
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": False},
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.05},
default_score_weights={"tag_acc": 1.0},
)
def make_tagger(
@ -55,7 +55,7 @@ def make_tagger(
overwrite: bool,
scorer: Optional[Callable],
neg_prefix: str,
label_smoothing: bool,
label_smoothing: float,
):
"""Construct a part-of-speech tagger component.
@ -90,7 +90,7 @@ class Tagger(TrainablePipe):
overwrite=BACKWARD_OVERWRITE,
scorer=tagger_score,
neg_prefix="!",
label_smoothing=False,
label_smoothing=0.05,
):
"""Initialize a part-of-speech tagger.
@ -258,7 +258,6 @@ class Tagger(TrainablePipe):
DOCS: https://spacy.io/api/tagger#get_loss
"""
validate_examples(examples, "Tagger.get_loss")
self.cfg["label_smoothing"] = 0.05 if self.cfg["label_smoothing"] else 0.0
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False, neg_prefix=self.cfg["neg_prefix"], label_smoothing=self.cfg["label_smoothing"])
# Convert empty tag "" to missing value None so that both misaligned
# tokens and tokens with missing annotation have the default missing

View File

@ -70,10 +70,10 @@ PARTIAL_DATA = [
def test_label_smoothing():
nlp = Language()
tagger_no_ls = nlp.add_pipe(
"tagger", "no_label_smoothing", config=dict(label_smoothing=False)
"tagger", "no_label_smoothing", config=dict(label_smoothing=0.0)
)
tagger_ls = nlp.add_pipe(
"tagger", "label_smoothing", config=dict(label_smoothing=True)
"tagger", "label_smoothing"
)
train_examples = []
losses = {}
@ -87,9 +87,9 @@ def test_label_smoothing():
tag_scores, bp_tag_scores = tagger_ls.model.begin_update(
[eg.predicted for eg in train_examples]
)
no_ls_probs = tagger_no_ls.get_loss(train_examples, tag_scores)[1][0]
ls_probs = tagger_ls.get_loss(train_examples, tag_scores)[1][0]
assert_array_almost_equal((ls_probs - no_ls_probs)[0], [0.05, -0.025, -0.025])
no_ls_grads= tagger_no_ls.get_loss(train_examples, tag_scores)[1][0]
ls_grads= tagger_ls.get_loss(train_examples, tag_scores)[1][0]
assert_array_almost_equal((ls_grads - no_ls_grads)[0], [0.05, -0.025, -0.025])
def test_no_label():