From eef9430f0710562b4582c11d0692d7c56c5fd1da Mon Sep 17 00:00:00 2001 From: Justin DuJardin Date: Fri, 23 Mar 2018 12:49:01 -0700 Subject: [PATCH] Add example for visualizing word vectors with TensorBoard Projector Use: ```bash python vectors_tensorboard.py en_core_web_lg ./output_folder spaCy_large ``` --- examples/vectors_tensorboard.py | 82 +++++++++++++++++++++++++++++++++ 1 file changed, 82 insertions(+) create mode 100644 examples/vectors_tensorboard.py diff --git a/examples/vectors_tensorboard.py b/examples/vectors_tensorboard.py new file mode 100644 index 000000000..f29193345 --- /dev/null +++ b/examples/vectors_tensorboard.py @@ -0,0 +1,82 @@ +#!/usr/bin/env python +# coding: utf8 +"""Visualize spaCy word vectors in Tensorboard. + +Adapted from: https://gist.github.com/BrikerMan/7bd4e4bd0a00ac9076986148afc06507 +""" +from __future__ import unicode_literals + +from os import path + +import math +import numpy +import plac +import spacy +import tensorflow as tf +import tqdm +from tensorflow.contrib.tensorboard.plugins.projector import visualize_embeddings, ProjectorConfig + + +@plac.annotations( + vectors_loc=("Path to spaCy model that contains vectors", "positional", None, str), + out_loc=("Path to output folder for tensorboard session data", "positional", None, str), + name=("Human readable name for tsv file and vectors tensor", "positional", None, str), +) +def main(vectors_loc, out_loc, name="spaCy_vectors"): + meta_file = "{}.tsv".format(name) + out_meta_file = path.join(out_loc, meta_file) + + print('Loading spaCy vectors model: {}'.format(vectors_loc)) + model = spacy.load(vectors_loc) + print('Finding lexemes with vectors attached: {}'.format(vectors_loc)) + strings_stream = tqdm.tqdm(model.vocab.strings, total=len(model.vocab.strings), leave=False) + queries = [w for w in strings_stream if model.vocab.has_vector(w)] + vector_count = len(queries) + + print('Building Tensorboard Projector metadata for ({}) vectors: {}'.format(vector_count, out_meta_file)) + + # Store vector data in a tensorflow variable + tf_vectors_variable = numpy.zeros((vector_count, model.vocab.vectors.shape[1])) + + # Write a tab-separated file that contains information about the vectors for visualization + # + # Reference: https://www.tensorflow.org/programmers_guide/embedding#metadata + with open(out_meta_file, 'wb') as file_metadata: + # Define columns in the first row + file_metadata.write("Text\tFrequency\n".encode('utf-8')) + # Write out a row for each vector that we add to the tensorflow variable we created + vec_index = 0 + for text in tqdm.tqdm(queries, total=len(queries), leave=False): + # https://github.com/tensorflow/tensorflow/issues/9094 + text = '' if text.lstrip() == '' else text + lex = model.vocab[text] + + # Store vector data and metadata + tf_vectors_variable[vec_index] = model.vocab.get_vector(text) + file_metadata.write("{}\t{}\n".format(text, math.exp(lex.prob) * vector_count).encode('utf-8')) + vec_index += 1 + + print('Running Tensorflow Session...') + sess = tf.InteractiveSession() + tf.Variable(tf_vectors_variable, trainable=False, name=name) + tf.global_variables_initializer().run() + saver = tf.train.Saver() + writer = tf.summary.FileWriter(out_loc, sess.graph) + + # Link the embeddings into the config + config = ProjectorConfig() + embed = config.embeddings.add() + embed.tensor_name = name + embed.metadata_path = meta_file + + # Tell the projector about the configured embeddings and metadata file + visualize_embeddings(writer, config) + + # Save session and print run command to the output + print('Saving Tensorboard Session...') + saver.save(sess, path.join(out_loc, '{}.ckpt'.format(name))) + print('Done. Run `tensorboard --logdir={0}` to view in Tensorboard'.format(out_loc)) + + +if __name__ == '__main__': + plac.call(main)