Merge pull request #1442 from explosion/feature/fix-sp

💫Fix SP tag, tweak Vectors.__init__, fix Morphology
This commit is contained in:
Matthew Honnibal 2017-10-24 10:24:07 +02:00 committed by GitHub
commit ef3e5a361b
10 changed files with 85 additions and 70 deletions

View File

@ -62,5 +62,5 @@ TAG_MAP = {
"VVIZU": {POS: VERB, "VerbForm": "inf"}, "VVIZU": {POS: VERB, "VerbForm": "inf"},
"VVPP": {POS: VERB, "Aspect": "perf", "VerbForm": "part"}, "VVPP": {POS: VERB, "Aspect": "perf", "VerbForm": "part"},
"XY": {POS: X}, "XY": {POS: X},
"SP": {POS: SPACE} "_SP": {POS: SPACE}
} }

View File

@ -55,11 +55,11 @@ TAG_MAP = {
"WP": {POS: NOUN, "PronType": "int|rel"}, "WP": {POS: NOUN, "PronType": "int|rel"},
"WP$": {POS: ADJ, "Poss": "yes", "PronType": "int|rel"}, "WP$": {POS: ADJ, "Poss": "yes", "PronType": "int|rel"},
"WRB": {POS: ADV, "PronType": "int|rel"}, "WRB": {POS: ADV, "PronType": "int|rel"},
"SP": {POS: SPACE},
"ADD": {POS: X}, "ADD": {POS: X},
"NFP": {POS: PUNCT}, "NFP": {POS: PUNCT},
"GW": {POS: X}, "GW": {POS: X},
"XX": {POS: X}, "XX": {POS: X},
"BES": {POS: VERB}, "BES": {POS: VERB},
"HVS": {POS: VERB} "HVS": {POS: VERB},
"_SP": {POS: SPACE},
} }

View File

@ -303,5 +303,5 @@ TAG_MAP = {
"VERB__VerbForm=Ger": {"morph": "VerbForm=Ger", "pos": "VERB"}, "VERB__VerbForm=Ger": {"morph": "VerbForm=Ger", "pos": "VERB"},
"VERB__VerbForm=Inf": {"morph": "VerbForm=Inf", "pos": "VERB"}, "VERB__VerbForm=Inf": {"morph": "VerbForm=Inf", "pos": "VERB"},
"X___": {"morph": "_", "pos": "X"}, "X___": {"morph": "_", "pos": "X"},
"SP": {"morph": "_", "pos": "SPACE"}, "_SP": {"morph": "_", "pos": "SPACE"},
} }

View File

@ -77,5 +77,6 @@ TAG_MAP = {
"NEG": {POS: PART}, "NEG": {POS: PART},
# PUNCT # PUNCT
"PUNCT": {POS: PUNCT}, "PUNCT": {POS: PUNCT},
"PUNC": {POS: PUNCT} "PUNC": {POS: PUNCT},
"_SP": {POS: SPACE}
} }

View File

@ -44,7 +44,7 @@ cdef class Morphology:
cdef int assign_feature(self, uint64_t* morph, univ_morph_t feat_id, bint value) except -1 cdef int assign_feature(self, uint64_t* morph, univ_morph_t feat_id, bint value) except -1
cpdef enum univ_morph_t: cdef enum univ_morph_t:
NIL = 0 NIL = 0
Animacy_anim = symbols.Animacy_anim Animacy_anim = symbols.Animacy_anim
Animacy_inam Animacy_inam

View File

@ -4,7 +4,7 @@ from __future__ import unicode_literals
from libc.string cimport memset from libc.string cimport memset
from .parts_of_speech cimport ADJ, VERB, NOUN, PUNCT from .parts_of_speech cimport ADJ, VERB, NOUN, PUNCT, SPACE
from .attrs cimport POS, IS_SPACE from .attrs cimport POS, IS_SPACE
from .parts_of_speech import IDS as POS_IDS from .parts_of_speech import IDS as POS_IDS
from .lexeme cimport Lexeme from .lexeme cimport Lexeme
@ -36,14 +36,22 @@ cdef class Morphology:
def __init__(self, StringStore string_store, tag_map, lemmatizer, exc=None): def __init__(self, StringStore string_store, tag_map, lemmatizer, exc=None):
self.mem = Pool() self.mem = Pool()
self.strings = string_store self.strings = string_store
# Add special space symbol. We prefix with underscore, to make sure it
# always sorts to the end.
space_attrs = tag_map.pop('SP', {POS: SPACE})
if '_SP' not in tag_map:
self.strings.add('_SP')
tag_map = dict(tag_map)
tag_map['_SP'] = space_attrs
self.tag_names = tuple(sorted(tag_map.keys()))
self.tag_map = {} self.tag_map = {}
self.lemmatizer = lemmatizer self.lemmatizer = lemmatizer
self.n_tags = len(tag_map) self.n_tags = len(tag_map)
self.tag_names = tuple(sorted(tag_map.keys()))
self.reverse_index = {} self.reverse_index = {}
self.rich_tags = <RichTagC*>self.mem.alloc(self.n_tags+1, sizeof(RichTagC)) self.rich_tags = <RichTagC*>self.mem.alloc(self.n_tags+1, sizeof(RichTagC))
for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())): for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())):
self.strings.add(tag_str)
self.tag_map[tag_str] = dict(attrs) self.tag_map[tag_str] = dict(attrs)
attrs = _normalize_props(attrs) attrs = _normalize_props(attrs)
attrs = intify_attrs(attrs, self.strings, _do_deprecated=True) attrs = intify_attrs(attrs, self.strings, _do_deprecated=True)
@ -93,7 +101,7 @@ cdef class Morphology:
# the statistical model fails. # the statistical model fails.
# Related to Issue #220 # Related to Issue #220
if Lexeme.c_check_flag(token.lex, IS_SPACE): if Lexeme.c_check_flag(token.lex, IS_SPACE):
tag_id = self.reverse_index[self.strings.add('SP')] tag_id = self.reverse_index[self.strings.add('_SP')]
rich_tag = self.rich_tags[tag_id] rich_tag = self.rich_tags[tag_id]
analysis = <MorphAnalysisC*>self._cache.get(tag_id, token.lex.orth) analysis = <MorphAnalysisC*>self._cache.get(tag_id, token.lex.orth)
if analysis is NULL: if analysis is NULL:
@ -426,3 +434,7 @@ IDS = {
NAMES = [key for key, value in sorted(IDS.items(), key=lambda item: item[1])] NAMES = [key for key, value in sorted(IDS.items(), key=lambda item: item[1])]
# Unfortunate hack here, to work around problem with long cpdef enum
# (which is generating an enormous amount of C++ in Cython 0.24+)
# We keep the enum cdef, and just make sure the names are available to Python
locals().update(IDS)

View File

@ -35,18 +35,18 @@ def vocab(en_vocab, vectors):
def test_init_vectors_with_data(strings, data): def test_init_vectors_with_data(strings, data):
v = Vectors(strings, data) v = Vectors(strings, data=data)
assert v.shape == data.shape assert v.shape == data.shape
def test_init_vectors_with_width(strings): def test_init_vectors_with_width(strings):
v = Vectors(strings, 3) v = Vectors(strings, width=3)
for string in strings: for string in strings:
v.add(string) v.add(string)
assert v.shape == (len(strings), 3) assert v.shape == (len(strings), 3)
def test_get_vector(strings, data): def test_get_vector(strings, data):
v = Vectors(strings, data) v = Vectors(strings, data=data)
for string in strings: for string in strings:
v.add(string) v.add(string)
assert list(v[strings[0]]) == list(data[0]) assert list(v[strings[0]]) == list(data[0])
@ -56,7 +56,7 @@ def test_get_vector(strings, data):
def test_set_vector(strings, data): def test_set_vector(strings, data):
orig = data.copy() orig = data.copy()
v = Vectors(strings, data) v = Vectors(strings, data=data)
for string in strings: for string in strings:
v.add(string) v.add(string)
assert list(v[strings[0]]) == list(orig[0]) assert list(v[strings[0]]) == list(orig[0])

View File

@ -32,22 +32,24 @@ cdef class Vectors:
cdef public object keys cdef public object keys
cdef public int i cdef public int i
def __init__(self, strings, data_or_width=0): def __init__(self, strings, width=0, data=None):
if isinstance(strings, StringStore): if isinstance(strings, StringStore):
self.strings = strings self.strings = strings
else: else:
self.strings = StringStore() self.strings = StringStore()
for string in strings: for string in strings:
self.strings.add(string) self.strings.add(string)
if isinstance(data_or_width, int): if data is not None:
self.data = data = numpy.zeros((len(strings), data_or_width), self.data = numpy.asarray(data, dtype='f')
dtype='f')
else: else:
data = data_or_width self.data = numpy.zeros((len(self.strings), width), dtype='f')
self.i = 0 self.i = 0
self.data = data
self.key2row = {} self.key2row = {}
self.keys = np.ndarray((self.data.shape[0],), dtype='uint64') self.keys = numpy.zeros((self.data.shape[0],), dtype='uint64')
for i, string in enumerate(self.strings):
if i >= self.data.shape[0]:
break
self.add(self.strings[string], self.data[i])
def __reduce__(self): def __reduce__(self):
return (Vectors, (self.strings, self.data)) return (Vectors, (self.strings, self.data))

View File

@ -62,12 +62,9 @@ cdef class Vocab:
if strings: if strings:
for string in strings: for string in strings:
_ = self[string] _ = self[string]
for name in tag_map.keys():
if name:
self.strings.add(name)
self.lex_attr_getters = lex_attr_getters self.lex_attr_getters = lex_attr_getters
self.morphology = Morphology(self.strings, tag_map, lemmatizer) self.morphology = Morphology(self.strings, tag_map, lemmatizer)
self.vectors = Vectors(self.strings) self.vectors = Vectors(self.strings, width=0)
property lang: property lang:
def __get__(self): def __get__(self):
@ -255,7 +252,7 @@ cdef class Vocab:
""" """
if new_dim is None: if new_dim is None:
new_dim = self.vectors.data.shape[1] new_dim = self.vectors.data.shape[1]
self.vectors = Vectors(self.strings, new_dim) self.vectors = Vectors(self.strings, width=new_dim)
def get_vector(self, orth): def get_vector(self, orth):
"""Retrieve a vector for a word in the vocabulary. """Retrieve a vector for a word in the vocabulary.
@ -338,7 +335,7 @@ cdef class Vocab:
if self.vectors is None: if self.vectors is None:
return None return None
else: else:
return self.vectors.to_bytes(exclude='strings.json') return self.vectors.to_bytes()
getters = OrderedDict(( getters = OrderedDict((
('strings', lambda: self.strings.to_bytes()), ('strings', lambda: self.strings.to_bytes()),
@ -358,7 +355,7 @@ cdef class Vocab:
if self.vectors is None: if self.vectors is None:
return None return None
else: else:
return self.vectors.from_bytes(b, exclude='strings') return self.vectors.from_bytes(b)
setters = OrderedDict(( setters = OrderedDict((
('strings', lambda b: self.strings.from_bytes(b)), ('strings', lambda b: self.strings.from_bytes(b)),
('lexemes', lambda b: self.lexemes_from_bytes(b)), ('lexemes', lambda b: self.lexemes_from_bytes(b)),

View File

@ -12,7 +12,7 @@ p
p p
| Create a new vector store. To keep the vector table empty, pass | Create a new vector store. To keep the vector table empty, pass
| #[code data_or_width=0]. You can also create the vector table and add | #[code width=0]. You can also create the vector table and add
| vectors one by one, or set the vector values directly on initialisation. | vectors one by one, or set the vector values directly on initialisation.
+aside-code("Example"). +aside-code("Example").
@ -21,11 +21,11 @@ p
empty_vectors = Vectors(StringStore()) empty_vectors = Vectors(StringStore())
vectors = Vectors([u'cat'], 300) vectors = Vectors([u'cat'], width=300)
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,)) vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
vector_table = numpy.zeros((3, 300), dtype='f') vector_table = numpy.zeros((3, 300), dtype='f')
vectors = Vectors(StringStore(), vector_table) vectors = Vectors(StringStore(), data=vector_table)
+table(["Name", "Type", "Description"]) +table(["Name", "Type", "Description"])
+row +row
@ -36,9 +36,12 @@ p
| that maps strings to hash values, and vice versa. | that maps strings to hash values, and vice versa.
+row +row
+cell #[code data_or_width] +cell #[code data]
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']] or int +cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
+cell Vector data or number of dimensions.
+row
+cell #[code width]
+cell Number of dimensions.
+row("foot") +row("foot")
+cell returns +cell returns