Update train_ud for Universal Dependencies 2

This commit is contained in:
Matthew Honnibal 2017-03-16 17:08:15 -05:00
parent 890747d8ff
commit ef6bd08e6c

View File

@ -14,7 +14,7 @@ from spacy.language import Language
from spacy.gold import GoldParse
from spacy.vocab import Vocab
from spacy.tagger import Tagger
from spacy.pipeline import DependencyParser
from spacy.pipeline import DependencyParser, BeamDependencyParser
from spacy.syntax.parser import get_templates
from spacy.syntax.arc_eager import ArcEager
from spacy.scorer import Scorer
@ -35,8 +35,8 @@ def read_conllx(loc, n=0):
lines.pop(0)
tokens = []
for line in lines:
id_, word, lemma, tag, pos, morph, head, dep, _1, _2 = line.split()
if '-' in id_:
id_, word, lemma, pos, tag, morph, head, dep, _1, _2 = line.split()
if '-' in id_ or '.' in id_:
continue
try:
id_ = int(id_) - 1
@ -66,12 +66,8 @@ def score_model(vocab, tagger, parser, gold_docs, verbose=False):
return scorer
def main(train_loc, dev_loc, model_dir, tag_map_loc=None):
if tag_map_loc:
with open(tag_map_loc) as file_:
tag_map = json.loads(file_.read())
else:
tag_map = DEFAULT_TAG_MAP
def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
LangClass = spacy.util.get_lang_class(lang_name)
train_sents = list(read_conllx(train_loc))
train_sents = PseudoProjectivity.preprocess_training_data(train_sents)
@ -79,13 +75,37 @@ def main(train_loc, dev_loc, model_dir, tag_map_loc=None):
features = get_templates('basic')
model_dir = pathlib.Path(model_dir)
if not model_dir.exists():
model_dir.mkdir()
if not (model_dir / 'deps').exists():
(model_dir / 'deps').mkdir()
if not (model_dir / 'pos').exists():
(model_dir / 'pos').mkdir()
with (model_dir / 'deps' / 'config.json').open('wb') as file_:
file_.write(
json.dumps(
{'pseudoprojective': True, 'labels': actions, 'features': features}).encode('utf8'))
vocab = Vocab(lex_attr_getters=Language.Defaults.lex_attr_getters, tag_map=tag_map)
vocab = LangClass.Defaults.create_vocab()
if not (model_dir / 'vocab').exists():
(model_dir / 'vocab').mkdir()
else:
if (model_dir / 'vocab' / 'strings.json').exists():
with (model_dir / 'vocab' / 'strings.json').open() as file_:
vocab.strings.load(file_)
if (model_dir / 'vocab' / 'lexemes.bin').exists():
vocab.load_lexemes(model_dir / 'vocab' / 'lexemes.bin')
if clusters_loc is not None:
clusters_loc = pathlib.Path(clusters_loc)
with clusters_loc.open() as file_:
for line in file_:
try:
cluster, word, freq = line.split()
except ValueError:
continue
lex = vocab[word]
lex.cluster = int(cluster[::-1], 2)
# Populate vocab
for _, doc_sents in train_sents:
for (ids, words, tags, heads, deps, ner), _ in doc_sents:
@ -95,13 +115,13 @@ def main(train_loc, dev_loc, model_dir, tag_map_loc=None):
_ = vocab[dep]
for tag in tags:
_ = vocab[tag]
if tag_map:
if vocab.morphology.tag_map:
for tag in tags:
assert tag in tag_map, repr(tag)
tagger = Tagger(vocab, tag_map=tag_map)
assert tag in vocab.morphology.tag_map, repr(tag)
tagger = Tagger(vocab)
parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0)
for itn in range(15):
for itn in range(30):
loss = 0.
for _, doc_sents in train_sents:
for (ids, words, tags, heads, deps, ner), _ in doc_sents: