Merge branch 'master' into spacy.io

This commit is contained in:
Ines Montani 2019-09-04 17:11:57 +02:00
commit efd1c9d9f5
27 changed files with 2072 additions and 53 deletions

BIN
.github/contributors/Schibsted.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 259 KiB

View File

@ -16,9 +16,9 @@ class KerasSimilarityShim(object):
if get_features is None: if get_features is None:
get_features = get_word_ids get_features = get_word_ids
with (path / 'config.json').open() as file_: with (path / "config.json").open() as file_:
model = model_from_json(file_.read()) model = model_from_json(file_.read())
with (path / 'model').open('rb') as file_: with (path / "model").open("rb") as file_:
weights = pickle.load(file_) weights = pickle.load(file_)
embeddings = get_embeddings(nlp.vocab) embeddings = get_embeddings(nlp.vocab)
@ -33,8 +33,8 @@ class KerasSimilarityShim(object):
self.max_length = max_length self.max_length = max_length
def __call__(self, doc): def __call__(self, doc):
doc.user_hooks['similarity'] = self.predict doc.user_hooks["similarity"] = self.predict
doc.user_span_hooks['similarity'] = self.predict doc.user_span_hooks["similarity"] = self.predict
return doc return doc
@ -54,7 +54,7 @@ def get_embeddings(vocab, nr_unk=100):
oov = np.random.normal(size=(nr_unk, vocab.vectors_length)) oov = np.random.normal(size=(nr_unk, vocab.vectors_length))
oov = oov / oov.sum(axis=1, keepdims=True) oov = oov / oov.sum(axis=1, keepdims=True)
vectors = np.zeros((num_vectors + nr_unk, vocab.vectors_length), dtype='float32') vectors = np.zeros((num_vectors + nr_unk, vocab.vectors_length), dtype="float32")
vectors[1 : (nr_unk + 1),] = oov vectors[1 : (nr_unk + 1),] = oov
for lex in vocab: for lex in vocab:
if lex.has_vector and lex.vector_norm > 0: if lex.has_vector and lex.vector_norm > 0:
@ -64,7 +64,7 @@ def get_embeddings(vocab, nr_unk=100):
def get_word_ids(docs, max_length=100, nr_unk=100): def get_word_ids(docs, max_length=100, nr_unk=100):
Xs = np.zeros((len(docs), max_length), dtype='int32') Xs = np.zeros((len(docs), max_length), dtype="int32")
for i, doc in enumerate(docs): for i, doc in enumerate(docs):
for j, token in enumerate(doc): for j, token in enumerate(doc):

View File

@ -0,0 +1,7 @@
## Examples of NER/IOB data that can be converted with `spacy convert`
spacy JSON training files were generated with:
```
python -m spacy convert -c iob -s -n 10 -b en file.iob
```

View File

@ -0,0 +1,2 @@
When|WRB|O Sebastian|NNP|B-PERSON Thrun|NNP|I-PERSON started|VBD|O working|VBG|O on|IN|O self|NN|O -|HYPH|O driving|VBG|O cars|NNS|O at|IN|O Google|NNP|B-ORG in|IN|O 2007|CD|B-DATE ,|,|O few|JJ|O people|NNS|O outside|RB|O of|IN|O the|DT|O company|NN|O took|VBD|O him|PRP|O seriously|RB|O .|.|O
“|''|O I|PRP|O can|MD|O tell|VB|O you|PRP|O very|RB|O senior|JJ|O CEOs|NNS|O of|IN|O major|JJ|O American|JJ|B-NORP car|NN|O companies|NNS|O would|MD|O shake|VB|O my|PRP$|O hand|NN|O and|CC|O turn|VB|O away|RB|O because|IN|O I|PRP|O was|VBD|O nt|RB|O worth|JJ|O talking|VBG|O to|IN|O ,|,|O ”|''|O said|VBD|O Thrun|NNP|B-PERSON ,|,|O in|IN|O an|DT|O interview|NN|O with|IN|O Recode|NNP|B-ORG earlier|RBR|B-DATE this|DT|I-DATE week|NN|I-DATE .|.|O

View File

@ -0,0 +1,349 @@
[
{
"id":0,
"paragraphs":[
{
"sentences":[
{
"tokens":[
{
"orth":"When",
"tag":"WRB",
"ner":"O"
},
{
"orth":"Sebastian",
"tag":"NNP",
"ner":"B-PERSON"
},
{
"orth":"Thrun",
"tag":"NNP",
"ner":"L-PERSON"
},
{
"orth":"started",
"tag":"VBD",
"ner":"O"
},
{
"orth":"working",
"tag":"VBG",
"ner":"O"
},
{
"orth":"on",
"tag":"IN",
"ner":"O"
},
{
"orth":"self",
"tag":"NN",
"ner":"O"
},
{
"orth":"-",
"tag":"HYPH",
"ner":"O"
},
{
"orth":"driving",
"tag":"VBG",
"ner":"O"
},
{
"orth":"cars",
"tag":"NNS",
"ner":"O"
},
{
"orth":"at",
"tag":"IN",
"ner":"O"
},
{
"orth":"Google",
"tag":"NNP",
"ner":"U-ORG"
},
{
"orth":"in",
"tag":"IN",
"ner":"O"
},
{
"orth":"2007",
"tag":"CD",
"ner":"U-DATE"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"few",
"tag":"JJ",
"ner":"O"
},
{
"orth":"people",
"tag":"NNS",
"ner":"O"
},
{
"orth":"outside",
"tag":"RB",
"ner":"O"
},
{
"orth":"of",
"tag":"IN",
"ner":"O"
},
{
"orth":"the",
"tag":"DT",
"ner":"O"
},
{
"orth":"company",
"tag":"NN",
"ner":"O"
},
{
"orth":"took",
"tag":"VBD",
"ner":"O"
},
{
"orth":"him",
"tag":"PRP",
"ner":"O"
},
{
"orth":"seriously",
"tag":"RB",
"ner":"O"
},
{
"orth":".",
"tag":".",
"ner":"O"
}
]
},
{
"tokens":[
{
"orth":"\u201c",
"tag":"''",
"ner":"O"
},
{
"orth":"I",
"tag":"PRP",
"ner":"O"
},
{
"orth":"can",
"tag":"MD",
"ner":"O"
},
{
"orth":"tell",
"tag":"VB",
"ner":"O"
},
{
"orth":"you",
"tag":"PRP",
"ner":"O"
},
{
"orth":"very",
"tag":"RB",
"ner":"O"
},
{
"orth":"senior",
"tag":"JJ",
"ner":"O"
},
{
"orth":"CEOs",
"tag":"NNS",
"ner":"O"
},
{
"orth":"of",
"tag":"IN",
"ner":"O"
},
{
"orth":"major",
"tag":"JJ",
"ner":"O"
},
{
"orth":"American",
"tag":"JJ",
"ner":"U-NORP"
},
{
"orth":"car",
"tag":"NN",
"ner":"O"
},
{
"orth":"companies",
"tag":"NNS",
"ner":"O"
},
{
"orth":"would",
"tag":"MD",
"ner":"O"
},
{
"orth":"shake",
"tag":"VB",
"ner":"O"
},
{
"orth":"my",
"tag":"PRP$",
"ner":"O"
},
{
"orth":"hand",
"tag":"NN",
"ner":"O"
},
{
"orth":"and",
"tag":"CC",
"ner":"O"
},
{
"orth":"turn",
"tag":"VB",
"ner":"O"
},
{
"orth":"away",
"tag":"RB",
"ner":"O"
},
{
"orth":"because",
"tag":"IN",
"ner":"O"
},
{
"orth":"I",
"tag":"PRP",
"ner":"O"
},
{
"orth":"was",
"tag":"VBD",
"ner":"O"
},
{
"orth":"n\u2019t",
"tag":"RB",
"ner":"O"
},
{
"orth":"worth",
"tag":"JJ",
"ner":"O"
},
{
"orth":"talking",
"tag":"VBG",
"ner":"O"
},
{
"orth":"to",
"tag":"IN",
"ner":"O"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"\u201d",
"tag":"''",
"ner":"O"
},
{
"orth":"said",
"tag":"VBD",
"ner":"O"
},
{
"orth":"Thrun",
"tag":"NNP",
"ner":"U-PERSON"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"in",
"tag":"IN",
"ner":"O"
},
{
"orth":"an",
"tag":"DT",
"ner":"O"
},
{
"orth":"interview",
"tag":"NN",
"ner":"O"
},
{
"orth":"with",
"tag":"IN",
"ner":"O"
},
{
"orth":"Recode",
"tag":"NNP",
"ner":"U-ORG"
},
{
"orth":"earlier",
"tag":"RBR",
"ner":"B-DATE"
},
{
"orth":"this",
"tag":"DT",
"ner":"I-DATE"
},
{
"orth":"week",
"tag":"NN",
"ner":"L-DATE"
},
{
"orth":".",
"tag":".",
"ner":"O"
}
]
}
]
}
]
}
]

View File

@ -0,0 +1,70 @@
-DOCSTART- -X- O O
When WRB _ O
Sebastian NNP _ B-PERSON
Thrun NNP _ I-PERSON
started VBD _ O
working VBG _ O
on IN _ O
self NN _ O
- HYPH _ O
driving VBG _ O
cars NNS _ O
at IN _ O
Google NNP _ B-ORG
in IN _ O
2007 CD _ B-DATE
, , _ O
few JJ _ O
people NNS _ O
outside RB _ O
of IN _ O
the DT _ O
company NN _ O
took VBD _ O
him PRP _ O
seriously RB _ O
. . _ O
“ '' _ O
I PRP _ O
can MD _ O
tell VB _ O
you PRP _ O
very RB _ O
senior JJ _ O
CEOs NNS _ O
of IN _ O
major JJ _ O
American JJ _ B-NORP
car NN _ O
companies NNS _ O
would MD _ O
shake VB _ O
my PRP$ _ O
hand NN _ O
and CC _ O
turn VB _ O
away RB _ O
because IN _ O
I PRP _ O
was VBD _ O
nt RB _ O
worth JJ _ O
talking VBG _ O
to IN _ O
, , _ O
” '' _ O
said VBD _ O
Thrun NNP _ B-PERSON
, , _ O
in IN _ O
an DT _ O
interview NN _ O
with IN _ O
Recode NNP _ B-ORG
earlier RBR _ B-DATE
this DT _ I-DATE
week NN _ I-DATE
. . _ O

View File

@ -0,0 +1,349 @@
[
{
"id":0,
"paragraphs":[
{
"sentences":[
{
"tokens":[
{
"orth":"When",
"tag":"WRB",
"ner":"O"
},
{
"orth":"Sebastian",
"tag":"NNP",
"ner":"B-PERSON"
},
{
"orth":"Thrun",
"tag":"NNP",
"ner":"L-PERSON"
},
{
"orth":"started",
"tag":"VBD",
"ner":"O"
},
{
"orth":"working",
"tag":"VBG",
"ner":"O"
},
{
"orth":"on",
"tag":"IN",
"ner":"O"
},
{
"orth":"self",
"tag":"NN",
"ner":"O"
},
{
"orth":"-",
"tag":"HYPH",
"ner":"O"
},
{
"orth":"driving",
"tag":"VBG",
"ner":"O"
},
{
"orth":"cars",
"tag":"NNS",
"ner":"O"
},
{
"orth":"at",
"tag":"IN",
"ner":"O"
},
{
"orth":"Google",
"tag":"NNP",
"ner":"U-ORG"
},
{
"orth":"in",
"tag":"IN",
"ner":"O"
},
{
"orth":"2007",
"tag":"CD",
"ner":"U-DATE"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"few",
"tag":"JJ",
"ner":"O"
},
{
"orth":"people",
"tag":"NNS",
"ner":"O"
},
{
"orth":"outside",
"tag":"RB",
"ner":"O"
},
{
"orth":"of",
"tag":"IN",
"ner":"O"
},
{
"orth":"the",
"tag":"DT",
"ner":"O"
},
{
"orth":"company",
"tag":"NN",
"ner":"O"
},
{
"orth":"took",
"tag":"VBD",
"ner":"O"
},
{
"orth":"him",
"tag":"PRP",
"ner":"O"
},
{
"orth":"seriously",
"tag":"RB",
"ner":"O"
},
{
"orth":".",
"tag":".",
"ner":"O"
}
]
},
{
"tokens":[
{
"orth":"\u201c",
"tag":"''",
"ner":"O"
},
{
"orth":"I",
"tag":"PRP",
"ner":"O"
},
{
"orth":"can",
"tag":"MD",
"ner":"O"
},
{
"orth":"tell",
"tag":"VB",
"ner":"O"
},
{
"orth":"you",
"tag":"PRP",
"ner":"O"
},
{
"orth":"very",
"tag":"RB",
"ner":"O"
},
{
"orth":"senior",
"tag":"JJ",
"ner":"O"
},
{
"orth":"CEOs",
"tag":"NNS",
"ner":"O"
},
{
"orth":"of",
"tag":"IN",
"ner":"O"
},
{
"orth":"major",
"tag":"JJ",
"ner":"O"
},
{
"orth":"American",
"tag":"JJ",
"ner":"U-NORP"
},
{
"orth":"car",
"tag":"NN",
"ner":"O"
},
{
"orth":"companies",
"tag":"NNS",
"ner":"O"
},
{
"orth":"would",
"tag":"MD",
"ner":"O"
},
{
"orth":"shake",
"tag":"VB",
"ner":"O"
},
{
"orth":"my",
"tag":"PRP$",
"ner":"O"
},
{
"orth":"hand",
"tag":"NN",
"ner":"O"
},
{
"orth":"and",
"tag":"CC",
"ner":"O"
},
{
"orth":"turn",
"tag":"VB",
"ner":"O"
},
{
"orth":"away",
"tag":"RB",
"ner":"O"
},
{
"orth":"because",
"tag":"IN",
"ner":"O"
},
{
"orth":"I",
"tag":"PRP",
"ner":"O"
},
{
"orth":"was",
"tag":"VBD",
"ner":"O"
},
{
"orth":"n\u2019t",
"tag":"RB",
"ner":"O"
},
{
"orth":"worth",
"tag":"JJ",
"ner":"O"
},
{
"orth":"talking",
"tag":"VBG",
"ner":"O"
},
{
"orth":"to",
"tag":"IN",
"ner":"O"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"\u201d",
"tag":"''",
"ner":"O"
},
{
"orth":"said",
"tag":"VBD",
"ner":"O"
},
{
"orth":"Thrun",
"tag":"NNP",
"ner":"U-PERSON"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"in",
"tag":"IN",
"ner":"O"
},
{
"orth":"an",
"tag":"DT",
"ner":"O"
},
{
"orth":"interview",
"tag":"NN",
"ner":"O"
},
{
"orth":"with",
"tag":"IN",
"ner":"O"
},
{
"orth":"Recode",
"tag":"NNP",
"ner":"U-ORG"
},
{
"orth":"earlier",
"tag":"RBR",
"ner":"B-DATE"
},
{
"orth":"this",
"tag":"DT",
"ner":"I-DATE"
},
{
"orth":"week",
"tag":"NN",
"ner":"L-DATE"
},
{
"orth":".",
"tag":".",
"ner":"O"
}
]
}
]
}
]
}
]

View File

@ -0,0 +1,66 @@
When WRB O
Sebastian NNP B-PERSON
Thrun NNP I-PERSON
started VBD O
working VBG O
on IN O
self NN O
- HYPH O
driving VBG O
cars NNS O
at IN O
Google NNP B-ORG
in IN O
2007 CD B-DATE
, , O
few JJ O
people NNS O
outside RB O
of IN O
the DT O
company NN O
took VBD O
him PRP O
seriously RB O
. . O
“ '' O
I PRP O
can MD O
tell VB O
you PRP O
very RB O
senior JJ O
CEOs NNS O
of IN O
major JJ O
American JJ B-NORP
car NN O
companies NNS O
would MD O
shake VB O
my PRP$ O
hand NN O
and CC O
turn VB O
away RB O
because IN O
I PRP O
was VBD O
nt RB O
worth JJ O
talking VBG O
to IN O
, , O
” '' O
said VBD O
Thrun NNP B-PERSON
, , O
in IN O
an DT O
interview NN O
with IN O
Recode NNP B-ORG
earlier RBR B-DATE
this DT I-DATE
week NN I-DATE
. . O

View File

@ -0,0 +1,353 @@
[
{
"id":0,
"paragraphs":[
{
"sentences":[
{
"tokens":[
{
"orth":"When",
"tag":"WRB",
"ner":"O"
},
{
"orth":"Sebastian",
"tag":"NNP",
"ner":"B-PERSON"
},
{
"orth":"Thrun",
"tag":"NNP",
"ner":"L-PERSON"
},
{
"orth":"started",
"tag":"VBD",
"ner":"O"
},
{
"orth":"working",
"tag":"VBG",
"ner":"O"
},
{
"orth":"on",
"tag":"IN",
"ner":"O"
},
{
"orth":"self",
"tag":"NN",
"ner":"O"
},
{
"orth":"-",
"tag":"HYPH",
"ner":"O"
},
{
"orth":"driving",
"tag":"VBG",
"ner":"O"
},
{
"orth":"cars",
"tag":"NNS",
"ner":"O"
},
{
"orth":"at",
"tag":"IN",
"ner":"O"
},
{
"orth":"Google",
"tag":"NNP",
"ner":"U-ORG"
},
{
"orth":"in",
"tag":"IN",
"ner":"O"
},
{
"orth":"2007",
"tag":"CD",
"ner":"U-DATE"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"few",
"tag":"JJ",
"ner":"O"
},
{
"orth":"people",
"tag":"NNS",
"ner":"O"
},
{
"orth":"outside",
"tag":"RB",
"ner":"O"
},
{
"orth":"of",
"tag":"IN",
"ner":"O"
},
{
"orth":"the",
"tag":"DT",
"ner":"O"
},
{
"orth":"company",
"tag":"NN",
"ner":"O"
},
{
"orth":"took",
"tag":"VBD",
"ner":"O"
},
{
"orth":"him",
"tag":"PRP",
"ner":"O"
},
{
"orth":"seriously",
"tag":"RB",
"ner":"O"
},
{
"orth":".",
"tag":".",
"ner":"O"
}
]
},
{
"tokens":[
{
"orth":"\u201c",
"tag":"''",
"ner":"O"
}
]
},
{
"tokens":[
{
"orth":"I",
"tag":"PRP",
"ner":"O"
},
{
"orth":"can",
"tag":"MD",
"ner":"O"
},
{
"orth":"tell",
"tag":"VB",
"ner":"O"
},
{
"orth":"you",
"tag":"PRP",
"ner":"O"
},
{
"orth":"very",
"tag":"RB",
"ner":"O"
},
{
"orth":"senior",
"tag":"JJ",
"ner":"O"
},
{
"orth":"CEOs",
"tag":"NNS",
"ner":"O"
},
{
"orth":"of",
"tag":"IN",
"ner":"O"
},
{
"orth":"major",
"tag":"JJ",
"ner":"O"
},
{
"orth":"American",
"tag":"JJ",
"ner":"U-NORP"
},
{
"orth":"car",
"tag":"NN",
"ner":"O"
},
{
"orth":"companies",
"tag":"NNS",
"ner":"O"
},
{
"orth":"would",
"tag":"MD",
"ner":"O"
},
{
"orth":"shake",
"tag":"VB",
"ner":"O"
},
{
"orth":"my",
"tag":"PRP$",
"ner":"O"
},
{
"orth":"hand",
"tag":"NN",
"ner":"O"
},
{
"orth":"and",
"tag":"CC",
"ner":"O"
},
{
"orth":"turn",
"tag":"VB",
"ner":"O"
},
{
"orth":"away",
"tag":"RB",
"ner":"O"
},
{
"orth":"because",
"tag":"IN",
"ner":"O"
},
{
"orth":"I",
"tag":"PRP",
"ner":"O"
},
{
"orth":"was",
"tag":"VBD",
"ner":"O"
},
{
"orth":"n\u2019t",
"tag":"RB",
"ner":"O"
},
{
"orth":"worth",
"tag":"JJ",
"ner":"O"
},
{
"orth":"talking",
"tag":"VBG",
"ner":"O"
},
{
"orth":"to",
"tag":"IN",
"ner":"O"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"\u201d",
"tag":"''",
"ner":"O"
},
{
"orth":"said",
"tag":"VBD",
"ner":"O"
},
{
"orth":"Thrun",
"tag":"NNP",
"ner":"U-PERSON"
},
{
"orth":",",
"tag":",",
"ner":"O"
},
{
"orth":"in",
"tag":"IN",
"ner":"O"
},
{
"orth":"an",
"tag":"DT",
"ner":"O"
},
{
"orth":"interview",
"tag":"NN",
"ner":"O"
},
{
"orth":"with",
"tag":"IN",
"ner":"O"
},
{
"orth":"Recode",
"tag":"NNP",
"ner":"U-ORG"
},
{
"orth":"earlier",
"tag":"RBR",
"ner":"B-DATE"
},
{
"orth":"this",
"tag":"DT",
"ner":"I-DATE"
},
{
"orth":"week",
"tag":"NN",
"ner":"L-DATE"
},
{
"orth":".",
"tag":".",
"ner":"O"
}
]
}
]
}
]
}
]

View File

@ -0,0 +1,66 @@
When O
Sebastian B-PERSON
Thrun I-PERSON
started O
working O
on O
self O
- O
driving O
cars O
at O
Google B-ORG
in O
2007 B-DATE
, O
few O
people O
outside O
of O
the O
company O
took O
him O
seriously O
. O
“ O
I O
can O
tell O
you O
very O
senior O
CEOs O
of O
major O
American B-NORP
car O
companies O
would O
shake O
my O
hand O
and O
turn O
away O
because O
I O
was O
nt O
worth O
talking O
to O
, O
” O
said O
Thrun B-PERSON
, O
in O
an O
interview O
with O
Recode B-ORG
earlier B-DATE
this I-DATE
week I-DATE
. O

View File

@ -0,0 +1,353 @@
[
{
"id":0,
"paragraphs":[
{
"sentences":[
{
"tokens":[
{
"orth":"When",
"tag":"-",
"ner":"O"
},
{
"orth":"Sebastian",
"tag":"-",
"ner":"B-PERSON"
},
{
"orth":"Thrun",
"tag":"-",
"ner":"L-PERSON"
},
{
"orth":"started",
"tag":"-",
"ner":"O"
},
{
"orth":"working",
"tag":"-",
"ner":"O"
},
{
"orth":"on",
"tag":"-",
"ner":"O"
},
{
"orth":"self",
"tag":"-",
"ner":"O"
},
{
"orth":"-",
"tag":"-",
"ner":"O"
},
{
"orth":"driving",
"tag":"-",
"ner":"O"
},
{
"orth":"cars",
"tag":"-",
"ner":"O"
},
{
"orth":"at",
"tag":"-",
"ner":"O"
},
{
"orth":"Google",
"tag":"-",
"ner":"U-ORG"
},
{
"orth":"in",
"tag":"-",
"ner":"O"
},
{
"orth":"2007",
"tag":"-",
"ner":"U-DATE"
},
{
"orth":",",
"tag":"-",
"ner":"O"
},
{
"orth":"few",
"tag":"-",
"ner":"O"
},
{
"orth":"people",
"tag":"-",
"ner":"O"
},
{
"orth":"outside",
"tag":"-",
"ner":"O"
},
{
"orth":"of",
"tag":"-",
"ner":"O"
},
{
"orth":"the",
"tag":"-",
"ner":"O"
},
{
"orth":"company",
"tag":"-",
"ner":"O"
},
{
"orth":"took",
"tag":"-",
"ner":"O"
},
{
"orth":"him",
"tag":"-",
"ner":"O"
},
{
"orth":"seriously",
"tag":"-",
"ner":"O"
},
{
"orth":".",
"tag":"-",
"ner":"O"
}
]
},
{
"tokens":[
{
"orth":"\u201c",
"tag":"-",
"ner":"O"
}
]
},
{
"tokens":[
{
"orth":"I",
"tag":"-",
"ner":"O"
},
{
"orth":"can",
"tag":"-",
"ner":"O"
},
{
"orth":"tell",
"tag":"-",
"ner":"O"
},
{
"orth":"you",
"tag":"-",
"ner":"O"
},
{
"orth":"very",
"tag":"-",
"ner":"O"
},
{
"orth":"senior",
"tag":"-",
"ner":"O"
},
{
"orth":"CEOs",
"tag":"-",
"ner":"O"
},
{
"orth":"of",
"tag":"-",
"ner":"O"
},
{
"orth":"major",
"tag":"-",
"ner":"O"
},
{
"orth":"American",
"tag":"-",
"ner":"U-NORP"
},
{
"orth":"car",
"tag":"-",
"ner":"O"
},
{
"orth":"companies",
"tag":"-",
"ner":"O"
},
{
"orth":"would",
"tag":"-",
"ner":"O"
},
{
"orth":"shake",
"tag":"-",
"ner":"O"
},
{
"orth":"my",
"tag":"-",
"ner":"O"
},
{
"orth":"hand",
"tag":"-",
"ner":"O"
},
{
"orth":"and",
"tag":"-",
"ner":"O"
},
{
"orth":"turn",
"tag":"-",
"ner":"O"
},
{
"orth":"away",
"tag":"-",
"ner":"O"
},
{
"orth":"because",
"tag":"-",
"ner":"O"
},
{
"orth":"I",
"tag":"-",
"ner":"O"
},
{
"orth":"was",
"tag":"-",
"ner":"O"
},
{
"orth":"n\u2019t",
"tag":"-",
"ner":"O"
},
{
"orth":"worth",
"tag":"-",
"ner":"O"
},
{
"orth":"talking",
"tag":"-",
"ner":"O"
},
{
"orth":"to",
"tag":"-",
"ner":"O"
},
{
"orth":",",
"tag":"-",
"ner":"O"
},
{
"orth":"\u201d",
"tag":"-",
"ner":"O"
},
{
"orth":"said",
"tag":"-",
"ner":"O"
},
{
"orth":"Thrun",
"tag":"-",
"ner":"U-PERSON"
},
{
"orth":",",
"tag":"-",
"ner":"O"
},
{
"orth":"in",
"tag":"-",
"ner":"O"
},
{
"orth":"an",
"tag":"-",
"ner":"O"
},
{
"orth":"interview",
"tag":"-",
"ner":"O"
},
{
"orth":"with",
"tag":"-",
"ner":"O"
},
{
"orth":"Recode",
"tag":"-",
"ner":"U-ORG"
},
{
"orth":"earlier",
"tag":"-",
"ner":"B-DATE"
},
{
"orth":"this",
"tag":"-",
"ner":"I-DATE"
},
{
"orth":"week",
"tag":"-",
"ner":"L-DATE"
},
{
"orth":".",
"tag":"-",
"ner":"O"
}
]
}
]
}
]
}
]

View File

@ -80,7 +80,7 @@ def main(model_name, unlabelled_loc):
nlp.rehearse(raw_batch, sgd=optimizer, losses=r_losses) nlp.rehearse(raw_batch, sgd=optimizer, losses=r_losses)
print("Losses", losses) print("Losses", losses)
print("R. Losses", r_losses) print("R. Losses", r_losses)
print(nlp.get_pipe('ner').model.unseen_classes) print(nlp.get_pipe("ner").model.unseen_classes)
test_text = "Do you like horses?" test_text = "Do you like horses?"
doc = nlp(test_text) doc = nlp(test_text)
print("Entities in '%s'" % test_text) print("Entities in '%s'" % test_text)
@ -88,7 +88,5 @@ def main(model_name, unlabelled_loc):
print(ent.label_, ent.text) print(ent.label_, ent.text)
if __name__ == "__main__": if __name__ == "__main__":
plac.call(main) plac.call(main)

View File

@ -24,7 +24,7 @@ from spacy.util import minibatch, compounding
output_dir=("Optional output directory", "option", "o", Path), output_dir=("Optional output directory", "option", "o", Path),
n_texts=("Number of texts to train from", "option", "t", int), n_texts=("Number of texts to train from", "option", "t", int),
n_iter=("Number of training iterations", "option", "n", int), n_iter=("Number of training iterations", "option", "n", int),
init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path) init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path),
) )
def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None): def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None):
if output_dir is not None: if output_dir is not None:
@ -43,11 +43,7 @@ def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None
# nlp.create_pipe works for built-ins that are registered with spaCy # nlp.create_pipe works for built-ins that are registered with spaCy
if "textcat" not in nlp.pipe_names: if "textcat" not in nlp.pipe_names:
textcat = nlp.create_pipe( textcat = nlp.create_pipe(
"textcat", "textcat", config={"exclusive_classes": True, "architecture": "simple_cnn"}
config={
"exclusive_classes": True,
"architecture": "simple_cnn",
}
) )
nlp.add_pipe(textcat, last=True) nlp.add_pipe(textcat, last=True)
# otherwise, get it, so we can add labels to it # otherwise, get it, so we can add labels to it

View File

@ -5,12 +5,14 @@ import plac
from pathlib import Path from pathlib import Path
from wasabi import Printer from wasabi import Printer
import srsly import srsly
import re
from .converters import conllu2json, iob2json, conll_ner2json from .converters import conllu2json, iob2json, conll_ner2json
from .converters import ner_jsonl2json from .converters import ner_jsonl2json
# Converters are matched by file extension. To add a converter, add a new # Converters are matched by file extension except for ner/iob, which are
# matched by file extension and content. To add a converter, add a new
# entry to this dict with the file extension mapped to the converter function # entry to this dict with the file extension mapped to the converter function
# imported from /converters. # imported from /converters.
CONVERTERS = { CONVERTERS = {
@ -31,7 +33,9 @@ FILE_TYPES_STDOUT = ("json", "jsonl")
input_file=("Input file", "positional", None, str), input_file=("Input file", "positional", None, str),
output_dir=("Output directory. '-' for stdout.", "positional", None, str), output_dir=("Output directory. '-' for stdout.", "positional", None, str),
file_type=("Type of data to produce: {}".format(FILE_TYPES), "option", "t", str), file_type=("Type of data to produce: {}".format(FILE_TYPES), "option", "t", str),
n_sents=("Number of sentences per doc", "option", "n", int), n_sents=("Number of sentences per doc (0 to disable)", "option", "n", int),
seg_sents=("Segment sentences (for -c ner)", "flag", "s"),
model=("Model for sentence segmentation (for -s)", "option", "b", str),
converter=("Converter: {}".format(tuple(CONVERTERS.keys())), "option", "c", str), converter=("Converter: {}".format(tuple(CONVERTERS.keys())), "option", "c", str),
lang=("Language (if tokenizer required)", "option", "l", str), lang=("Language (if tokenizer required)", "option", "l", str),
morphology=("Enable appending morphology to tags", "flag", "m", bool), morphology=("Enable appending morphology to tags", "flag", "m", bool),
@ -41,6 +45,8 @@ def convert(
output_dir="-", output_dir="-",
file_type="json", file_type="json",
n_sents=1, n_sents=1,
seg_sents=False,
model=None,
morphology=False, morphology=False,
converter="auto", converter="auto",
lang=None, lang=None,
@ -70,14 +76,33 @@ def convert(
msg.fail("Input file not found", input_path, exits=1) msg.fail("Input file not found", input_path, exits=1)
if output_dir != "-" and not Path(output_dir).exists(): if output_dir != "-" and not Path(output_dir).exists():
msg.fail("Output directory not found", output_dir, exits=1) msg.fail("Output directory not found", output_dir, exits=1)
input_data = input_path.open("r", encoding="utf-8").read()
if converter == "auto": if converter == "auto":
converter = input_path.suffix[1:] converter = input_path.suffix[1:]
if converter == "ner" or converter == "iob":
converter_autodetect = autodetect_ner_format(input_data)
if converter_autodetect == "ner":
msg.info("Auto-detected token-per-line NER format")
converter = converter_autodetect
elif converter_autodetect == "iob":
msg.info("Auto-detected sentence-per-line NER format")
converter = converter_autodetect
else:
msg.warn(
"Can't automatically detect NER format. Conversion may not succeed. See https://spacy.io/api/cli#convert"
)
if converter not in CONVERTERS: if converter not in CONVERTERS:
msg.fail("Can't find converter for {}".format(converter), exits=1) msg.fail("Can't find converter for {}".format(converter), exits=1)
# Use converter function to convert data # Use converter function to convert data
func = CONVERTERS[converter] func = CONVERTERS[converter]
input_data = input_path.open("r", encoding="utf-8").read() data = func(
data = func(input_data, n_sents=n_sents, use_morphology=morphology, lang=lang) input_data,
n_sents=n_sents,
seg_sents=seg_sents,
use_morphology=morphology,
lang=lang,
model=model,
)
if output_dir != "-": if output_dir != "-":
# Export data to a file # Export data to a file
suffix = ".{}".format(file_type) suffix = ".{}".format(file_type)
@ -88,10 +113,31 @@ def convert(
srsly.write_jsonl(output_file, data) srsly.write_jsonl(output_file, data)
elif file_type == "msg": elif file_type == "msg":
srsly.write_msgpack(output_file, data) srsly.write_msgpack(output_file, data)
msg.good("Generated output file ({} documents)".format(len(data)), output_file) msg.good(
"Generated output file ({} documents): {}".format(len(data), output_file)
)
else: else:
# Print to stdout # Print to stdout
if file_type == "json": if file_type == "json":
srsly.write_json("-", data) srsly.write_json("-", data)
elif file_type == "jsonl": elif file_type == "jsonl":
srsly.write_jsonl("-", data) srsly.write_jsonl("-", data)
def autodetect_ner_format(input_data):
# guess format from the first 20 lines
lines = input_data.split("\n")[:20]
format_guesses = {"ner": 0, "iob": 0}
iob_re = re.compile(r"\S+\|(O|[IB]-\S+)")
ner_re = re.compile(r"\S+\s+(O|[IB]-\S+)$")
for line in lines:
line = line.strip()
if iob_re.search(line):
format_guesses["iob"] += 1
if ner_re.search(line):
format_guesses["ner"] += 1
if format_guesses["iob"] == 0 and format_guesses["ner"] > 0:
return "ner"
if format_guesses["ner"] == 0 and format_guesses["iob"] > 0:
return "iob"
return None

View File

@ -1,17 +1,89 @@
# coding: utf8 # coding: utf8
from __future__ import unicode_literals from __future__ import unicode_literals
from wasabi import Printer
from ...gold import iob_to_biluo from ...gold import iob_to_biluo
from ...lang.xx import MultiLanguage
from ...tokens.doc import Doc
from ...util import load_model
def conll_ner2json(input_data, **kwargs): def conll_ner2json(input_data, n_sents=10, seg_sents=False, model=None, **kwargs):
""" """
Convert files in the CoNLL-2003 NER format into JSON format for use with Convert files in the CoNLL-2003 NER format and similar
train cli. whitespace-separated columns into JSON format for use with train cli.
The first column is the tokens, the final column is the IOB tags. If an
additional second column is present, the second column is the tags.
Sentences are separated with whitespace and documents can be separated
using the line "-DOCSTART- -X- O O".
Sample format:
-DOCSTART- -X- O O
I O
like O
London B-GPE
and O
New B-GPE
York I-GPE
City I-GPE
. O
""" """
delimit_docs = "-DOCSTART- -X- O O" msg = Printer()
doc_delimiter = "-DOCSTART- -X- O O"
# check for existing delimiters, which should be preserved
if "\n\n" in input_data and seg_sents:
msg.warn(
"Sentence boundaries found, automatic sentence segmentation with "
"`-s` disabled."
)
seg_sents = False
if doc_delimiter in input_data and n_sents:
msg.warn(
"Document delimiters found, automatic document segmentation with "
"`-n` disabled."
)
n_sents = 0
# do document segmentation with existing sentences
if "\n\n" in input_data and doc_delimiter not in input_data and n_sents:
n_sents_info(msg, n_sents)
input_data = segment_docs(input_data, n_sents, doc_delimiter)
# do sentence segmentation with existing documents
if "\n\n" not in input_data and doc_delimiter in input_data and seg_sents:
input_data = segment_sents_and_docs(input_data, 0, "", model=model, msg=msg)
# do both sentence segmentation and document segmentation according
# to options
if "\n\n" not in input_data and doc_delimiter not in input_data:
# sentence segmentation required for document segmentation
if n_sents > 0 and not seg_sents:
msg.warn(
"No sentence boundaries found to use with option `-n {}`. "
"Use `-s` to automatically segment sentences or `-n 0` "
"to disable.".format(n_sents)
)
else:
n_sents_info(msg, n_sents)
input_data = segment_sents_and_docs(
input_data, n_sents, doc_delimiter, model=model, msg=msg
)
# provide warnings for problematic data
if "\n\n" not in input_data:
msg.warn(
"No sentence boundaries found. Use `-s` to automatically segment "
"sentences."
)
if doc_delimiter not in input_data:
msg.warn(
"No document delimiters found. Use `-n` to automatically group "
"sentences into documents."
)
output_docs = [] output_docs = []
for doc in input_data.strip().split(delimit_docs): for doc in input_data.strip().split(doc_delimiter):
doc = doc.strip() doc = doc.strip()
if not doc: if not doc:
continue continue
@ -21,7 +93,19 @@ def conll_ner2json(input_data, **kwargs):
if not sent: if not sent:
continue continue
lines = [line.strip() for line in sent.split("\n") if line.strip()] lines = [line.strip() for line in sent.split("\n") if line.strip()]
words, tags, chunks, iob_ents = zip(*[line.split() for line in lines]) cols = list(zip(*[line.split() for line in lines]))
if len(cols) < 2:
raise ValueError(
"The token-per-line NER file is not formatted correctly. "
"Try checking whitespace and delimiters. See "
"https://spacy.io/api/cli#convert"
)
words = cols[0]
iob_ents = cols[-1]
if len(cols) > 2:
tags = cols[1]
else:
tags = ["-"] * len(words)
biluo_ents = iob_to_biluo(iob_ents) biluo_ents = iob_to_biluo(iob_ents)
output_doc.append( output_doc.append(
{ {
@ -36,3 +120,53 @@ def conll_ner2json(input_data, **kwargs):
) )
output_doc = [] output_doc = []
return output_docs return output_docs
def segment_sents_and_docs(doc, n_sents, doc_delimiter, model=None, msg=None):
sentencizer = None
if model:
nlp = load_model(model)
if "parser" in nlp.pipe_names:
msg.info("Segmenting sentences with parser from model '{}'.".format(model))
sentencizer = nlp.get_pipe("parser")
if not sentencizer:
msg.info(
"Segmenting sentences with sentencizer. (Use `-b model` for "
"improved parser-based sentence segmentation.)"
)
nlp = MultiLanguage()
sentencizer = nlp.create_pipe("sentencizer")
lines = doc.strip().split("\n")
words = [line.strip().split()[0] for line in lines]
nlpdoc = Doc(nlp.vocab, words=words)
sentencizer(nlpdoc)
lines_with_segs = []
sent_count = 0
for i, token in enumerate(nlpdoc):
if token.is_sent_start:
if n_sents and sent_count % n_sents == 0:
lines_with_segs.append(doc_delimiter)
lines_with_segs.append("")
sent_count += 1
lines_with_segs.append(lines[i])
return "\n".join(lines_with_segs)
def segment_docs(input_data, n_sents, doc_delimiter):
sent_delimiter = "\n\n"
sents = input_data.split(sent_delimiter)
docs = [sents[i : i + n_sents] for i in range(0, len(sents), n_sents)]
input_data = ""
for doc in docs:
input_data += sent_delimiter + doc_delimiter
input_data += sent_delimiter.join(doc)
return input_data
def n_sents_info(msg, n_sents):
msg.info("Grouping every {} sentences into a document.".format(n_sents))
if n_sents == 1:
msg.warn(
"To generate better training data, you may want to group "
"sentences into documents with `-n 10`."
)

View File

@ -2,17 +2,30 @@
from __future__ import unicode_literals from __future__ import unicode_literals
import re import re
from wasabi import Printer
from ...gold import iob_to_biluo from ...gold import iob_to_biluo
from ...util import minibatch from ...util import minibatch
from .conll_ner2json import n_sents_info
def iob2json(input_data, n_sents=10, *args, **kwargs): def iob2json(input_data, n_sents=10, *args, **kwargs):
""" """
Convert IOB files into JSON format for use with train cli. Convert IOB files with one sentence per line and tags separated with '|'
into JSON format for use with train cli. IOB and IOB2 are accepted.
Sample formats:
I|O like|O London|I-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O
I|O like|O London|B-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O
I|PRP|O like|VBP|O London|NNP|I-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O
I|PRP|O like|VBP|O London|NNP|B-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O
""" """
sentences = read_iob(input_data.split("\n")) msg = Printer()
docs = merge_sentences(sentences, n_sents) docs = read_iob(input_data.split("\n"))
if n_sents > 0:
n_sents_info(msg, n_sents)
docs = merge_sentences(docs, n_sents)
return docs return docs
@ -21,7 +34,7 @@ def read_iob(raw_sents):
for line in raw_sents: for line in raw_sents:
if not line.strip(): if not line.strip():
continue continue
tokens = [re.split("[^\w\-]", line.strip())] tokens = [t.split("|") for t in line.split()]
if len(tokens[0]) == 3: if len(tokens[0]) == 3:
words, pos, iob = zip(*tokens) words, pos, iob = zip(*tokens)
elif len(tokens[0]) == 2: elif len(tokens[0]) == 2:
@ -29,7 +42,7 @@ def read_iob(raw_sents):
pos = ["-"] * len(words) pos = ["-"] * len(words)
else: else:
raise ValueError( raise ValueError(
"The iob/iob2 file is not formatted correctly. Try checking whitespace and delimiters." "The sentence-per-line IOB/IOB2 file is not formatted correctly. Try checking whitespace and delimiters. See https://spacy.io/api/cli#convert"
) )
biluo = iob_to_biluo(iob) biluo = iob_to_biluo(iob)
sentences.append( sentences.append(
@ -40,7 +53,7 @@ def read_iob(raw_sents):
) )
sentences = [{"tokens": sent} for sent in sentences] sentences = [{"tokens": sent} for sent in sentences]
paragraphs = [{"sentences": [sent]} for sent in sentences] paragraphs = [{"sentences": [sent]} for sent in sentences]
docs = [{"id": 0, "paragraphs": [para]} for para in paragraphs] docs = [{"id": i, "paragraphs": [para]} for i, para in enumerate(paragraphs)]
return docs return docs
@ -50,7 +63,7 @@ def merge_sentences(docs, n_sents):
group = list(group) group = list(group)
first = group.pop(0) first = group.pop(0)
to_extend = first["paragraphs"][0]["sentences"] to_extend = first["paragraphs"][0]["sentences"]
for sent in group[1:]: for sent in group:
to_extend.extend(sent["paragraphs"][0]["sentences"]) to_extend.extend(sent["paragraphs"][0]["sentences"])
merged.append(first) merged.append(first)
return merged return merged

View File

@ -38,8 +38,8 @@ from . import about
class BaseDefaults(object): class BaseDefaults(object):
@classmethod @classmethod
def create_lemmatizer(cls, nlp=None, lookups=None): def create_lemmatizer(cls, nlp=None, lookups=None):
lemma_rules, lemma_index, lemma_exc, lemma_lookup = util.get_lemma_tables(lookups) rules, index, exc, lookup = util.get_lemma_tables(lookups)
return Lemmatizer(lemma_index, lemma_exc, lemma_rules, lemma_lookup) return Lemmatizer(index, exc, rules, lookup)
@classmethod @classmethod
def create_lookups(cls, nlp=None): def create_lookups(cls, nlp=None):

View File

@ -142,10 +142,34 @@ TOKEN_PATTERN_SCHEMA = {
"title": "Token is whitespace", "title": "Token is whitespace",
"$ref": "#/definitions/boolean_value", "$ref": "#/definitions/boolean_value",
}, },
"IS_BRACKET": {
"title": "Token is a bracket",
"$ref": "#/definitions/boolean_value",
},
"IS_QUOTE": {
"title": "Token is a quotation mark",
"$ref": "#/definitions/boolean_value",
},
"IS_LEFT_PUNCT": {
"title": "Token is a left punctuation mark",
"$ref": "#/definitions/boolean_value",
},
"IS_RIGHT_PUNCT": {
"title": "Token is a right punctuation mark",
"$ref": "#/definitions/boolean_value",
},
"IS_CURRENCY": {
"title": "Token is a currency symbol",
"$ref": "#/definitions/boolean_value",
},
"IS_STOP": { "IS_STOP": {
"title": "Token is stop word", "title": "Token is stop word",
"$ref": "#/definitions/boolean_value", "$ref": "#/definitions/boolean_value",
}, },
"IS_SENT_START": {
"title": "Token is the first in a sentence",
"$ref": "#/definitions/boolean_value",
},
"LIKE_NUM": { "LIKE_NUM": {
"title": "Token resembles a number", "title": "Token resembles a number",
"$ref": "#/definitions/boolean_value", "$ref": "#/definitions/boolean_value",

View File

@ -258,7 +258,7 @@ cdef class Begin:
@staticmethod @staticmethod
cdef bint is_valid(const StateC* st, attr_t label) nogil: cdef bint is_valid(const StateC* st, attr_t label) nogil:
cdef int preset_ent_iob = st.B_(0).ent_iob cdef int preset_ent_iob = st.B_(0).ent_iob
cdef int preset_ent_label = st.B_(0).ent_type cdef attr_t preset_ent_label = st.B_(0).ent_type
# If we're the last token of the input, we can't B -- must U or O. # If we're the last token of the input, we can't B -- must U or O.
if st.B(1) == -1: if st.B(1) == -1:
return False return False
@ -395,6 +395,9 @@ cdef class Last:
return False return False
elif not st.entity_is_open(): elif not st.entity_is_open():
return False return False
elif st.B_(0).ent_iob == 1 and st.B_(1).ent_iob != 1:
# If a preset entity has I followed by not-I, is L
return True
elif st.E_(0).ent_type != label: elif st.E_(0).ent_type != label:
return False return False
elif st.B_(1).ent_iob == 1: elif st.B_(1).ent_iob == 1:

View File

@ -6,8 +6,13 @@ import pytest
@pytest.mark.parametrize( @pytest.mark.parametrize(
"text,norms,lemmas", "text,norms,lemmas",
[("о.г.", ["ове године"], ["ова година"]), ("чет.", ["четвртак"], ["четвртак"]), [
("гђа", ["госпођа"], ["госпођа"]), ("ил'", ["или"], ["или"])]) ("о.г.", ["ове године"], ["ова година"]),
("чет.", ["четвртак"], ["четвртак"]),
("гђа", ["госпођа"], ["госпођа"]),
("ил'", ["или"], ["или"]),
],
)
def test_sr_tokenizer_abbrev_exceptions(sr_tokenizer, text, norms, lemmas): def test_sr_tokenizer_abbrev_exceptions(sr_tokenizer, text, norms, lemmas):
tokens = sr_tokenizer(text) tokens = sr_tokenizer(text)
assert len(tokens) == 1 assert len(tokens) == 1

View File

@ -380,3 +380,33 @@ def test_attr_pipeline_checks(en_vocab):
matcher(doc1) matcher(doc1)
matcher(doc2) matcher(doc2)
matcher(doc3) matcher(doc3)
@pytest.mark.parametrize(
"pattern,text",
[
([{"IS_ALPHA": True}], "a"),
([{"IS_ASCII": True}], "a"),
([{"IS_DIGIT": True}], "1"),
([{"IS_LOWER": True}], "a"),
([{"IS_UPPER": True}], "A"),
([{"IS_TITLE": True}], "Aaaa"),
([{"IS_PUNCT": True}], "."),
([{"IS_SPACE": True}], "\n"),
([{"IS_BRACKET": True}], "["),
([{"IS_QUOTE": True}], '"'),
([{"IS_LEFT_PUNCT": True}], "``"),
([{"IS_RIGHT_PUNCT": True}], "''"),
([{"IS_STOP": True}], "the"),
([{"LIKE_NUM": True}], "1"),
([{"LIKE_URL": True}], "http://example.com"),
([{"LIKE_EMAIL": True}], "mail@example.com"),
],
)
def test_matcher_schema_token_attributes(en_vocab, pattern, text):
matcher = Matcher(en_vocab)
doc = Doc(en_vocab, words=text.split(" "))
matcher.add("Rule", None, pattern)
assert len(matcher) == 1
matches = matcher(doc)
assert len(matches) == 1

View File

@ -329,3 +329,4 @@ def test_issue_1971_4(en_vocab):
matches = matcher(doc) matches = matcher(doc)
# Uncommenting this caused a segmentation fault # Uncommenting this caused a segmentation fault
assert len(matches) == 1 assert len(matches) == 1
assert matches[0] == (en_vocab.strings["TEST"], 0, 3)

View File

@ -0,0 +1,57 @@
# coding: utf8
from __future__ import unicode_literals
from spacy.lang.en import English
import spacy
from spacy.tokenizer import Tokenizer
from spacy.tests.util import make_tempdir
def test_issue4190():
test_string = "Test c."
# Load default language
nlp_1 = English()
doc_1a = nlp_1(test_string)
result_1a = [token.text for token in doc_1a]
# Modify tokenizer
customize_tokenizer(nlp_1)
doc_1b = nlp_1(test_string)
result_1b = [token.text for token in doc_1b]
# Save and Reload
with make_tempdir() as model_dir:
nlp_1.to_disk(model_dir)
nlp_2 = spacy.load(model_dir)
# This should be the modified tokenizer
doc_2 = nlp_2(test_string)
result_2 = [token.text for token in doc_2]
assert result_1b == result_2
def customize_tokenizer(nlp):
prefix_re = spacy.util.compile_prefix_regex(nlp.Defaults.prefixes)
suffix_re = spacy.util.compile_suffix_regex(nlp.Defaults.suffixes)
infix_re = spacy.util.compile_infix_regex(nlp.Defaults.infixes)
# remove all exceptions where a single letter is followed by a period (e.g. 'h.')
exceptions = {
k: v
for k, v in dict(nlp.Defaults.tokenizer_exceptions).items()
if not (len(k) == 2 and k[1] == ".")
}
new_tokenizer = Tokenizer(
nlp.vocab,
exceptions,
prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
token_match=nlp.tokenizer.token_match,
)
nlp.tokenizer = new_tokenizer

View File

@ -4,7 +4,7 @@ from __future__ import unicode_literals
import pytest import pytest
from spacy.lang.en import English from spacy.lang.en import English
from spacy.cli.converters import conllu2json from spacy.cli.converters import conllu2json, iob2json, conll_ner2json
from spacy.cli.pretrain import make_docs from spacy.cli.pretrain import make_docs
@ -32,6 +32,95 @@ def test_cli_converters_conllu2json():
assert [t["ner"] for t in tokens] == ["O", "B-PER", "L-PER", "O"] assert [t["ner"] for t in tokens] == ["O", "B-PER", "L-PER", "O"]
def test_cli_converters_iob2json():
lines = [
"I|O like|O London|I-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O",
"I|O like|O London|B-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O",
"I|PRP|O like|VBP|O London|NNP|I-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O",
"I|PRP|O like|VBP|O London|NNP|B-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O",
]
input_data = "\n".join(lines)
converted = iob2json(input_data, n_sents=10)
assert len(converted) == 1
assert converted[0]["id"] == 0
assert len(converted[0]["paragraphs"]) == 1
assert len(converted[0]["paragraphs"][0]["sentences"]) == 4
for i in range(0, 4):
sent = converted[0]["paragraphs"][0]["sentences"][i]
assert len(sent["tokens"]) == 8
tokens = sent["tokens"]
# fmt: off
assert [t["orth"] for t in tokens] == ["I", "like", "London", "and", "New", "York", "City", "."]
assert [t["ner"] for t in tokens] == ["O", "O", "U-GPE", "O", "B-GPE", "I-GPE", "L-GPE", "O"]
# fmt: on
def test_cli_converters_conll_ner2json():
lines = [
"-DOCSTART- -X- O O",
"",
"I\tO",
"like\tO",
"London\tB-GPE",
"and\tO",
"New\tB-GPE",
"York\tI-GPE",
"City\tI-GPE",
".\tO",
"",
"I O",
"like O",
"London B-GPE",
"and O",
"New B-GPE",
"York I-GPE",
"City I-GPE",
". O",
"",
"I PRP O",
"like VBP O",
"London NNP B-GPE",
"and CC O",
"New NNP B-GPE",
"York NNP I-GPE",
"City NNP I-GPE",
". . O",
"",
"I PRP _ O",
"like VBP _ O",
"London NNP _ B-GPE",
"and CC _ O",
"New NNP _ B-GPE",
"York NNP _ I-GPE",
"City NNP _ I-GPE",
". . _ O",
"",
"I\tPRP\t_\tO",
"like\tVBP\t_\tO",
"London\tNNP\t_\tB-GPE",
"and\tCC\t_\tO",
"New\tNNP\t_\tB-GPE",
"York\tNNP\t_\tI-GPE",
"City\tNNP\t_\tI-GPE",
".\t.\t_\tO",
]
input_data = "\n".join(lines)
converted = conll_ner2json(input_data, n_sents=10)
print(converted)
assert len(converted) == 1
assert converted[0]["id"] == 0
assert len(converted[0]["paragraphs"]) == 1
assert len(converted[0]["paragraphs"][0]["sentences"]) == 5
for i in range(0, 5):
sent = converted[0]["paragraphs"][0]["sentences"][i]
assert len(sent["tokens"]) == 8
tokens = sent["tokens"]
# fmt: off
assert [t["orth"] for t in tokens] == ["I", "like", "London", "and", "New", "York", "City", "."]
assert [t["ner"] for t in tokens] == ["O", "O", "U-GPE", "O", "B-GPE", "I-GPE", "L-GPE", "O"]
# fmt: on
def test_pretrain_make_docs(): def test_pretrain_make_docs():
nlp = English() nlp = English()

View File

@ -441,8 +441,13 @@ cdef class Tokenizer:
self.infix_finditer = re.compile(data["infix_finditer"]).finditer self.infix_finditer = re.compile(data["infix_finditer"]).finditer
if data.get("token_match"): if data.get("token_match"):
self.token_match = re.compile(data["token_match"]).match self.token_match = re.compile(data["token_match"]).match
if data.get("rules"):
# make sure to hard reset the cache to remove data from the default exceptions
self._rules = {}
self._cache = PreshMap()
for string, substrings in data.get("rules", {}).items(): for string, substrings in data.get("rules", {}).items():
self.add_special_case(string, substrings) self.add_special_case(string, substrings)
return self return self

View File

@ -145,6 +145,8 @@ $ python -m spacy convert [input_file] [output_dir] [--file-type] [--converter]
| `--file-type`, `-t` <Tag variant="new">2.1</Tag> | option | Type of file to create (see below). | | `--file-type`, `-t` <Tag variant="new">2.1</Tag> | option | Type of file to create (see below). |
| `--converter`, `-c` <Tag variant="new">2</Tag> | option | Name of converter to use (see below). | | `--converter`, `-c` <Tag variant="new">2</Tag> | option | Name of converter to use (see below). |
| `--n-sents`, `-n` | option | Number of sentences per document. | | `--n-sents`, `-n` | option | Number of sentences per document. |
| `--seg-sents`, `-s` <Tag variant="new">2.2</Tag> | flag | Segment sentences (for `-c ner`) |
| `--model`, `-b` <Tag variant="new">2.2</Tag> | option | Model for parser-based sentence segmentation (for `-s`) |
| `--morphology`, `-m` | option | Enable appending morphology to tags. | | `--morphology`, `-m` | option | Enable appending morphology to tags. |
| `--lang`, `-l` <Tag variant="new">2.1</Tag> | option | Language code (if tokenizer required). | | `--lang`, `-l` <Tag variant="new">2.1</Tag> | option | Language code (if tokenizer required). |
| `--help`, `-h` | flag | Show help message and available arguments. | | `--help`, `-h` | flag | Show help message and available arguments. |
@ -174,10 +176,10 @@ All output files generated by this command are compatible with
| ID | Description | | ID | Description |
| ------------------------------ | --------------------------------------------------------------- | | ------------------------------ | --------------------------------------------------------------- |
| `auto` | Automatically pick converter based on file extension (default). | | `auto` | Automatically pick converter based on file extension and file content (default). |
| `conll`, `conllu`, `conllubio` | Universal Dependencies `.conllu` or `.conll` format. | | `conll`, `conllu`, `conllubio` | Universal Dependencies `.conllu` or `.conll` format. |
| `ner` | Tab-based named entity recognition format. | | `ner` | NER with IOB/IOB2 tags, one token per line with columns separated by whitespace. The first column is the token and the final column is the IOB tag. Sentences are separated by blank lines and documents are separated by the line `-DOCSTART- -X- O O`. Supports CoNLL 2003 NER format. See [sample data](https://github.com/explosion/spaCy/tree/master/examples/training/ner_example_data). |
| `iob` | IOB or IOB2 named entity recognition format. | | `iob` | NER with IOB/IOB2 tags, one sentence per line with tokens separated by whitespace and annotation separated by `|`, either `word|B-ENT` or `word|POS|B-ENT`. See [sample data](https://github.com/explosion/spaCy/tree/master/examples/training/ner_example_data). |
## Train {#train} ## Train {#train}

View File

@ -10,6 +10,7 @@
"en_vectors_web_lg", "en_vectors_web_lg",
"en_pytt_bertbaseuncased_lg", "en_pytt_bertbaseuncased_lg",
"en_pytt_robertabase_lg", "en_pytt_robertabase_lg",
"pytt_distilbertbaseuncased_lg",
"en_pytt_xlnetbasecased_lg" "en_pytt_xlnetbasecased_lg"
], ],
"example": "This is a sentence.", "example": "This is a sentence.",