mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
Store activations in Doc
s when save_activations
is enabled (#11002)
* Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit6e7b958f70
. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit0bd5730d16
. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
This commit is contained in:
parent
60c050e82b
commit
efdbb722c5
|
@ -7,7 +7,7 @@ import numpy as np
|
|||
|
||||
import srsly
|
||||
from thinc.api import Config, Model, SequenceCategoricalCrossentropy
|
||||
from thinc.types import Floats2d, Ints1d, Ints2d
|
||||
from thinc.types import ArrayXd, Floats2d, Ints1d
|
||||
|
||||
from ._edit_tree_internals.edit_trees import EditTrees
|
||||
from ._edit_tree_internals.schemas import validate_edit_tree
|
||||
|
@ -21,6 +21,9 @@ from ..vocab import Vocab
|
|||
from .. import util
|
||||
|
||||
|
||||
ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]]
|
||||
|
||||
|
||||
default_model_config = """
|
||||
[model]
|
||||
@architectures = "spacy.Tagger.v2"
|
||||
|
@ -49,6 +52,7 @@ DEFAULT_EDIT_TREE_LEMMATIZER_MODEL = Config().from_str(default_model_config)["mo
|
|||
"overwrite": False,
|
||||
"top_k": 1,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
"save_activations": False,
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
|
@ -61,6 +65,7 @@ def make_edit_tree_lemmatizer(
|
|||
overwrite: bool,
|
||||
top_k: int,
|
||||
scorer: Optional[Callable],
|
||||
save_activations: bool,
|
||||
):
|
||||
"""Construct an EditTreeLemmatizer component."""
|
||||
return EditTreeLemmatizer(
|
||||
|
@ -72,6 +77,7 @@ def make_edit_tree_lemmatizer(
|
|||
overwrite=overwrite,
|
||||
top_k=top_k,
|
||||
scorer=scorer,
|
||||
save_activations=save_activations,
|
||||
)
|
||||
|
||||
|
||||
|
@ -91,6 +97,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
overwrite: bool = False,
|
||||
top_k: int = 1,
|
||||
scorer: Optional[Callable] = lemmatizer_score,
|
||||
save_activations: bool = False,
|
||||
):
|
||||
"""
|
||||
Construct an edit tree lemmatizer.
|
||||
|
@ -102,6 +109,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
frequency in the training data.
|
||||
overwrite (bool): overwrite existing lemma annotations.
|
||||
top_k (int): try to apply at most the k most probable edit trees.
|
||||
save_activations (bool): save model activations in Doc when annotating.
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
|
@ -116,6 +124,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
|
||||
self.cfg: Dict[str, Any] = {"labels": []}
|
||||
self.scorer = scorer
|
||||
self.save_activations = save_activations
|
||||
|
||||
def get_loss(
|
||||
self, examples: Iterable[Example], scores: List[Floats2d]
|
||||
|
@ -144,21 +153,24 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
|
||||
return float(loss), d_scores
|
||||
|
||||
def predict(self, docs: Iterable[Doc]) -> List[Ints2d]:
|
||||
def predict(self, docs: Iterable[Doc]) -> ActivationsT:
|
||||
n_docs = len(list(docs))
|
||||
if not any(len(doc) for doc in docs):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
n_labels = len(self.cfg["labels"])
|
||||
guesses: List[Ints2d] = [
|
||||
guesses: List[Ints1d] = [
|
||||
self.model.ops.alloc((0,), dtype="i") for doc in docs
|
||||
]
|
||||
scores: List[Floats2d] = [
|
||||
self.model.ops.alloc((0, n_labels), dtype="i") for doc in docs
|
||||
]
|
||||
assert len(guesses) == n_docs
|
||||
return guesses
|
||||
return {"probabilities": scores, "tree_ids": guesses}
|
||||
scores = self.model.predict(docs)
|
||||
assert len(scores) == n_docs
|
||||
guesses = self._scores2guesses(docs, scores)
|
||||
assert len(guesses) == n_docs
|
||||
return guesses
|
||||
return {"probabilities": scores, "tree_ids": guesses}
|
||||
|
||||
def _scores2guesses(self, docs, scores):
|
||||
guesses = []
|
||||
|
@ -186,8 +198,13 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
|
||||
return guesses
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], batch_tree_ids):
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
|
||||
batch_tree_ids = activations["tree_ids"]
|
||||
for i, doc in enumerate(docs):
|
||||
if self.save_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
doc.activations[self.name][act_name] = acts[i]
|
||||
doc_tree_ids = batch_tree_ids[i]
|
||||
if hasattr(doc_tree_ids, "get"):
|
||||
doc_tree_ids = doc_tree_ids.get()
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
from typing import Optional, Iterable, Callable, Dict, Union, List, Any
|
||||
from thinc.types import Floats2d
|
||||
from typing import Optional, Iterable, Callable, Dict, Sequence, Union, List, Any
|
||||
from typing import cast
|
||||
from numpy import dtype
|
||||
from thinc.types import Floats1d, Floats2d, Ints1d, Ragged
|
||||
from pathlib import Path
|
||||
from itertools import islice
|
||||
import srsly
|
||||
|
@ -21,6 +23,11 @@ from ..util import SimpleFrozenList, registry
|
|||
from .. import util
|
||||
from ..scorer import Scorer
|
||||
|
||||
|
||||
ActivationsT = Dict[str, Union[List[Ragged], List[str]]]
|
||||
|
||||
KNOWLEDGE_BASE_IDS = "kb_ids"
|
||||
|
||||
# See #9050
|
||||
BACKWARD_OVERWRITE = True
|
||||
|
||||
|
@ -57,6 +64,7 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
||||
"use_gold_ents": True,
|
||||
"threshold": None,
|
||||
"save_activations": False,
|
||||
},
|
||||
default_score_weights={
|
||||
"nel_micro_f": 1.0,
|
||||
|
@ -79,6 +87,7 @@ def make_entity_linker(
|
|||
scorer: Optional[Callable],
|
||||
use_gold_ents: bool,
|
||||
threshold: Optional[float] = None,
|
||||
save_activations: bool,
|
||||
):
|
||||
"""Construct an EntityLinker component.
|
||||
|
||||
|
@ -97,6 +106,7 @@ def make_entity_linker(
|
|||
component must provide entity annotations.
|
||||
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
|
||||
prediction is discarded. If None, predictions are not filtered by any threshold.
|
||||
save_activations (bool): save model activations in Doc when annotating.
|
||||
"""
|
||||
|
||||
if not model.attrs.get("include_span_maker", False):
|
||||
|
@ -128,6 +138,7 @@ def make_entity_linker(
|
|||
scorer=scorer,
|
||||
use_gold_ents=use_gold_ents,
|
||||
threshold=threshold,
|
||||
save_activations=save_activations,
|
||||
)
|
||||
|
||||
|
||||
|
@ -164,6 +175,7 @@ class EntityLinker(TrainablePipe):
|
|||
scorer: Optional[Callable] = entity_linker_score,
|
||||
use_gold_ents: bool,
|
||||
threshold: Optional[float] = None,
|
||||
save_activations: bool = False,
|
||||
) -> None:
|
||||
"""Initialize an entity linker.
|
||||
|
||||
|
@ -212,6 +224,7 @@ class EntityLinker(TrainablePipe):
|
|||
self.scorer = scorer
|
||||
self.use_gold_ents = use_gold_ents
|
||||
self.threshold = threshold
|
||||
self.save_activations = save_activations
|
||||
|
||||
def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
|
||||
"""Define the KB of this pipe by providing a function that will
|
||||
|
@ -397,7 +410,7 @@ class EntityLinker(TrainablePipe):
|
|||
loss = loss / len(entity_encodings)
|
||||
return float(loss), out
|
||||
|
||||
def predict(self, docs: Iterable[Doc]) -> List[str]:
|
||||
def predict(self, docs: Iterable[Doc]) -> ActivationsT:
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
Returns the KB IDs for each entity in each doc, including NIL if there is
|
||||
no prediction.
|
||||
|
@ -410,13 +423,20 @@ class EntityLinker(TrainablePipe):
|
|||
self.validate_kb()
|
||||
entity_count = 0
|
||||
final_kb_ids: List[str] = []
|
||||
xp = self.model.ops.xp
|
||||
ops = self.model.ops
|
||||
xp = ops.xp
|
||||
docs_ents: List[Ragged] = []
|
||||
docs_scores: List[Ragged] = []
|
||||
if not docs:
|
||||
return final_kb_ids
|
||||
return {KNOWLEDGE_BASE_IDS: final_kb_ids, "ents": docs_ents, "scores": docs_scores}
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
for i, doc in enumerate(docs):
|
||||
for doc in docs:
|
||||
doc_ents: List[Ints1d] = []
|
||||
doc_scores: List[Floats1d] = []
|
||||
if len(doc) == 0:
|
||||
docs_scores.append(Ragged(ops.alloc1f(0), ops.alloc1i(0)))
|
||||
docs_ents.append(Ragged(xp.zeros(0, dtype="uint64"), ops.alloc1i(0)))
|
||||
continue
|
||||
sentences = [s for s in doc.sents]
|
||||
# Looping through each entity (TODO: rewrite)
|
||||
|
@ -439,14 +459,32 @@ class EntityLinker(TrainablePipe):
|
|||
if ent.label_ in self.labels_discard:
|
||||
# ignoring this entity - setting to NIL
|
||||
final_kb_ids.append(self.NIL)
|
||||
self._add_activations(
|
||||
doc_scores=doc_scores,
|
||||
doc_ents=doc_ents,
|
||||
scores=[0.0],
|
||||
ents=[0],
|
||||
)
|
||||
else:
|
||||
candidates = list(self.get_candidates(self.kb, ent))
|
||||
if not candidates:
|
||||
# no prediction possible for this entity - setting to NIL
|
||||
final_kb_ids.append(self.NIL)
|
||||
self._add_activations(
|
||||
doc_scores=doc_scores,
|
||||
doc_ents=doc_ents,
|
||||
scores=[0.0],
|
||||
ents=[0],
|
||||
)
|
||||
elif len(candidates) == 1 and self.threshold is None:
|
||||
# shortcut for efficiency reasons: take the 1 candidate
|
||||
final_kb_ids.append(candidates[0].entity_)
|
||||
self._add_activations(
|
||||
doc_scores=doc_scores,
|
||||
doc_ents=doc_ents,
|
||||
scores=[1.0],
|
||||
ents=[candidates[0].entity_],
|
||||
)
|
||||
else:
|
||||
random.shuffle(candidates)
|
||||
# set all prior probabilities to 0 if incl_prior=False
|
||||
|
@ -479,27 +517,48 @@ class EntityLinker(TrainablePipe):
|
|||
if self.threshold is None or scores.max() >= self.threshold
|
||||
else EntityLinker.NIL
|
||||
)
|
||||
self._add_activations(
|
||||
doc_scores=doc_scores,
|
||||
doc_ents=doc_ents,
|
||||
scores=scores,
|
||||
ents=[c.entity for c in candidates],
|
||||
)
|
||||
self._add_doc_activations(
|
||||
docs_scores=docs_scores,
|
||||
docs_ents=docs_ents,
|
||||
doc_scores=doc_scores,
|
||||
doc_ents=doc_ents,
|
||||
)
|
||||
if not (len(final_kb_ids) == entity_count):
|
||||
err = Errors.E147.format(
|
||||
method="predict", msg="result variables not of equal length"
|
||||
)
|
||||
raise RuntimeError(err)
|
||||
return final_kb_ids
|
||||
return {KNOWLEDGE_BASE_IDS: final_kb_ids, "ents": docs_ents, "scores": docs_scores}
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None:
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
|
||||
activations (ActivationsT): The activations used for setting annotations, produced
|
||||
by EntityLinker.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/entitylinker#set_annotations
|
||||
"""
|
||||
kb_ids = cast(List[str], activations[KNOWLEDGE_BASE_IDS])
|
||||
count_ents = len([ent for doc in docs for ent in doc.ents])
|
||||
if count_ents != len(kb_ids):
|
||||
raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids)))
|
||||
i = 0
|
||||
overwrite = self.cfg["overwrite"]
|
||||
for doc in docs:
|
||||
for j, doc in enumerate(docs):
|
||||
if self.save_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
if act_name != KNOWLEDGE_BASE_IDS:
|
||||
# We only copy activations that are Ragged.
|
||||
doc.activations[self.name][act_name] = cast(Ragged, acts[j])
|
||||
|
||||
for ent in doc.ents:
|
||||
kb_id = kb_ids[i]
|
||||
i += 1
|
||||
|
@ -598,3 +657,32 @@ class EntityLinker(TrainablePipe):
|
|||
|
||||
def add_label(self, label):
|
||||
raise NotImplementedError
|
||||
|
||||
def _add_doc_activations(
|
||||
self,
|
||||
*,
|
||||
docs_scores: List[Ragged],
|
||||
docs_ents: List[Ragged],
|
||||
doc_scores: List[Floats1d],
|
||||
doc_ents: List[Ints1d],
|
||||
):
|
||||
if not self.save_activations:
|
||||
return
|
||||
ops = self.model.ops
|
||||
lengths = ops.asarray1i([s.shape[0] for s in doc_scores])
|
||||
docs_scores.append(Ragged(ops.flatten(doc_scores), lengths))
|
||||
docs_ents.append(Ragged(ops.flatten(doc_ents), lengths))
|
||||
|
||||
def _add_activations(
|
||||
self,
|
||||
*,
|
||||
doc_scores: List[Floats1d],
|
||||
doc_ents: List[Ints1d],
|
||||
scores: Sequence[float],
|
||||
ents: Sequence[int],
|
||||
):
|
||||
if not self.save_activations:
|
||||
return
|
||||
ops = self.model.ops
|
||||
doc_scores.append(ops.asarray1f(scores))
|
||||
doc_ents.append(ops.asarray1i(ents, dtype="uint64"))
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import Optional, Union, Dict, Callable
|
||||
from typing import Callable, Dict, Iterable, List, Optional, Union
|
||||
import srsly
|
||||
from thinc.api import SequenceCategoricalCrossentropy, Model, Config
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
from itertools import islice
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
@ -13,7 +14,7 @@ from ..symbols import POS
|
|||
from ..language import Language
|
||||
from ..errors import Errors
|
||||
from .pipe import deserialize_config
|
||||
from .tagger import Tagger
|
||||
from .tagger import ActivationsT, Tagger
|
||||
from .. import util
|
||||
from ..scorer import Scorer
|
||||
from ..training import validate_examples, validate_get_examples
|
||||
|
@ -52,7 +53,13 @@ DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
|
|||
@Language.factory(
|
||||
"morphologizer",
|
||||
assigns=["token.morph", "token.pos"],
|
||||
default_config={"model": DEFAULT_MORPH_MODEL, "overwrite": True, "extend": False, "scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}},
|
||||
default_config={
|
||||
"model": DEFAULT_MORPH_MODEL,
|
||||
"overwrite": True,
|
||||
"extend": False,
|
||||
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
||||
"save_activations": False,
|
||||
},
|
||||
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
|
||||
)
|
||||
def make_morphologizer(
|
||||
|
@ -62,8 +69,10 @@ def make_morphologizer(
|
|||
overwrite: bool,
|
||||
extend: bool,
|
||||
scorer: Optional[Callable],
|
||||
save_activations: bool,
|
||||
):
|
||||
return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer)
|
||||
return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer,
|
||||
save_activations=save_activations)
|
||||
|
||||
|
||||
def morphologizer_score(examples, **kwargs):
|
||||
|
@ -95,6 +104,7 @@ class Morphologizer(Tagger):
|
|||
overwrite: bool = BACKWARD_OVERWRITE,
|
||||
extend: bool = BACKWARD_EXTEND,
|
||||
scorer: Optional[Callable] = morphologizer_score,
|
||||
save_activations: bool = False,
|
||||
):
|
||||
"""Initialize a morphologizer.
|
||||
|
||||
|
@ -105,6 +115,7 @@ class Morphologizer(Tagger):
|
|||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_token_attr for the attributes "pos" and "morph" and
|
||||
Scorer.score_token_attr_per_feat for the attribute "morph".
|
||||
save_activations (bool): save model activations in Doc when annotating.
|
||||
|
||||
DOCS: https://spacy.io/api/morphologizer#init
|
||||
"""
|
||||
|
@ -124,6 +135,7 @@ class Morphologizer(Tagger):
|
|||
}
|
||||
self.cfg = dict(sorted(cfg.items()))
|
||||
self.scorer = scorer
|
||||
self.save_activations = save_activations
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
@ -217,14 +229,15 @@ class Morphologizer(Tagger):
|
|||
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
|
||||
self.model.initialize(X=doc_sample, Y=label_sample)
|
||||
|
||||
def set_annotations(self, docs, batch_tag_ids):
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
batch_tag_ids: The IDs to set, produced by Morphologizer.predict.
|
||||
activations (ActivationsT): The activations used for setting annotations, produced by Morphologizer.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/morphologizer#set_annotations
|
||||
"""
|
||||
batch_tag_ids = activations["label_ids"]
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
|
@ -236,6 +249,10 @@ class Morphologizer(Tagger):
|
|||
# to allocate a compatible container out of the iterable.
|
||||
labels = tuple(self.labels)
|
||||
for i, doc in enumerate(docs):
|
||||
if self.save_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
doc.activations[self.name][act_name] = acts[i]
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, "get"):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
|
|
|
@ -1,13 +1,14 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import Optional, Callable
|
||||
from typing import Dict, Iterable, Optional, Callable, List, Union
|
||||
from itertools import islice
|
||||
|
||||
import srsly
|
||||
from thinc.api import Model, SequenceCategoricalCrossentropy, Config
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
from .tagger import Tagger
|
||||
from .tagger import ActivationsT, Tagger
|
||||
from ..language import Language
|
||||
from ..errors import Errors
|
||||
from ..scorer import Scorer
|
||||
|
@ -38,11 +39,21 @@ DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
@Language.factory(
|
||||
"senter",
|
||||
assigns=["token.is_sent_start"],
|
||||
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
||||
default_config={
|
||||
"model": DEFAULT_SENTER_MODEL,
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||
"save_activations": False,
|
||||
},
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)
|
||||
def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]):
|
||||
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer)
|
||||
def make_senter(nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
save_activations: bool):
|
||||
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, save_activations=save_activations)
|
||||
|
||||
|
||||
def senter_score(examples, **kwargs):
|
||||
|
@ -72,6 +83,7 @@ class SentenceRecognizer(Tagger):
|
|||
*,
|
||||
overwrite=BACKWARD_OVERWRITE,
|
||||
scorer=senter_score,
|
||||
save_activations: bool = False,
|
||||
):
|
||||
"""Initialize a sentence recognizer.
|
||||
|
||||
|
@ -81,6 +93,7 @@ class SentenceRecognizer(Tagger):
|
|||
losses during training.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the attribute "sents".
|
||||
save_activations (bool): save model activations in Doc when annotating.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencerecognizer#init
|
||||
"""
|
||||
|
@ -90,6 +103,7 @@ class SentenceRecognizer(Tagger):
|
|||
self._rehearsal_model = None
|
||||
self.cfg = {"overwrite": overwrite}
|
||||
self.scorer = scorer
|
||||
self.save_activations = save_activations
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
@ -107,19 +121,24 @@ class SentenceRecognizer(Tagger):
|
|||
def label_data(self):
|
||||
return None
|
||||
|
||||
def set_annotations(self, docs, batch_tag_ids):
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
|
||||
activations (ActivationsT): The activations used for setting annotations, produced by SentenceRecognizer.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencerecognizer#set_annotations
|
||||
"""
|
||||
batch_tag_ids = activations["label_ids"]
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
cdef bint overwrite = self.cfg["overwrite"]
|
||||
for i, doc in enumerate(docs):
|
||||
if self.save_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
doc.activations[self.name][act_name] = acts[i]
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, "get"):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast
|
||||
from typing import Union
|
||||
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
|
||||
from thinc.api import Optimizer
|
||||
from thinc.types import Ragged, Ints2d, Floats2d, Ints1d
|
||||
|
@ -16,6 +17,9 @@ from ..errors import Errors
|
|||
from ..util import registry
|
||||
|
||||
|
||||
ActivationsT = Dict[str, Union[Floats2d, Ragged]]
|
||||
|
||||
|
||||
spancat_default_config = """
|
||||
[model]
|
||||
@architectures = "spacy.SpanCategorizer.v1"
|
||||
|
@ -106,6 +110,7 @@ def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
|
|||
"model": DEFAULT_SPANCAT_MODEL,
|
||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||
"save_activations": False,
|
||||
},
|
||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||
)
|
||||
|
@ -118,6 +123,7 @@ def make_spancat(
|
|||
scorer: Optional[Callable],
|
||||
threshold: float,
|
||||
max_positive: Optional[int],
|
||||
save_activations: bool,
|
||||
) -> "SpanCategorizer":
|
||||
"""Create a SpanCategorizer component. The span categorizer consists of two
|
||||
parts: a suggester function that proposes candidate spans, and a labeller
|
||||
|
@ -138,6 +144,7 @@ def make_spancat(
|
|||
0.5.
|
||||
max_positive (Optional[int]): Maximum number of labels to consider positive
|
||||
per span. Defaults to None, indicating no limit.
|
||||
save_activations (bool): save model activations in Doc when annotating.
|
||||
"""
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
|
@ -148,6 +155,7 @@ def make_spancat(
|
|||
max_positive=max_positive,
|
||||
name=name,
|
||||
scorer=scorer,
|
||||
save_activations=save_activations,
|
||||
)
|
||||
|
||||
|
||||
|
@ -186,6 +194,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
threshold: float = 0.5,
|
||||
max_positive: Optional[int] = None,
|
||||
scorer: Optional[Callable] = spancat_score,
|
||||
save_activations: bool = False,
|
||||
) -> None:
|
||||
"""Initialize the span categorizer.
|
||||
vocab (Vocab): The shared vocabulary.
|
||||
|
@ -218,6 +227,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
self.model = model
|
||||
self.name = name
|
||||
self.scorer = scorer
|
||||
self.save_activations = save_activations
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
|
@ -260,7 +270,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
"""
|
||||
return list(self.labels)
|
||||
|
||||
def predict(self, docs: Iterable[Doc]):
|
||||
def predict(self, docs: Iterable[Doc]) -> ActivationsT:
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
||||
docs (Iterable[Doc]): The documents to predict.
|
||||
|
@ -270,7 +280,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
"""
|
||||
indices = self.suggester(docs, ops=self.model.ops)
|
||||
scores = self.model.predict((docs, indices)) # type: ignore
|
||||
return indices, scores
|
||||
return {"indices": indices, "scores": scores}
|
||||
|
||||
def set_candidates(
|
||||
self, docs: Iterable[Doc], *, candidates_key: str = "candidates"
|
||||
|
@ -290,19 +300,29 @@ class SpanCategorizer(TrainablePipe):
|
|||
for index in candidates.dataXd:
|
||||
doc.spans[candidates_key].append(doc[index[0] : index[1]])
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None:
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None:
|
||||
"""Modify a batch of Doc objects, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
scores: The scores to set, produced by SpanCategorizer.predict.
|
||||
activations: ActivationsT: The activations, produced by SpanCategorizer.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/spancategorizer#set_annotations
|
||||
"""
|
||||
labels = self.labels
|
||||
indices, scores = indices_scores
|
||||
|
||||
indices = activations["indices"]
|
||||
assert isinstance(indices, Ragged)
|
||||
scores = cast(Floats2d, activations["scores"])
|
||||
|
||||
offset = 0
|
||||
for i, doc in enumerate(docs):
|
||||
indices_i = indices[i].dataXd
|
||||
if self.save_activations:
|
||||
doc.activations[self.name] = {}
|
||||
doc.activations[self.name]["indices"] = indices_i
|
||||
doc.activations[self.name]["scores"] = scores[
|
||||
offset : offset + indices.lengths[i]
|
||||
]
|
||||
doc.spans[self.key] = self._make_span_group(
|
||||
doc, indices_i, scores[offset : offset + indices.lengths[i]], labels # type: ignore[arg-type]
|
||||
)
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import Callable, Optional
|
||||
from typing import Callable, Dict, Iterable, List, Optional, Union
|
||||
import numpy
|
||||
import srsly
|
||||
from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config
|
||||
from thinc.types import Floats2d
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
import warnings
|
||||
from itertools import islice
|
||||
|
||||
|
@ -22,6 +22,9 @@ from ..training import validate_examples, validate_get_examples
|
|||
from ..util import registry
|
||||
from .. import util
|
||||
|
||||
|
||||
ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]]
|
||||
|
||||
# See #9050
|
||||
BACKWARD_OVERWRITE = False
|
||||
|
||||
|
@ -45,7 +48,13 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
@Language.factory(
|
||||
"tagger",
|
||||
assigns=["token.tag"],
|
||||
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!"},
|
||||
default_config={
|
||||
"model": DEFAULT_TAGGER_MODEL,
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.tagger_scorer.v1"},
|
||||
"neg_prefix": "!",
|
||||
"save_activations": False,
|
||||
},
|
||||
default_score_weights={"tag_acc": 1.0},
|
||||
)
|
||||
def make_tagger(
|
||||
|
@ -55,6 +64,7 @@ def make_tagger(
|
|||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
neg_prefix: str,
|
||||
save_activations: bool,
|
||||
):
|
||||
"""Construct a part-of-speech tagger component.
|
||||
|
||||
|
@ -63,7 +73,8 @@ def make_tagger(
|
|||
in size, and be normalized as probabilities (all scores between 0 and 1,
|
||||
with the rows summing to 1).
|
||||
"""
|
||||
return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix)
|
||||
return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix,
|
||||
save_activations=save_activations)
|
||||
|
||||
|
||||
def tagger_score(examples, **kwargs):
|
||||
|
@ -89,6 +100,7 @@ class Tagger(TrainablePipe):
|
|||
overwrite=BACKWARD_OVERWRITE,
|
||||
scorer=tagger_score,
|
||||
neg_prefix="!",
|
||||
save_activations: bool = False,
|
||||
):
|
||||
"""Initialize a part-of-speech tagger.
|
||||
|
||||
|
@ -98,6 +110,7 @@ class Tagger(TrainablePipe):
|
|||
losses during training.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_token_attr for the attribute "tag".
|
||||
save_activations (bool): save model activations in Doc when annotating.
|
||||
|
||||
DOCS: https://spacy.io/api/tagger#init
|
||||
"""
|
||||
|
@ -108,6 +121,7 @@ class Tagger(TrainablePipe):
|
|||
cfg = {"labels": [], "overwrite": overwrite, "neg_prefix": neg_prefix}
|
||||
self.cfg = dict(sorted(cfg.items()))
|
||||
self.scorer = scorer
|
||||
self.save_activations = save_activations
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
@ -126,7 +140,7 @@ class Tagger(TrainablePipe):
|
|||
"""Data about the labels currently added to the component."""
|
||||
return tuple(self.cfg["labels"])
|
||||
|
||||
def predict(self, docs):
|
||||
def predict(self, docs) -> ActivationsT:
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
||||
docs (Iterable[Doc]): The documents to predict.
|
||||
|
@ -139,12 +153,12 @@ class Tagger(TrainablePipe):
|
|||
n_labels = len(self.labels)
|
||||
guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs]
|
||||
assert len(guesses) == len(docs)
|
||||
return guesses
|
||||
return {"probabilities": guesses, "label_ids": guesses}
|
||||
scores = self.model.predict(docs)
|
||||
assert len(scores) == len(docs), (len(scores), len(docs))
|
||||
guesses = self._scores2guesses(scores)
|
||||
assert len(guesses) == len(docs)
|
||||
return guesses
|
||||
return {"probabilities": scores, "label_ids": guesses}
|
||||
|
||||
def _scores2guesses(self, scores):
|
||||
guesses = []
|
||||
|
@ -155,14 +169,15 @@ class Tagger(TrainablePipe):
|
|||
guesses.append(doc_guesses)
|
||||
return guesses
|
||||
|
||||
def set_annotations(self, docs, batch_tag_ids):
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
batch_tag_ids: The IDs to set, produced by Tagger.predict.
|
||||
activations (ActivationsT): The activations used for setting annotations, produced by Tagger.predict.
|
||||
|
||||
DOCS: https://spacy.io/api/tagger#set_annotations
|
||||
"""
|
||||
batch_tag_ids = activations["label_ids"]
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
|
@ -170,6 +185,10 @@ class Tagger(TrainablePipe):
|
|||
cdef bint overwrite = self.cfg["overwrite"]
|
||||
labels = self.labels
|
||||
for i, doc in enumerate(docs):
|
||||
if self.save_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
doc.activations[self.name][act_name] = acts[i]
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, "get"):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Iterable, Tuple, Optional, Dict, List, Callable, Any
|
||||
from typing import Iterable, Tuple, Optional, Dict, List, Callable, Any, Union
|
||||
from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config
|
||||
from thinc.types import Floats2d
|
||||
import numpy
|
||||
|
@ -14,6 +14,9 @@ from ..util import registry
|
|||
from ..vocab import Vocab
|
||||
|
||||
|
||||
ActivationsT = Dict[str, Floats2d]
|
||||
|
||||
|
||||
single_label_default_config = """
|
||||
[model]
|
||||
@architectures = "spacy.TextCatEnsemble.v2"
|
||||
|
@ -75,6 +78,7 @@ subword_features = true
|
|||
"threshold": 0.5,
|
||||
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_scorer.v1"},
|
||||
"save_activations": False,
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
|
@ -96,6 +100,7 @@ def make_textcat(
|
|||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
save_activations: bool,
|
||||
) -> "TextCategorizer":
|
||||
"""Create a TextCategorizer component. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels are considered
|
||||
|
@ -105,8 +110,16 @@ def make_textcat(
|
|||
scores for each category.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
save_activations (bool): save model activations in Doc when annotating.
|
||||
"""
|
||||
return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer)
|
||||
return TextCategorizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
threshold=threshold,
|
||||
scorer=scorer,
|
||||
save_activations=save_activations,
|
||||
)
|
||||
|
||||
|
||||
def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
||||
|
@ -137,6 +150,7 @@ class TextCategorizer(TrainablePipe):
|
|||
*,
|
||||
threshold: float,
|
||||
scorer: Optional[Callable] = textcat_score,
|
||||
save_activations: bool = False,
|
||||
) -> None:
|
||||
"""Initialize a text categorizer for single-label classification.
|
||||
|
||||
|
@ -157,6 +171,7 @@ class TextCategorizer(TrainablePipe):
|
|||
cfg = {"labels": [], "threshold": threshold, "positive_label": None}
|
||||
self.cfg = dict(cfg)
|
||||
self.scorer = scorer
|
||||
self.save_activations = save_activations
|
||||
|
||||
@property
|
||||
def support_missing_values(self):
|
||||
|
@ -181,7 +196,7 @@ class TextCategorizer(TrainablePipe):
|
|||
"""
|
||||
return self.labels # type: ignore[return-value]
|
||||
|
||||
def predict(self, docs: Iterable[Doc]):
|
||||
def predict(self, docs: Iterable[Doc]) -> ActivationsT:
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
||||
docs (Iterable[Doc]): The documents to predict.
|
||||
|
@ -194,12 +209,12 @@ class TextCategorizer(TrainablePipe):
|
|||
tensors = [doc.tensor for doc in docs]
|
||||
xp = self.model.ops.xp
|
||||
scores = xp.zeros((len(list(docs)), len(self.labels)))
|
||||
return scores
|
||||
return {"probabilities": scores}
|
||||
scores = self.model.predict(docs)
|
||||
scores = self.model.ops.asarray(scores)
|
||||
return scores
|
||||
return {"probabilities": scores}
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], scores) -> None:
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None:
|
||||
"""Modify a batch of Doc objects, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
|
@ -207,9 +222,13 @@ class TextCategorizer(TrainablePipe):
|
|||
|
||||
DOCS: https://spacy.io/api/textcategorizer#set_annotations
|
||||
"""
|
||||
probs = activations["probabilities"]
|
||||
for i, doc in enumerate(docs):
|
||||
if self.save_activations:
|
||||
doc.activations[self.name] = {}
|
||||
doc.activations[self.name]["probabilities"] = probs[i]
|
||||
for j, label in enumerate(self.labels):
|
||||
doc.cats[label] = float(scores[i, j])
|
||||
doc.cats[label] = float(probs[i, j])
|
||||
|
||||
def update(
|
||||
self,
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Iterable, Optional, Dict, List, Callable, Any
|
||||
from typing import Iterable, Optional, Dict, List, Callable, Any, Union
|
||||
from thinc.types import Floats2d
|
||||
from thinc.api import Model, Config
|
||||
|
||||
|
@ -75,6 +75,7 @@ subword_features = true
|
|||
"threshold": 0.5,
|
||||
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v1"},
|
||||
"save_activations": False,
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
|
@ -96,6 +97,7 @@ def make_multilabel_textcat(
|
|||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
save_activations: bool,
|
||||
) -> "TextCategorizer":
|
||||
"""Create a TextCategorizer component. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels are considered
|
||||
|
@ -107,7 +109,12 @@ def make_multilabel_textcat(
|
|||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
"""
|
||||
return MultiLabel_TextCategorizer(
|
||||
nlp.vocab, model, name, threshold=threshold, scorer=scorer
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
threshold=threshold,
|
||||
scorer=scorer,
|
||||
save_activations=save_activations,
|
||||
)
|
||||
|
||||
|
||||
|
@ -139,6 +146,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
*,
|
||||
threshold: float,
|
||||
scorer: Optional[Callable] = textcat_multilabel_score,
|
||||
save_activations: bool = False,
|
||||
) -> None:
|
||||
"""Initialize a text categorizer for multi-label classification.
|
||||
|
||||
|
@ -147,6 +155,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
name (str): The component instance name, used to add entries to the
|
||||
losses during training.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
save_activations (bool): save model activations in Doc when annotating.
|
||||
|
||||
DOCS: https://spacy.io/api/textcategorizer#init
|
||||
"""
|
||||
|
@ -157,6 +166,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
cfg = {"labels": [], "threshold": threshold}
|
||||
self.cfg = dict(cfg)
|
||||
self.scorer = scorer
|
||||
self.save_activations = save_activations
|
||||
|
||||
@property
|
||||
def support_missing_values(self):
|
||||
|
|
|
@ -6,3 +6,4 @@ cdef class TrainablePipe(Pipe):
|
|||
cdef public object model
|
||||
cdef public object cfg
|
||||
cdef public object scorer
|
||||
cdef bint _save_activations
|
||||
|
|
|
@ -2,11 +2,12 @@
|
|||
from typing import Iterable, Iterator, Optional, Dict, Tuple, Callable
|
||||
import srsly
|
||||
from thinc.api import set_dropout_rate, Model, Optimizer
|
||||
import warnings
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
from ..training import validate_examples
|
||||
from ..errors import Errors
|
||||
from ..errors import Errors, Warnings
|
||||
from .pipe import Pipe, deserialize_config
|
||||
from .. import util
|
||||
from ..vocab import Vocab
|
||||
|
@ -342,3 +343,11 @@ cdef class TrainablePipe(Pipe):
|
|||
deserialize["model"] = load_model
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
return self
|
||||
|
||||
@property
|
||||
def save_activations(self):
|
||||
return self._save_activations
|
||||
|
||||
@save_activations.setter
|
||||
def save_activations(self, save_activations: bool):
|
||||
self._save_activations = save_activations
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from typing import cast
|
||||
import pickle
|
||||
import pytest
|
||||
from hypothesis import given
|
||||
|
@ -6,6 +7,7 @@ from spacy import util
|
|||
from spacy.lang.en import English
|
||||
from spacy.language import Language
|
||||
from spacy.pipeline._edit_tree_internals.edit_trees import EditTrees
|
||||
from spacy.pipeline.trainable_pipe import TrainablePipe
|
||||
from spacy.training import Example
|
||||
from spacy.strings import StringStore
|
||||
from spacy.util import make_tempdir
|
||||
|
@ -278,3 +280,26 @@ def test_empty_strings():
|
|||
no_change = trees.add("xyz", "xyz")
|
||||
empty = trees.add("", "")
|
||||
assert no_change == empty
|
||||
|
||||
|
||||
def test_save_activations():
|
||||
nlp = English()
|
||||
lemmatizer = cast(TrainablePipe, nlp.add_pipe("trainable_lemmatizer"))
|
||||
lemmatizer.min_tree_freq = 1
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
nO = lemmatizer.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert "trainable_lemmatizer" not in doc.activations
|
||||
|
||||
lemmatizer.save_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["trainable_lemmatizer"].keys()) == [
|
||||
"probabilities",
|
||||
"tree_ids",
|
||||
]
|
||||
assert doc.activations["trainable_lemmatizer"]["probabilities"].shape == (5, nO)
|
||||
assert doc.activations["trainable_lemmatizer"]["tree_ids"].shape == (5,)
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
from typing import Callable, Iterable, Dict, Any
|
||||
from typing import Callable, Iterable, Dict, Any, cast
|
||||
|
||||
import pytest
|
||||
from numpy.testing import assert_equal
|
||||
from thinc.types import Ragged
|
||||
|
||||
from spacy import registry, util
|
||||
from spacy.attrs import ENT_KB_ID
|
||||
|
@ -9,7 +10,7 @@ from spacy.compat import pickle
|
|||
from spacy.kb import Candidate, KnowledgeBase, get_candidates
|
||||
from spacy.lang.en import English
|
||||
from spacy.ml import load_kb
|
||||
from spacy.pipeline import EntityLinker
|
||||
from spacy.pipeline import EntityLinker, TrainablePipe
|
||||
from spacy.pipeline.legacy import EntityLinker_v1
|
||||
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
||||
from spacy.scorer import Scorer
|
||||
|
@ -1176,3 +1177,66 @@ def test_threshold(meet_threshold: bool, config: Dict[str, Any]):
|
|||
|
||||
assert len(doc.ents) == 1
|
||||
assert doc.ents[0].kb_id_ == entity_id if meet_threshold else EntityLinker.NIL
|
||||
|
||||
|
||||
def test_save_activations():
|
||||
nlp = English()
|
||||
vector_length = 3
|
||||
assert "Q2146908" not in nlp.vocab.strings
|
||||
|
||||
# Convert the texts to docs to make sure we have doc.ents set for the training examples
|
||||
train_examples = []
|
||||
for text, annotation in TRAIN_DATA:
|
||||
doc = nlp(text)
|
||||
train_examples.append(Example.from_dict(doc, annotation))
|
||||
|
||||
def create_kb(vocab):
|
||||
# create artificial KB - assign same prior weight to the two russ cochran's
|
||||
# Q2146908 (Russ Cochran): American golfer
|
||||
# Q7381115 (Russ Cochran): publisher
|
||||
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
|
||||
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
||||
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
|
||||
mykb.add_alias(
|
||||
alias="Russ Cochran",
|
||||
entities=["Q2146908", "Q7381115"],
|
||||
probabilities=[0.5, 0.5],
|
||||
)
|
||||
return mykb
|
||||
|
||||
# Create the Entity Linker component and add it to the pipeline
|
||||
entity_linker = cast(TrainablePipe, nlp.add_pipe("entity_linker", last=True))
|
||||
assert isinstance(entity_linker, EntityLinker)
|
||||
entity_linker.set_kb(create_kb)
|
||||
assert "Q2146908" in entity_linker.vocab.strings
|
||||
assert "Q2146908" in entity_linker.kb.vocab.strings
|
||||
|
||||
# initialize the NEL pipe
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
nO = entity_linker.model.get_dim("nO")
|
||||
|
||||
nlp.add_pipe("sentencizer", first=True)
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
|
||||
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
doc = nlp("Russ Cochran was a publisher")
|
||||
assert "entity_linker" not in doc.activations
|
||||
|
||||
entity_linker.save_activations = True
|
||||
doc = nlp("Russ Cochran was a publisher")
|
||||
assert set(doc.activations["entity_linker"].keys()) == {"ents", "scores"}
|
||||
ents = doc.activations["entity_linker"]["ents"]
|
||||
assert isinstance(ents, Ragged)
|
||||
assert ents.data.shape == (2, 1)
|
||||
assert ents.data.dtype == "uint64"
|
||||
assert ents.lengths.shape == (1,)
|
||||
scores = doc.activations["entity_linker"]["scores"]
|
||||
assert isinstance(scores, Ragged)
|
||||
assert scores.data.shape == (2, 1)
|
||||
assert scores.data.dtype == "float32"
|
||||
assert scores.lengths.shape == (1,)
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from typing import cast
|
||||
import pytest
|
||||
from numpy.testing import assert_equal
|
||||
|
||||
|
@ -7,6 +8,7 @@ from spacy.lang.en import English
|
|||
from spacy.language import Language
|
||||
from spacy.tests.util import make_tempdir
|
||||
from spacy.morphology import Morphology
|
||||
from spacy.pipeline import TrainablePipe
|
||||
from spacy.attrs import MORPH
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
@ -197,3 +199,25 @@ def test_overfitting_IO():
|
|||
gold_pos_tags = ["NOUN", "NOUN", "NOUN", "NOUN"]
|
||||
assert [str(t.morph) for t in doc] == gold_morphs
|
||||
assert [t.pos_ for t in doc] == gold_pos_tags
|
||||
|
||||
|
||||
def test_save_activations():
|
||||
nlp = English()
|
||||
morphologizer = cast(TrainablePipe, nlp.add_pipe("morphologizer"))
|
||||
train_examples = []
|
||||
for inst in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert "morphologizer" not in doc.activations
|
||||
|
||||
morphologizer.save_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert "morphologizer" in doc.activations
|
||||
assert set(doc.activations["morphologizer"].keys()) == {
|
||||
"label_ids",
|
||||
"probabilities",
|
||||
}
|
||||
assert doc.activations["morphologizer"]["probabilities"].shape == (5, 6)
|
||||
assert doc.activations["morphologizer"]["label_ids"].shape == (5,)
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from typing import cast
|
||||
import pytest
|
||||
from numpy.testing import assert_equal
|
||||
from spacy.attrs import SENT_START
|
||||
|
@ -6,6 +7,7 @@ from spacy import util
|
|||
from spacy.training import Example
|
||||
from spacy.lang.en import English
|
||||
from spacy.language import Language
|
||||
from spacy.pipeline import TrainablePipe
|
||||
from spacy.tests.util import make_tempdir
|
||||
|
||||
|
||||
|
@ -101,3 +103,26 @@ def test_overfitting_IO():
|
|||
# test internal pipe labels vs. Language.pipe_labels with hidden labels
|
||||
assert nlp.get_pipe("senter").labels == ("I", "S")
|
||||
assert "senter" not in nlp.pipe_labels
|
||||
|
||||
|
||||
def test_save_activations():
|
||||
# Test if activations are correctly added to Doc when requested.
|
||||
nlp = English()
|
||||
senter = cast(TrainablePipe, nlp.add_pipe("senter"))
|
||||
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
nO = senter.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert "senter" not in doc.activations
|
||||
|
||||
senter.save_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert "senter" in doc.activations
|
||||
assert set(doc.activations["senter"].keys()) == {"label_ids", "probabilities"}
|
||||
assert doc.activations["senter"]["probabilities"].shape == (5, nO)
|
||||
assert doc.activations["senter"]["label_ids"].shape == (5,)
|
||||
|
|
|
@ -419,3 +419,23 @@ def test_set_candidates():
|
|||
assert len(docs[0].spans["candidates"]) == 9
|
||||
assert docs[0].spans["candidates"][0].text == "Just"
|
||||
assert docs[0].spans["candidates"][4].text == "Just a"
|
||||
|
||||
|
||||
def test_save_activations():
|
||||
# Test if activations are correctly added to Doc when requested.
|
||||
nlp = English()
|
||||
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
||||
train_examples = make_examples(nlp)
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
nO = spancat.model.get_dim("nO")
|
||||
assert nO == 2
|
||||
assert set(spancat.labels) == {"LOC", "PERSON"}
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert "spancat" not in doc.activations
|
||||
|
||||
spancat.save_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert set(doc.activations["spancat"].keys()) == {"indices", "scores"}
|
||||
assert doc.activations["spancat"]["indices"].shape == (12, 2)
|
||||
assert doc.activations["spancat"]["scores"].shape == (12, nO)
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from typing import cast
|
||||
import pytest
|
||||
from numpy.testing import assert_equal
|
||||
from spacy.attrs import TAG
|
||||
|
@ -6,6 +7,7 @@ from spacy import util
|
|||
from spacy.training import Example
|
||||
from spacy.lang.en import English
|
||||
from spacy.language import Language
|
||||
from spacy.pipeline import TrainablePipe
|
||||
from thinc.api import compounding
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
@ -211,6 +213,26 @@ def test_overfitting_IO():
|
|||
assert doc3[0].tag_ != "N"
|
||||
|
||||
|
||||
def test_save_activations():
|
||||
# Test if activations are correctly added to Doc when requested.
|
||||
nlp = English()
|
||||
tagger = cast(TrainablePipe, nlp.add_pipe("tagger"))
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert "tagger" not in doc.activations
|
||||
|
||||
tagger.save_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert "tagger" in doc.activations
|
||||
assert set(doc.activations["tagger"].keys()) == {"label_ids", "probabilities"}
|
||||
assert doc.activations["tagger"]["probabilities"].shape == (5, len(TAGS))
|
||||
assert doc.activations["tagger"]["label_ids"].shape == (5,)
|
||||
|
||||
|
||||
def test_tagger_requires_labels():
|
||||
nlp = English()
|
||||
nlp.add_pipe("tagger")
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from typing import cast
|
||||
import random
|
||||
|
||||
import numpy.random
|
||||
|
@ -11,7 +12,7 @@ from spacy import util
|
|||
from spacy.cli.evaluate import print_prf_per_type, print_textcats_auc_per_cat
|
||||
from spacy.lang.en import English
|
||||
from spacy.language import Language
|
||||
from spacy.pipeline import TextCategorizer
|
||||
from spacy.pipeline import TextCategorizer, TrainablePipe
|
||||
from spacy.pipeline.textcat import single_label_bow_config
|
||||
from spacy.pipeline.textcat import single_label_cnn_config
|
||||
from spacy.pipeline.textcat import single_label_default_config
|
||||
|
@ -285,7 +286,7 @@ def test_issue9904():
|
|||
nlp.initialize(get_examples)
|
||||
|
||||
examples = get_examples()
|
||||
scores = textcat.predict([eg.predicted for eg in examples])
|
||||
scores = textcat.predict([eg.predicted for eg in examples])["probabilities"]
|
||||
|
||||
loss = textcat.get_loss(examples, scores)[0]
|
||||
loss_double_bs = textcat.get_loss(examples * 2, scores.repeat(2, axis=0))[0]
|
||||
|
@ -871,3 +872,41 @@ def test_textcat_multi_threshold():
|
|||
|
||||
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
|
||||
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
||||
|
||||
|
||||
def test_save_activations():
|
||||
nlp = English()
|
||||
textcat = cast(TrainablePipe, nlp.add_pipe("textcat"))
|
||||
|
||||
train_examples = []
|
||||
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
nO = textcat.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert "textcat" not in doc.activations
|
||||
|
||||
textcat.save_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["textcat"].keys()) == ["probabilities"]
|
||||
assert doc.activations["textcat"]["probabilities"].shape == (nO,)
|
||||
|
||||
|
||||
def test_save_activations_multi():
|
||||
nlp = English()
|
||||
textcat = cast(TrainablePipe, nlp.add_pipe("textcat_multilabel"))
|
||||
|
||||
train_examples = []
|
||||
for text, annotations in TRAIN_DATA_MULTI_LABEL:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
nO = textcat.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert "textcat_multilabel" not in doc.activations
|
||||
|
||||
textcat.save_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["textcat_multilabel"].keys()) == ["probabilities"]
|
||||
assert doc.activations["textcat_multilabel"]["probabilities"].shape == (nO,)
|
||||
|
|
|
@ -50,6 +50,8 @@ cdef class Doc:
|
|||
|
||||
cdef public float sentiment
|
||||
|
||||
cdef public dict activations
|
||||
|
||||
cdef public dict user_hooks
|
||||
cdef public dict user_token_hooks
|
||||
cdef public dict user_span_hooks
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import Callable, Protocol, Iterable, Iterator, Optional
|
||||
from typing import Union, Tuple, List, Dict, Any, overload
|
||||
from cymem.cymem import Pool
|
||||
from thinc.types import Floats1d, Floats2d, Ints2d
|
||||
from thinc.types import ArrayXd, Floats1d, Floats2d, Ints2d, Ragged
|
||||
from .span import Span
|
||||
from .token import Token
|
||||
from .span_groups import SpanGroups
|
||||
|
@ -22,6 +22,7 @@ class Doc:
|
|||
max_length: int
|
||||
length: int
|
||||
sentiment: float
|
||||
activations: Dict[str, Dict[str, Union[ArrayXd, Ragged]]]
|
||||
cats: Dict[str, float]
|
||||
user_hooks: Dict[str, Callable[..., Any]]
|
||||
user_token_hooks: Dict[str, Callable[..., Any]]
|
||||
|
|
|
@ -245,6 +245,7 @@ cdef class Doc:
|
|||
self.length = 0
|
||||
self.sentiment = 0.0
|
||||
self.cats = {}
|
||||
self.activations = {}
|
||||
self.user_hooks = {}
|
||||
self.user_token_hooks = {}
|
||||
self.user_span_hooks = {}
|
||||
|
|
|
@ -751,22 +751,23 @@ The L2 norm of the document's vector representation.
|
|||
|
||||
## Attributes {#attributes}
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `text` | A string representation of the document text. ~~str~~ |
|
||||
| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ |
|
||||
| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ |
|
||||
| `vocab` | The store of lexical types. ~~Vocab~~ |
|
||||
| `tensor` <Tag variant="new">2</Tag> | Container for dense vector representations. ~~numpy.ndarray~~ |
|
||||
| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ |
|
||||
| `lang` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~int~~ |
|
||||
| `lang_` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~str~~ |
|
||||
| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ |
|
||||
| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ |
|
||||
| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ |
|
||||
| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ |
|
||||
| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ |
|
||||
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
|
||||
| Name | Description |
|
||||
| ------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `text` | A string representation of the document text. ~~str~~ |
|
||||
| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ |
|
||||
| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ |
|
||||
| `vocab` | The store of lexical types. ~~Vocab~~ |
|
||||
| `tensor` <Tag variant="new">2</Tag> | Container for dense vector representations. ~~numpy.ndarray~~ |
|
||||
| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ |
|
||||
| `lang` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~int~~ |
|
||||
| `lang_` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~str~~ |
|
||||
| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ |
|
||||
| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ |
|
||||
| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ |
|
||||
| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ |
|
||||
| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ |
|
||||
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
|
||||
| `activations` <Tag variant="new">4.0</Tag> | A dictionary of activations per trainable pipe (available when the `save_activations` option of a pipe is enabled). ~~Dict[str, Option[Any]]~~ |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
|
|
|
@ -44,14 +44,15 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("trainable_lemmatizer", config=config, name="lemmatizer")
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `model` | A model instance that predicts the edit tree probabilities. The output vectors should match the number of edit trees in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `backoff` | ~~Token~~ attribute to use when no applicable edit tree is found. Defaults to `orth`. ~~str~~ |
|
||||
| `min_tree_freq` | Minimum frequency of an edit tree in the training set to be used. Defaults to `3`. ~~int~~ |
|
||||
| `overwrite` | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
|
||||
| `top_k` | The number of most probable edit trees to try before resorting to `backoff`. Defaults to `1`. ~~int~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~ |
|
||||
| Setting | Description |
|
||||
| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `model` | A model instance that predicts the edit tree probabilities. The output vectors should match the number of edit trees in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `backoff` | ~~Token~~ attribute to use when no applicable edit tree is found. Defaults to `orth`. ~~str~~ |
|
||||
| `min_tree_freq` | Minimum frequency of an edit tree in the training set to be used. Defaults to `3`. ~~int~~ |
|
||||
| `overwrite` | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
|
||||
| `top_k` | The number of most probable edit trees to try before resorting to `backoff`. Defaults to `1`. ~~int~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~ |
|
||||
| `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"tree_ids"`. ~~Union[bool, list[str]]~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/edit_tree_lemmatizer.py
|
||||
|
|
|
@ -52,19 +52,20 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("entity_linker", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||
| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ |
|
||||
| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ |
|
||||
| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ |
|
||||
| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ |
|
||||
| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
|
||||
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
|
||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
|
||||
| `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ |
|
||||
| Setting | Description |
|
||||
| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||
| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ |
|
||||
| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ |
|
||||
| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ |
|
||||
| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ |
|
||||
| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
|
||||
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
|
||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
|
||||
| `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. Saved activations are `"ents"` and `"scores"`. ~~Union[bool, list[str]]~~ |
|
||||
| `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/entity_linker.py
|
||||
|
|
|
@ -42,12 +42,13 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("morphologizer", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | The model to use. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~ |
|
||||
| `extend` <Tag variant="new">3.2</Tag> | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ |
|
||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ |
|
||||
| Setting | Description |
|
||||
| ----------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | The model to use. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~ |
|
||||
| `extend` <Tag variant="new">3.2</Tag> | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ |
|
||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ |
|
||||
| `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"`. ~~Union[bool, list[str]]~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/morphologizer.pyx
|
||||
|
@ -399,8 +400,8 @@ coarse-grained POS as the feature `POS`.
|
|||
> assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------ |
|
||||
| Name | Description |
|
||||
| ----------- | --------------------------------------------------------- |
|
||||
| **RETURNS** | The labels added to the component. ~~Iterable[str, ...]~~ |
|
||||
|
||||
## Morphologizer.label_data {#label_data tag="property" new="3"}
|
||||
|
|
|
@ -39,11 +39,12 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("senter", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ---------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
|
||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ |
|
||||
| Setting | Description |
|
||||
| ----------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
|
||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ |
|
||||
| `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"`. ~~Union[bool, list[str]]~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/senter.pyx
|
||||
|
|
|
@ -52,14 +52,15 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("spancat", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
||||
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
|
||||
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
|
||||
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
||||
| Setting | Description |
|
||||
| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
||||
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
|
||||
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
|
||||
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
||||
| `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. Saved activations are `"indices"` and `"scores"`. ~~Union[bool, list[str]]~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/spancat.py
|
||||
|
|
|
@ -40,12 +40,13 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("tagger", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
|
||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ |
|
||||
| `neg_prefix` <Tag variant="new">3.2.1</Tag> | The prefix used to specify incorrect tags while training. The tagger will learn not to predict exactly this tag. Defaults to `!`. ~~str~~ |
|
||||
| Setting | Description |
|
||||
| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
|
||||
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ |
|
||||
| `neg_prefix` <Tag variant="new">3.2.1</Tag> | The prefix used to specify incorrect tags while training. The tagger will learn not to predict exactly this tag. Defaults to `!`. ~~str~~ |
|
||||
| `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. Saved activations are `"probabilities"` and `"label_ids"`. ~~Union[bool, list[str]]~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/tagger.pyx
|
||||
|
|
|
@ -117,14 +117,15 @@ Create a new pipeline instance. In your application, you would normally use a
|
|||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.add_pipe`](/api/language#create_pipe).
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||
| _keyword-only_ | |
|
||||
| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ |
|
||||
| Name | Description |
|
||||
| ----------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||
| _keyword-only_ | |
|
||||
| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ |
|
||||
| `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. The supported activations is `"probabilities"`. ~~Union[bool, list[str]]~~ |
|
||||
|
||||
## TextCategorizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user