mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 17:54:39 +03:00
* Add file to hold GoldParse class
This commit is contained in:
parent
8eadb984cb
commit
f0159ab4b6
7
spacy/syntax/conll.pxd
Normal file
7
spacy/syntax/conll.pxd
Normal file
|
@ -0,0 +1,7 @@
|
|||
from ..structs cimport TokenC
|
||||
|
||||
|
||||
cdef class GoldParse:
|
||||
cdef int* heads
|
||||
cdef int* labels
|
||||
cdef int heads_correct(self, TokenC* tokens, bint score_punct=?) except -1
|
150
spacy/syntax/conll.pyx
Normal file
150
spacy/syntax/conll.pyx
Normal file
|
@ -0,0 +1,150 @@
|
|||
cdef class GoldParse:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
cdef int heads_correct(self, TokenC* tokens, bint score_punct=False) except -1:
|
||||
pass
|
||||
|
||||
"""
|
||||
@classmethod
|
||||
def from_conll(cls, unicode sent_str):
|
||||
ids = []
|
||||
words = []
|
||||
heads = []
|
||||
labels = []
|
||||
tags = []
|
||||
for i, line in enumerate(sent_str.split('\n')):
|
||||
id_, word, pos_string, head_idx, label = _parse_line(line)
|
||||
words.append(word)
|
||||
if head_idx == -1:
|
||||
head_idx = i
|
||||
ids.append(id_)
|
||||
heads.append(head_idx)
|
||||
labels.append(label)
|
||||
tags.append(pos_string)
|
||||
text = ' '.join(words)
|
||||
return cls(text, [words], ids, words, tags, heads, labels)
|
||||
|
||||
@classmethod
|
||||
def from_docparse(cls, unicode sent_str):
|
||||
words = []
|
||||
heads = []
|
||||
labels = []
|
||||
tags = []
|
||||
ids = []
|
||||
lines = sent_str.strip().split('\n')
|
||||
raw_text = lines.pop(0).strip()
|
||||
tok_text = lines.pop(0).strip()
|
||||
for i, line in enumerate(lines):
|
||||
id_, word, pos_string, head_idx, label = _parse_line(line)
|
||||
if label == 'root':
|
||||
label = 'ROOT'
|
||||
words.append(word)
|
||||
if head_idx < 0:
|
||||
head_idx = id_
|
||||
ids.append(id_)
|
||||
heads.append(head_idx)
|
||||
labels.append(label)
|
||||
tags.append(pos_string)
|
||||
tokenized = [sent_str.replace('<SEP>', ' ').split(' ')
|
||||
for sent_str in tok_text.split('<SENT>')]
|
||||
return cls(raw_text, tokenized, ids, words, tags, heads, labels)
|
||||
|
||||
cdef int heads_correct(self, TokenC* tokens, bint score_punct=False) except -1:
|
||||
pass
|
||||
|
||||
def align_to_non_gold_tokens(self, tokens):
|
||||
# TODO
|
||||
tags = []
|
||||
heads = []
|
||||
labels = []
|
||||
orig_words = list(words)
|
||||
missed = []
|
||||
for token in tokens:
|
||||
while annot and token.idx > annot[0][0]:
|
||||
miss_id, miss_tag, miss_head, miss_label = annot.pop(0)
|
||||
miss_w = words.pop(0)
|
||||
if not is_punct_label(miss_label):
|
||||
missed.append(miss_w)
|
||||
loss += 1
|
||||
if not annot:
|
||||
tags.append(None)
|
||||
heads.append(None)
|
||||
labels.append(None)
|
||||
continue
|
||||
id_, tag, head, label = annot[0]
|
||||
if token.idx == id_:
|
||||
tags.append(tag)
|
||||
heads.append(head)
|
||||
labels.append(label)
|
||||
annot.pop(0)
|
||||
words.pop(0)
|
||||
elif token.idx < id_:
|
||||
tags.append(None)
|
||||
heads.append(None)
|
||||
labels.append(None)
|
||||
else:
|
||||
raise StandardError
|
||||
return loss, tags, heads, labels
|
||||
|
||||
|
||||
def is_punct_label(label):
|
||||
return label == 'P' or label.lower() == 'punct'
|
||||
|
||||
|
||||
def _map_indices_to_tokens(ids, heads):
|
||||
mapped = []
|
||||
for head in heads:
|
||||
if head not in ids:
|
||||
mapped.append(None)
|
||||
else:
|
||||
mapped.append(ids.index(head))
|
||||
return mapped
|
||||
|
||||
|
||||
|
||||
def _parse_line(line):
|
||||
pieces = line.split()
|
||||
if len(pieces) == 4:
|
||||
return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
|
||||
else:
|
||||
id_ = int(pieces[0])
|
||||
word = pieces[1]
|
||||
pos = pieces[3]
|
||||
head_idx = int(pieces[6])
|
||||
label = pieces[7]
|
||||
return id_, word, pos, head_idx, label
|
||||
|
||||
|
||||
# TODO
|
||||
def evaluate(Language, dev_loc, model_dir, gold_preproc=False):
|
||||
global loss
|
||||
nlp = Language()
|
||||
n_corr = 0
|
||||
pos_corr = 0
|
||||
n_tokens = 0
|
||||
total = 0
|
||||
skipped = 0
|
||||
loss = 0
|
||||
with codecs.open(dev_loc, 'r', 'utf8') as file_:
|
||||
#paragraphs = read_tokenized_gold(file_)
|
||||
paragraphs = read_docparse_gold(file_)
|
||||
for tokens, tag_strs, heads, labels in iter_data(paragraphs, nlp.tokenizer,
|
||||
gold_preproc=gold_preproc):
|
||||
assert len(tokens) == len(labels)
|
||||
nlp.tagger(tokens)
|
||||
nlp.parser(tokens)
|
||||
for i, token in enumerate(tokens):
|
||||
pos_corr += token.tag_ == tag_strs[i]
|
||||
n_tokens += 1
|
||||
if heads[i] is None:
|
||||
skipped += 1
|
||||
continue
|
||||
if is_punct_label(labels[i]):
|
||||
continue
|
||||
n_corr += token.head.i == heads[i]
|
||||
total += 1
|
||||
print loss, skipped, (loss+skipped + total)
|
||||
print pos_corr / n_tokens
|
||||
return float(n_corr) / (total + loss)
|
||||
"""
|
Loading…
Reference in New Issue
Block a user