mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
Add TextCategorizer API docs stub
This commit is contained in:
parent
ab1a4e8b3c
commit
f085b88f9d
|
@ -21,6 +21,7 @@
|
||||||
"Tagger": "tagger",
|
"Tagger": "tagger",
|
||||||
"DependencyParser": "dependencyparser",
|
"DependencyParser": "dependencyparser",
|
||||||
"EntityRecognizer": "entityrecognizer",
|
"EntityRecognizer": "entityrecognizer",
|
||||||
|
"TextCategorizer": "textcategorizer",
|
||||||
"Matcher": "matcher",
|
"Matcher": "matcher",
|
||||||
"Lexeme": "lexeme",
|
"Lexeme": "lexeme",
|
||||||
"Vocab": "vocab",
|
"Vocab": "vocab",
|
||||||
|
@ -130,6 +131,12 @@
|
||||||
"source": "spacy/pipeline.pyx"
|
"source": "spacy/pipeline.pyx"
|
||||||
},
|
},
|
||||||
|
|
||||||
|
"textcategorizer": {
|
||||||
|
"title": "TextCategorizer",
|
||||||
|
"tag": "class",
|
||||||
|
"source": "spacy/pipeline.pyx"
|
||||||
|
},
|
||||||
|
|
||||||
"dependencyparser": {
|
"dependencyparser": {
|
||||||
"title": "DependencyParser",
|
"title": "DependencyParser",
|
||||||
"tag": "class",
|
"tag": "class",
|
||||||
|
|
21
website/docs/api/textcategorizer.jade
Normal file
21
website/docs/api/textcategorizer.jade
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
//- 💫 DOCS > API > TEXTCATEGORIZER
|
||||||
|
|
||||||
|
include ../../_includes/_mixins
|
||||||
|
|
||||||
|
p
|
||||||
|
| Add text categorization models to spaCy pipelines. The model supports
|
||||||
|
| classification with multiple, non-mutually exclusive labels.
|
||||||
|
|
||||||
|
p
|
||||||
|
| You can change the model architecture rather easily, but by default, the
|
||||||
|
| #[code TextCategorizer] class uses a convolutional neural network to
|
||||||
|
| assign position-sensitive vectors to each word in the document. This step
|
||||||
|
| is similar to the #[+api("tensorizer") #[code Tensorizer]] component, but the
|
||||||
|
| #[code TextCategorizer] uses its own CNN model, to avoid sharing weights
|
||||||
|
| with the other pipeline components. The document tensor is then
|
||||||
|
| summarized by concatenating max and mean pooling, and a multilayer
|
||||||
|
| perceptron is used to predict an output vector of length #[code nr_class],
|
||||||
|
| before a logistic activation is applied elementwise. The value of each
|
||||||
|
| output neuron is the probability that some class is present.
|
||||||
|
|
||||||
|
+under-construction
|
Loading…
Reference in New Issue
Block a user