mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Merge branch 'master' of ssh://github.com/explosion/spaCy
This commit is contained in:
commit
f0a079dc0b
|
@ -16,18 +16,18 @@ import spacy
|
||||||
|
|
||||||
class SentimentAnalyser(object):
|
class SentimentAnalyser(object):
|
||||||
@classmethod
|
@classmethod
|
||||||
def load(cls, path, nlp):
|
def load(cls, path, nlp, max_length=100):
|
||||||
with (path / 'config.json').open() as file_:
|
with (path / 'config.json').open() as file_:
|
||||||
|
|
||||||
model = model_from_json(file_.read())
|
model = model_from_json(file_.read())
|
||||||
with (path / 'model').open('rb') as file_:
|
with (path / 'model').open('rb') as file_:
|
||||||
lstm_weights = pickle.load(file_)
|
lstm_weights = pickle.load(file_)
|
||||||
embeddings = get_embeddings(nlp.vocab)
|
embeddings = get_embeddings(nlp.vocab)
|
||||||
model.set_weights([embeddings] + lstm_weights)
|
model.set_weights([embeddings] + lstm_weights)
|
||||||
return cls(model)
|
return cls(model, max_length=max_length)
|
||||||
|
|
||||||
def __init__(self, model):
|
def __init__(self, model, max_length=100):
|
||||||
self._model = model
|
self._model = model
|
||||||
|
self.max_length = max_length
|
||||||
|
|
||||||
def __call__(self, doc):
|
def __call__(self, doc):
|
||||||
X = get_features([doc], self.max_length)
|
X = get_features([doc], self.max_length)
|
||||||
|
@ -36,10 +36,16 @@ class SentimentAnalyser(object):
|
||||||
|
|
||||||
def pipe(self, docs, batch_size=1000, n_threads=2):
|
def pipe(self, docs, batch_size=1000, n_threads=2):
|
||||||
for minibatch in cytoolz.partition_all(batch_size, docs):
|
for minibatch in cytoolz.partition_all(batch_size, docs):
|
||||||
Xs = get_features(minibatch, self.max_length)
|
minibatch = list(minibatch)
|
||||||
|
sentences = []
|
||||||
|
for doc in minibatch:
|
||||||
|
sentences.extend(doc.sents)
|
||||||
|
Xs = get_features(sentences, self.max_length)
|
||||||
ys = self._model.predict(Xs)
|
ys = self._model.predict(Xs)
|
||||||
for i, doc in enumerate(minibatch):
|
for sent, label in zip(sentences, ys):
|
||||||
doc.user_data['sentiment'] = ys[i]
|
sent.doc.sentiment += label - 0.5
|
||||||
|
for doc in minibatch:
|
||||||
|
yield doc
|
||||||
|
|
||||||
def set_sentiment(self, doc, y):
|
def set_sentiment(self, doc, y):
|
||||||
doc.sentiment = float(y[0])
|
doc.sentiment = float(y[0])
|
||||||
|
@ -48,6 +54,16 @@ class SentimentAnalyser(object):
|
||||||
# doc.user_data['my_data'] = y
|
# doc.user_data['my_data'] = y
|
||||||
|
|
||||||
|
|
||||||
|
def get_labelled_sentences(docs, doc_labels):
|
||||||
|
labels = []
|
||||||
|
sentences = []
|
||||||
|
for doc, y in zip(docs, doc_labels):
|
||||||
|
for sent in doc.sents:
|
||||||
|
sentences.append(sent)
|
||||||
|
labels.append(y)
|
||||||
|
return sentences, numpy.asarray(labels, dtype='int32')
|
||||||
|
|
||||||
|
|
||||||
def get_features(docs, max_length):
|
def get_features(docs, max_length):
|
||||||
docs = list(docs)
|
docs = list(docs)
|
||||||
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
|
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
|
||||||
|
@ -63,12 +79,21 @@ def get_features(docs, max_length):
|
||||||
|
|
||||||
|
|
||||||
def train(train_texts, train_labels, dev_texts, dev_labels,
|
def train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5):
|
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
|
||||||
nlp = spacy.load('en', parser=False, tagger=False, entity=False)
|
by_sentence=True):
|
||||||
|
print("Loading spaCy")
|
||||||
|
nlp = spacy.load('en', entity=False)
|
||||||
embeddings = get_embeddings(nlp.vocab)
|
embeddings = get_embeddings(nlp.vocab)
|
||||||
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
|
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
|
||||||
train_X = get_features(nlp.pipe(train_texts), lstm_shape['max_length'])
|
print("Parsing texts...")
|
||||||
dev_X = get_features(nlp.pipe(dev_texts), lstm_shape['max_length'])
|
train_docs = list(nlp.pipe(train_texts, batch_size=5000, n_threads=3))
|
||||||
|
dev_docs = list(nlp.pipe(dev_texts, batch_size=5000, n_threads=3))
|
||||||
|
if by_sentence:
|
||||||
|
train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
|
||||||
|
dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
|
||||||
|
|
||||||
|
train_X = get_features(train_docs, lstm_shape['max_length'])
|
||||||
|
dev_X = get_features(dev_docs, lstm_shape['max_length'])
|
||||||
model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
|
model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
|
||||||
nb_epoch=nb_epoch, batch_size=batch_size)
|
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||||
return model
|
return model
|
||||||
|
@ -86,7 +111,7 @@ def compile_lstm(embeddings, shape, settings):
|
||||||
mask_zero=True
|
mask_zero=True
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
model.add(TimeDistributed(Dense(shape['nr_hidden'] * 2)))
|
model.add(TimeDistributed(Dense(shape['nr_hidden'] * 2, bias=False)))
|
||||||
model.add(Dropout(settings['dropout']))
|
model.add(Dropout(settings['dropout']))
|
||||||
model.add(Bidirectional(LSTM(shape['nr_hidden'])))
|
model.add(Bidirectional(LSTM(shape['nr_hidden'])))
|
||||||
model.add(Dropout(settings['dropout']))
|
model.add(Dropout(settings['dropout']))
|
||||||
|
@ -105,25 +130,23 @@ def get_embeddings(vocab):
|
||||||
return vectors
|
return vectors
|
||||||
|
|
||||||
|
|
||||||
def demonstrate_runtime(model_dir, texts):
|
def evaluate(model_dir, texts, labels, max_length=100):
|
||||||
'''Demonstrate runtime usage of the custom sentiment model with spaCy.
|
|
||||||
|
|
||||||
Here we return a dictionary mapping entities to the average sentiment of the
|
|
||||||
documents they occurred in.
|
|
||||||
'''
|
|
||||||
def create_pipeline(nlp):
|
def create_pipeline(nlp):
|
||||||
'''
|
'''
|
||||||
This could be a lambda, but named functions are easier to read in Python.
|
This could be a lambda, but named functions are easier to read in Python.
|
||||||
'''
|
'''
|
||||||
return [nlp.tagger, nlp.entity, SentimentAnalyser.load(model_dir, nlp)]
|
return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
|
||||||
|
max_length=max_length)]
|
||||||
|
|
||||||
nlp = spacy.load('en', create_pipeline=create_pipeline)
|
nlp = spacy.load('en')
|
||||||
|
nlp.pipeline = create_pipeline(nlp)
|
||||||
|
|
||||||
entity_sentiments = collections.Counter(float)
|
correct = 0
|
||||||
|
i = 0
|
||||||
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
|
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
|
||||||
for ent in doc.ents:
|
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
|
||||||
entity_sentiments[ent.text] += doc.sentiment
|
i += 1
|
||||||
return entity_sentiments
|
return float(correct) / i
|
||||||
|
|
||||||
|
|
||||||
def read_data(data_dir, limit=0):
|
def read_data(data_dir, limit=0):
|
||||||
|
@ -162,10 +185,12 @@ def main(model_dir, train_dir, dev_dir,
|
||||||
dev_dir = pathlib.Path(dev_dir)
|
dev_dir = pathlib.Path(dev_dir)
|
||||||
if is_runtime:
|
if is_runtime:
|
||||||
dev_texts, dev_labels = read_data(dev_dir)
|
dev_texts, dev_labels = read_data(dev_dir)
|
||||||
demonstrate_runtime(model_dir, dev_texts)
|
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
|
||||||
|
print(acc)
|
||||||
else:
|
else:
|
||||||
|
print("Read data")
|
||||||
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
||||||
dev_texts, dev_labels = read_data(dev_dir)
|
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
|
||||||
train_labels = numpy.asarray(train_labels, dtype='int32')
|
train_labels = numpy.asarray(train_labels, dtype='int32')
|
||||||
dev_labels = numpy.asarray(dev_labels, dtype='int32')
|
dev_labels = numpy.asarray(dev_labels, dtype='int32')
|
||||||
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
|
@ -175,7 +200,9 @@ def main(model_dir, train_dir, dev_dir,
|
||||||
nb_epoch=nb_epoch, batch_size=batch_size)
|
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||||
weights = lstm.get_weights()
|
weights = lstm.get_weights()
|
||||||
with (model_dir / 'model').open('wb') as file_:
|
with (model_dir / 'model').open('wb') as file_:
|
||||||
pickle.dump(file_, weights[1:])
|
pickle.dump(weights[1:], file_)
|
||||||
|
with (model_dir / 'config.json').open('wb') as file_:
|
||||||
|
file_.write(lstm.to_json())
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -6,6 +6,7 @@ import random
|
||||||
import spacy
|
import spacy
|
||||||
from spacy.pipeline import EntityRecognizer
|
from spacy.pipeline import EntityRecognizer
|
||||||
from spacy.gold import GoldParse
|
from spacy.gold import GoldParse
|
||||||
|
from spacy.tagger import Tagger
|
||||||
|
|
||||||
|
|
||||||
def train_ner(nlp, train_data, entity_types):
|
def train_ner(nlp, train_data, entity_types):
|
||||||
|
@ -27,7 +28,16 @@ def main(model_dir=None):
|
||||||
model_dir.mkdir()
|
model_dir.mkdir()
|
||||||
assert model_dir.is_dir()
|
assert model_dir.is_dir()
|
||||||
|
|
||||||
nlp = spacy.load('en', parser=False, entity=False, vectors=False)
|
nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
|
||||||
|
|
||||||
|
# v1.1.2 onwards
|
||||||
|
if nlp.tagger is None:
|
||||||
|
print('---- WARNING ----')
|
||||||
|
print('Data directory not found')
|
||||||
|
print('please run: `python -m spacy.en.download –force all` for better performance')
|
||||||
|
print('Using feature templates for tagging')
|
||||||
|
print('-----------------')
|
||||||
|
nlp.tagger = Tagger(nlp.vocab, features=Tagger.feature_templates)
|
||||||
|
|
||||||
train_data = [
|
train_data = [
|
||||||
(
|
(
|
||||||
|
|
|
@ -32,7 +32,7 @@ def main(model_dir=None):
|
||||||
model_dir.mkdir()
|
model_dir.mkdir()
|
||||||
assert model_dir.is_dir()
|
assert model_dir.is_dir()
|
||||||
|
|
||||||
nlp = spacy.load('en', tagger=False, parser=False, entity=False, vectors=False)
|
nlp = spacy.load('en', tagger=False, parser=False, entity=False, add_vectors=False)
|
||||||
|
|
||||||
train_data = [
|
train_data = [
|
||||||
(
|
(
|
||||||
|
|
|
@ -10,8 +10,9 @@ from pathlib import Path
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
from spacy.tagger import Tagger
|
from spacy.tagger import Tagger
|
||||||
from spacy.tokens import Doc
|
from spacy.tokens import Doc
|
||||||
import random
|
from spacy.gold import GoldParse
|
||||||
|
|
||||||
|
import random
|
||||||
|
|
||||||
# You need to define a mapping from your data's part-of-speech tag names to the
|
# You need to define a mapping from your data's part-of-speech tag names to the
|
||||||
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
|
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
|
||||||
|
@ -20,24 +21,25 @@ import random
|
||||||
# You may also specify morphological features for your tags, from the universal
|
# You may also specify morphological features for your tags, from the universal
|
||||||
# scheme.
|
# scheme.
|
||||||
TAG_MAP = {
|
TAG_MAP = {
|
||||||
'N': {"pos": "NOUN"},
|
'N': {"pos": "NOUN"},
|
||||||
'V': {"pos": "VERB"},
|
'V': {"pos": "VERB"},
|
||||||
'J': {"pos": "ADJ"}
|
'J': {"pos": "ADJ"}
|
||||||
}
|
}
|
||||||
|
|
||||||
# Usually you'll read this in, of course. Data formats vary.
|
# Usually you'll read this in, of course. Data formats vary.
|
||||||
# Ensure your strings are unicode.
|
# Ensure your strings are unicode.
|
||||||
DATA = [
|
DATA = [
|
||||||
(
|
(
|
||||||
["I", "like", "green", "eggs"],
|
["I", "like", "green", "eggs"],
|
||||||
["N", "V", "J", "N"]
|
["N", "V", "J", "N"]
|
||||||
),
|
),
|
||||||
(
|
(
|
||||||
["Eat", "blue", "ham"],
|
["Eat", "blue", "ham"],
|
||||||
["V", "J", "N"]
|
["V", "J", "N"]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def ensure_dir(path):
|
def ensure_dir(path):
|
||||||
if not path.exists():
|
if not path.exists():
|
||||||
path.mkdir()
|
path.mkdir()
|
||||||
|
@ -54,13 +56,14 @@ def main(output_dir=None):
|
||||||
# The default_templates argument is where features are specified. See
|
# The default_templates argument is where features are specified. See
|
||||||
# spacy/tagger.pyx for the defaults.
|
# spacy/tagger.pyx for the defaults.
|
||||||
tagger = Tagger(vocab)
|
tagger = Tagger(vocab)
|
||||||
for i in range(5):
|
for i in range(25):
|
||||||
for words, tags in DATA:
|
for words, tags in DATA:
|
||||||
doc = Doc(vocab, words=words)
|
doc = Doc(vocab, words=words)
|
||||||
tagger.update(doc, tags)
|
gold = GoldParse(doc, tags=tags)
|
||||||
|
tagger.update(doc, gold)
|
||||||
random.shuffle(DATA)
|
random.shuffle(DATA)
|
||||||
tagger.model.end_training()
|
tagger.model.end_training()
|
||||||
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True]*4))
|
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True] * 4))
|
||||||
tagger(doc)
|
tagger(doc)
|
||||||
for word in doc:
|
for word in doc:
|
||||||
print(word.text, word.tag_, word.pos_)
|
print(word.text, word.tag_, word.pos_)
|
||||||
|
|
|
@ -6,54 +6,56 @@
|
||||||
+h(2, "matcher", "https://github.com/" + SOCIAL.github + "/spaCy/blob/master/spacy/matcher.pyx")
|
+h(2, "matcher", "https://github.com/" + SOCIAL.github + "/spaCy/blob/master/spacy/matcher.pyx")
|
||||||
| #[+tag class] Matcher
|
| #[+tag class] Matcher
|
||||||
|
|
||||||
p A full example can be found #[a(href="https://github.com/" + SOCIAL.github + "blob/master/examples/matcher_example.py") here].
|
p A full example can be found #[a(href="https://github.com/" + SOCIAL.github + "/spaCy/blob/master/examples/matcher_example.py") here].
|
||||||
|
|
||||||
+table(["Usage", "Description"])
|
+table(["Usage", "Description"])
|
||||||
+row
|
+row
|
||||||
+cell #[code.lang-python nlp(doc)]
|
+cell #[code.lang-python nlp(doc)]
|
||||||
+cell As part of annotation pipeline.
|
+cell As part of annotation pipeline.
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[code.lang-python nlp.matcher(doc)]
|
+cell #[code.lang-python nlp.matcher(doc)]
|
||||||
+cell Explicit invocation.
|
+cell Explicit invocation.
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[code.lang-python nlp.matcher.add(u'FooCorp', u'ORG', {}, [[{u'ORTH': u'Foo'}]])]
|
+cell #[code.lang-python nlp.matcher.add(u'FooCorp', u'ORG', {}, [[{u'ORTH': u'Foo'}]])]
|
||||||
+cell Add a pattern to match.
|
+cell Add a pattern to match.
|
||||||
|
|
||||||
+section("matcher-init")
|
+section("matcher-init")
|
||||||
+h(3, "matcher-init") __init__(self, vocab, patterns)
|
+h(3, "matcher-init") __init__(self, vocab, patterns)
|
||||||
+table(["Name", "Type", "Description"])
|
|
||||||
+row
|
|
||||||
+cell vocab
|
|
||||||
+cell #[code.lang-python spacy.vocab.Vocab]
|
|
||||||
+cell Reference to the shared vocabulary object.
|
|
||||||
|
|
||||||
+row
|
+table(["Name", "Type", "Description"])
|
||||||
+cell patterns
|
+row
|
||||||
+cell #[code {entity_key: (etype, attrs, specs)}]
|
+cell vocab
|
||||||
+cell.
|
+cell #[code.lang-python spacy.vocab.Vocab]
|
||||||
Initial patterns to match. See #[code Matcher.add]
|
+cell Reference to the shared vocabulary object.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell patterns
|
||||||
|
+cell #[code {entity_key: (etype, attrs, specs)}]
|
||||||
|
+cell.
|
||||||
|
Initial patterns to match. See #[code Matcher.add]
|
||||||
|
|
||||||
+section("matcher-add")
|
+section("matcher-add")
|
||||||
+h(3, "matcher-add") add(self, entity_key, etype, attrs, specs)
|
+h(3, "matcher-add") add(self, entity_key, etype, attrs, specs)
|
||||||
+table(["Name", "Type", "Description"])
|
|
||||||
+row
|
+table(["Name", "Type", "Description"])
|
||||||
+cell entity_key
|
+row
|
||||||
+cell unicode or int
|
+cell entity_key
|
||||||
+cell Your arbitrary ID string (or its integer encoding)
|
+cell unicode or int
|
||||||
+row
|
+cell Your arbitrary ID string (or its integer encoding)
|
||||||
+cell etype
|
+row
|
||||||
+cell unicode or int
|
+cell etype
|
||||||
+cell A pre-registered entity type, e.g. u'PERSON', u'ORG', etc.
|
+cell unicode or int
|
||||||
+row
|
+cell A pre-registered entity type, e.g. u'PERSON', u'ORG', etc.
|
||||||
+cell attrs
|
+row
|
||||||
+cell #[code dict]
|
+cell attrs
|
||||||
+cell Placeholder for future support of entity attributes.
|
+cell #[code dict]
|
||||||
+row
|
+cell Placeholder for future support of entity attributes.
|
||||||
+cell specs
|
+row
|
||||||
+cell #[code [[{int: unicode}]]]
|
+cell specs
|
||||||
+cell A list of surface forms, where each surface form is defined as a list of token definitions, and each token definition is a dictionary mapping attribute IDs to attribute values.
|
+cell #[code [[{int: unicode}]]]
|
||||||
|
+cell A list of surface forms, where each surface form is defined as a list of token definitions, and each token definition is a dictionary mapping attribute IDs to attribute values.
|
||||||
|
|
||||||
+section("matcher-saveload")
|
+section("matcher-saveload")
|
||||||
+h(3, "matcher-saveload")
|
+h(3, "matcher-saveload")
|
||||||
|
|
|
@ -14,7 +14,8 @@
|
||||||
["Span", "#span", "span"],
|
["Span", "#span", "span"],
|
||||||
["Lexeme", "#lexeme", "lexeme"],
|
["Lexeme", "#lexeme", "lexeme"],
|
||||||
["Vocab", "#vocab", "vocab"],
|
["Vocab", "#vocab", "vocab"],
|
||||||
["StringStore", "#stringstore", "stringstore"]
|
["StringStore", "#stringstore", "stringstore"],
|
||||||
|
["Matcher", "#matcher", "matcher"]
|
||||||
],
|
],
|
||||||
"More": [
|
"More": [
|
||||||
["Annotation Specs", "#annotation", "annotation"],
|
["Annotation Specs", "#annotation", "annotation"],
|
||||||
|
|
|
@ -20,6 +20,7 @@ include _api-span
|
||||||
include _api-lexeme
|
include _api-lexeme
|
||||||
include _api-vocab
|
include _api-vocab
|
||||||
include _api-stringstore
|
include _api-stringstore
|
||||||
|
include _api-matcher
|
||||||
|
|
||||||
include _annotation-specs
|
include _annotation-specs
|
||||||
include _tutorials
|
include _tutorials
|
||||||
|
|
|
@ -19,7 +19,7 @@ p I'll start with some quick code examples, that describe how to train each mode
|
||||||
|
|
||||||
tagger.model.end_training()
|
tagger.model.end_training()
|
||||||
|
|
||||||
p #[+a("https://github.com/" + SOCIAL.github + "/spaCy/examples/training/train_tagger.py") Full example]
|
p #[+a("https://github.com/" + SOCIAL.github + "/spaCy/blob/master/examples/training/train_tagger.py") Full example]
|
||||||
|
|
||||||
+h(2, "train-entity") Training the named entity recognizer
|
+h(2, "train-entity") Training the named entity recognizer
|
||||||
|
|
||||||
|
@ -37,7 +37,7 @@ p #[+a("https://github.com/" + SOCIAL.github + "/spaCy/examples/training/train_t
|
||||||
|
|
||||||
entity.model.end_training()
|
entity.model.end_training()
|
||||||
|
|
||||||
p #[+a("https://github.com/" + SOCIAL.github + "/spaCy/examples/training/train_ner.y") Full example]
|
p #[+a("https://github.com/" + SOCIAL.github + "/spaCy/blob/master/examples/training/train_ner.y") Full example]
|
||||||
|
|
||||||
+h(2, "train-entity") Training the dependency parser
|
+h(2, "train-entity") Training the dependency parser
|
||||||
|
|
||||||
|
@ -54,7 +54,7 @@ p #[+a("https://github.com/" + SOCIAL.github + "/spaCy/examples/training/train_n
|
||||||
|
|
||||||
parser.model.end_training()
|
parser.model.end_training()
|
||||||
|
|
||||||
p #[+a("https://github.com/" + SOCIAL.github + "/spaCy/examples/training/train_parser.py") Full example]
|
p #[+a("https://github.com/" + SOCIAL.github + "/spaCy/blob/master/examples/training/train_parser.py") Full example]
|
||||||
|
|
||||||
+h(2, 'feature-templates') Customising the feature extraction
|
+h(2, 'feature-templates') Customising the feature extraction
|
||||||
|
|
||||||
|
@ -64,9 +64,9 @@ p Because it's a linear model, it's important for accuracy to build conjunction
|
||||||
|
|
||||||
p The feature extraction proceeds in two passes. In the first pass, we fill an array with the values of all of the atomic predictors. In the second pass, we iterate over the feature templates, and fill a small temporary array with the predictors that will be combined into a conjunction feature. Finally, we hash this array into a 64-bit integer, using the MurmurHash algorithm. You can see this at work in the #[+a("https://github.com/" + SOCIAL.github + "/thinc/blob/94dbe06fd3c8f24d86ab0f5c7984e52dbfcdc6cb/thinc/linear/features.pyx") thinc.linear.features] module.
|
p The feature extraction proceeds in two passes. In the first pass, we fill an array with the values of all of the atomic predictors. In the second pass, we iterate over the feature templates, and fill a small temporary array with the predictors that will be combined into a conjunction feature. Finally, we hash this array into a 64-bit integer, using the MurmurHash algorithm. You can see this at work in the #[+a("https://github.com/" + SOCIAL.github + "/thinc/blob/94dbe06fd3c8f24d86ab0f5c7984e52dbfcdc6cb/thinc/linear/features.pyx") thinc.linear.features] module.
|
||||||
|
|
||||||
p It's very easy to change the feature templates, to create novel combinations of the existing atomic predictors. There's currently no API available to add new atomic predictors, though. You'll have to create a subclass of the model, and write your own #[+code set_featuresC] method.
|
p It's very easy to change the feature templates, to create novel combinations of the existing atomic predictors. There's currently no API available to add new atomic predictors, though. You'll have to create a subclass of the model, and write your own #[code set_featuresC] method.
|
||||||
|
|
||||||
p The feature templates are passed in using the #[+code features] keyword argument to the constructors of the Tagger, DependencyParser and EntityRecognizer:
|
p The feature templates are passed in using the #[code features] keyword argument to the constructors of the Tagger, DependencyParser and EntityRecognizer:
|
||||||
|
|
||||||
+code('python', 'custom tagger templates').
|
+code('python', 'custom tagger templates').
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
|
@ -79,4 +79,4 @@ p The feature templates are passed in using the #[+code features] keyword argume
|
||||||
(P2_orth,), (P1_orth,), (W_orth,),
|
(P2_orth,), (P1_orth,), (W_orth,),
|
||||||
(N1_orth,), (N2_orth,)])
|
(N1_orth,), (N2_orth,)])
|
||||||
|
|
||||||
p Custom feature templates can be passed to the DependencyParser and EntityRecognizer as well, also using the #[+code features] keyword argument of the constructor.
|
p Custom feature templates can be passed to the DependencyParser and EntityRecognizer as well, also using the #[code features] keyword argument of the constructor.
|
||||||
|
|
Loading…
Reference in New Issue
Block a user