Update docstrings and API docs for Vocab

This commit is contained in:
ines 2017-05-20 13:59:31 +02:00
parent a93276bb78
commit f0cc642bb9
2 changed files with 240 additions and 520 deletions

View File

@ -36,79 +36,22 @@ EMPTY_LEXEME.vector = EMPTY_VEC
cdef class Vocab:
"""A look-up table that allows you to access `Lexeme` objects. The `Vocab`
instance also provides access to the `StringStore`, and owns underlying
C-data that is shared between `Doc` objects.
"""
A map container for a language's LexemeC structs.
"""
@classmethod
def load(cls, path, lex_attr_getters=None, lemmatizer=True,
tag_map=True, oov_prob=True, **deprecated_kwargs):
"""
Deprecated --- replace in spaCy 2
Load the vocabulary from a path.
Arguments:
path (Path):
The path to load from.
lex_attr_getters (dict):
A dictionary mapping attribute IDs to functions to compute them.
Defaults to None.
lemmatizer (object):
A lemmatizer. Defaults to None.
tag_map (dict):
A dictionary mapping fine-grained tags to coarse-grained parts-of-speech,
and optionally morphological attributes.
oov_prob (float):
The default probability for out-of-vocabulary words.
Returns:
Vocab: The newly constructed vocab object.
"""
path = util.ensure_path(path)
util.check_renamed_kwargs({'get_lex_attr': 'lex_attr_getters'}, deprecated_kwargs)
if 'vectors' in deprecated_kwargs:
raise AttributeError(
"vectors argument to Vocab.load() deprecated. "
"Install vectors after loading.")
if tag_map is True and (path / 'vocab' / 'tag_map.json').exists():
with (path / 'vocab' / 'tag_map.json').open('r', encoding='utf8') as file_:
tag_map = ujson.load(file_)
elif tag_map is True:
tag_map = None
if lex_attr_getters is not None \
and oov_prob is True \
and (path / 'vocab' / 'oov_prob').exists():
with (path / 'vocab' / 'oov_prob').open('r', encoding='utf8') as file_:
oov_prob = float(file_.read())
lex_attr_getters[PROB] = lambda text: oov_prob
if lemmatizer is True:
lemmatizer = Lemmatizer.load(path)
with (path / 'vocab' / 'strings.json').open('r', encoding='utf8') as file_:
strings_list = ujson.load(file_)
cdef Vocab self = cls(lex_attr_getters=lex_attr_getters, tag_map=tag_map,
lemmatizer=lemmatizer,
strings=strings_list)
self.load_lexemes(path / 'vocab' / 'lexemes.bin')
return self
def __init__(self, lex_attr_getters=None, tag_map=None, lemmatizer=None,
strings=tuple(), **deprecated_kwargs):
"""
Create the vocabulary.
"""Create the vocabulary.
lex_attr_getters (dict):
A dictionary mapping attribute IDs to functions to compute them.
Defaults to None.
lemmatizer (object):
A lemmatizer. Defaults to None.
tag_map (dict):
A dictionary mapping fine-grained tags to coarse-grained parts-of-speech,
and optionally morphological attributes.
oov_prob (float):
The default probability for out-of-vocabulary words.
Returns:
Vocab: The newly constructed vocab object.
lex_attr_getters (dict): A dictionary mapping attribute IDs to functions
to compute them. Defaults to `None`.
tag_map (dict): A dictionary mapping fine-grained tags to coarse-grained
parts-of-speech, and optionally morphological attributes.
lemmatizer (object): A lemmatizer. Defaults to `None`.
strings (StringStore): StringStore that maps strings to integers, and
vice versa.
RETURNS (Vocab): The newly constructed vocab object.
"""
util.check_renamed_kwargs({'get_lex_attr': 'lex_attr_getters'}, deprecated_kwargs)
@ -148,33 +91,32 @@ cdef class Vocab:
return langfunc('_') if langfunc else ''
def __len__(self):
"""
The current number of lexemes stored.
"""The current number of lexemes stored.
RETURNS (int): The current number of lexemes stored.
"""
return self.length
def add_flag(self, flag_getter, int flag_id=-1):
"""
Set a new boolean flag to words in the vocabulary.
"""Set a new boolean flag to words in the vocabulary.
The flag_setter function will be called over the words currently in the
The flag_getter function will be called over the words currently in the
vocab, and then applied to new words as they occur. You'll then be able
to access the flag value on each token, using token.check_flag(flag_id).
See also: `Lexeme.set_flag`, `Lexeme.check_flag`, `Token.set_flag`,
`Token.check_flag`.
See also:
Lexeme.set_flag, Lexeme.check_flag, Token.set_flag, Token.check_flag.
flag_getter (function): A function `f(unicode) -> bool`, to get the flag
value.
flag_id (int): An integer between 1 and 63 (inclusive), specifying
the bit at which the flag will be stored. If -1, the lowest
available bit will be chosen.
RETURNS (int): The integer ID by which the flag value can be checked.
Arguments:
flag_getter:
A function f(unicode) -> bool, to get the flag value.
flag_id (int):
An integer between 1 and 63 (inclusive), specifying the bit at which the
flag will be stored. If -1, the lowest available bit will be
chosen.
Returns:
flag_id (int): The integer ID by which the flag value can be checked.
EXAMPLE:
>>> MY_PRODUCT = nlp.vocab.add_flag(lambda text: text in ['spaCy', 'dislaCy'])
>>> doc = nlp(u'I like spaCy')
>>> assert doc[2].check_flag(MY_PRODUCT) == True
"""
if flag_id == -1:
for bit in range(1, 64):
@ -196,8 +138,7 @@ cdef class Vocab:
return flag_id
cdef const LexemeC* get(self, Pool mem, unicode string) except NULL:
"""
Get a pointer to a LexemeC from the lexicon, creating a new Lexeme
"""Get a pointer to a `LexemeC` from the lexicon, creating a new `Lexeme`
if necessary, using memory acquired from the given pool. If the pool
is the lexicon's own memory, the lexeme is saved in the lexicon.
"""
@ -216,8 +157,7 @@ cdef class Vocab:
return self._new_lexeme(mem, string)
cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
"""
Get a pointer to a LexemeC from the lexicon, creating a new Lexeme
"""Get a pointer to a `LexemeC` from the lexicon, creating a new `Lexeme`
if necessary, using memory acquired from the given pool. If the pool
is the lexicon's own memory, the lexeme is saved in the lexicon.
"""
@ -263,24 +203,19 @@ cdef class Vocab:
self.length += 1
def __contains__(self, unicode string):
"""
Check whether the string has an entry in the vocabulary.
"""Check whether the string has an entry in the vocabulary.
Arguments:
string (unicode): The ID string.
Returns:
bool Whether the string has an entry in the vocabulary.
RETURNS (bool) Whether the string has an entry in the vocabulary.
"""
key = hash_string(string)
lex = self._by_hash.get(key)
return lex is not NULL
def __iter__(self):
"""
Iterate over the lexemes in the vocabulary.
"""Iterate over the lexemes in the vocabulary.
Yields: Lexeme An entry in the vocabulary.
YIELDS (Lexeme): An entry in the vocabulary.
"""
cdef attr_t orth
cdef size_t addr
@ -288,19 +223,19 @@ cdef class Vocab:
yield Lexeme(self, orth)
def __getitem__(self, id_or_string):
"""
Retrieve a lexeme, given an int ID or a unicode string. If a previously
unseen unicode string is given, a new lexeme is created and stored.
"""Retrieve a lexeme, given an int ID or a unicode string. If a
previously unseen unicode string is given, a new lexeme is created and
stored.
Arguments:
id_or_string (int or unicode):
The integer ID of a word, or its unicode string.
id_or_string (int or unicode): The integer ID of a word, or its unicode
string. If `int >= Lexicon.size`, `IndexError` is raised. If
`id_or_string` is neither an int nor a unicode string, `ValueError`
is raised.
RETURNS (Lexeme): The lexeme indicated by the given ID.
If an int >= Lexicon.size, IndexError is raised. If id_or_string
is neither an int nor a unicode string, ValueError is raised.
Returns:
lexeme (Lexeme): The lexeme indicated by the given ID.
EXAMPLE:
>>> apple = nlp.vocab.strings['apple']
>>> assert nlp.vocab[apple] == nlp.vocab[u'apple']
"""
cdef attr_t orth
if type(id_or_string) == unicode:
@ -324,15 +259,29 @@ cdef class Vocab:
return tokens
def to_disk(self, path):
"""Save the current state to a directory.
path (unicode or Path): A path to a directory, which will be created if
it doesn't exist. Paths may be either strings or `Path`-like objects.
"""
path = util.ensure_path(path)
if not path.exists():
path.mkdir()
strings_loc = path / 'strings.json'
with strings_loc.open('w', encoding='utf8') as file_:
self.strings.dump(file_)
self.dump(path / 'lexemes.bin')
# TODO: pickle
# self.dump(path / 'lexemes.bin')
def from_disk(self, path):
"""Loads state from a directory. Modifies the object in place and
returns it.
path (unicode or Path): A path to a directory. Paths may be either
strings or `Path`-like objects.
RETURNS (Vocab): The modified `Vocab` object.
"""
path = util.ensure_path(path)
with (path / 'vocab' / 'strings.json').open('r', encoding='utf8') as file_:
strings_list = ujson.load(file_)
@ -340,6 +289,23 @@ cdef class Vocab:
self.strings[string]
self.load_lexemes(path / 'lexemes.bin')
def to_bytes(self, **exclude):
"""Serialize the current state to a binary string.
**exclude: Named attributes to prevent from being serialized.
RETURNS (bytes): The serialized form of the `Vocab` object.
"""
raise NotImplementedError()
def from_bytes(self, bytest_data, **exclude):
"""Load state from a binary string.
bytes_data (bytes): The data to load from.
**exclude: Named attributes to prevent from being loaded.
RETURNS (Vocab): The `Vocab` object.
"""
raise NotImplementedError()
def lexemes_to_bytes(self, **exclude):
cdef hash_t key
cdef size_t addr
@ -365,9 +331,7 @@ cdef class Vocab:
return byte_string
def lexemes_from_bytes(self, bytes bytes_data):
"""
Load the binary vocabulary data from the given string.
"""
"""Load the binary vocabulary data from the given string."""
cdef LexemeC* lexeme
cdef hash_t key
cdef unicode py_str
@ -393,14 +357,10 @@ cdef class Vocab:
# Deprecated --- delete these once stable
def dump_vectors(self, out_loc):
"""
Save the word vectors to a binary file.
"""Save the word vectors to a binary file.
Arguments:
loc (Path): The path to save to.
Returns:
None
#"""
"""
cdef int32_t vec_len = self.vectors_length
cdef int32_t word_len
cdef bytes word_str
@ -424,17 +384,14 @@ cdef class Vocab:
def load_vectors(self, file_):
"""
Load vectors from a text-based file.
"""Load vectors from a text-based file.
Arguments:
file_ (buffer): The file to read from. Entries should be separated by newlines,
and each entry should be whitespace delimited. The first value of the entry
file_ (buffer): The file to read from. Entries should be separated by
newlines, and each entry should be whitespace delimited. The first value of the entry
should be the word string, and subsequent entries should be the values of the
vector.
Returns:
vec_len (int): The length of the vectors loaded.
RETURNS (int): The length of the vectors loaded.
"""
cdef LexemeC* lexeme
cdef attr_t orth
@ -464,14 +421,11 @@ cdef class Vocab:
return vec_len
def load_vectors_from_bin_loc(self, loc):
"""
Load vectors from the location of a binary file.
"""Load vectors from the location of a binary file.
Arguments:
loc (unicode): The path of the binary file to load from.
Returns:
vec_len (int): The length of the vectors loaded.
RETURNS (int): The length of the vectors loaded.
"""
cdef CFile file_ = CFile(loc, b'rb')
cdef int32_t word_len
@ -526,11 +480,9 @@ cdef class Vocab:
def resize_vectors(self, int new_size):
"""
Set vectors_length to a new size, and allocate more memory for the Lexeme
vectors if necessary. The memory will be zeroed.
"""Set vectors_length to a new size, and allocate more memory for the
`Lexeme` vectors if necessary. The memory will be zeroed.
Arguments:
new_size (int): The new size of the vectors.
"""
cdef hash_t key
@ -633,237 +585,3 @@ class VectorReadError(Exception):
"Vector size: %d\n"
"Max size: %d\n"
"Min size: 1\n" % (loc, size, MAX_VEC_SIZE))
#
#Deprecated --- delete these once stable
#
# def dump_vectors(self, out_loc):
# """
# Save the word vectors to a binary file.
#
# Arguments:
# loc (Path): The path to save to.
# Returns:
# None
# #"""
# cdef int32_t vec_len = self.vectors_length
# cdef int32_t word_len
# cdef bytes word_str
# cdef char* chars
#
# cdef Lexeme lexeme
# cdef CFile out_file = CFile(out_loc, 'wb')
# for lexeme in self:
# word_str = lexeme.orth_.encode('utf8')
# vec = lexeme.c.vector
# word_len = len(word_str)
#
# out_file.write_from(&word_len, 1, sizeof(word_len))
# out_file.write_from(&vec_len, 1, sizeof(vec_len))
#
# chars = <char*>word_str
# out_file.write_from(chars, word_len, sizeof(char))
# out_file.write_from(vec, vec_len, sizeof(float))
# out_file.close()
#
#
#
# def load_vectors(self, file_):
# """
# Load vectors from a text-based file.
#
# Arguments:
# file_ (buffer): The file to read from. Entries should be separated by newlines,
# and each entry should be whitespace delimited. The first value of the entry
# should be the word string, and subsequent entries should be the values of the
# vector.
#
# Returns:
# vec_len (int): The length of the vectors loaded.
# """
# cdef LexemeC* lexeme
# cdef attr_t orth
# cdef int32_t vec_len = -1
# cdef double norm = 0.0
#
# whitespace_pattern = re.compile(r'\s', re.UNICODE)
#
# for line_num, line in enumerate(file_):
# pieces = line.split()
# word_str = " " if whitespace_pattern.match(line) else pieces.pop(0)
# if vec_len == -1:
# vec_len = len(pieces)
# elif vec_len != len(pieces):
# raise VectorReadError.mismatched_sizes(file_, line_num,
# vec_len, len(pieces))
# orth = self.strings[word_str]
# lexeme = <LexemeC*><void*>self.get_by_orth(self.mem, orth)
# lexeme.vector = <float*>self.mem.alloc(vec_len, sizeof(float))
# for i, val_str in enumerate(pieces):
# lexeme.vector[i] = float(val_str)
# norm = 0.0
# for i in range(vec_len):
# norm += lexeme.vector[i] * lexeme.vector[i]
# lexeme.l2_norm = sqrt(norm)
# self.vectors_length = vec_len
# return vec_len
#
# def load_vectors_from_bin_loc(self, loc):
# """
# Load vectors from the location of a binary file.
#
# Arguments:
# loc (unicode): The path of the binary file to load from.
#
# Returns:
# vec_len (int): The length of the vectors loaded.
# """
# cdef CFile file_ = CFile(loc, b'rb')
# cdef int32_t word_len
# cdef int32_t vec_len = 0
# cdef int32_t prev_vec_len = 0
# cdef float* vec
# cdef Address mem
# cdef attr_t string_id
# cdef bytes py_word
# cdef vector[float*] vectors
# cdef int line_num = 0
# cdef Pool tmp_mem = Pool()
# while True:
# try:
# file_.read_into(&word_len, sizeof(word_len), 1)
# except IOError:
# break
# file_.read_into(&vec_len, sizeof(vec_len), 1)
# if prev_vec_len != 0 and vec_len != prev_vec_len:
# raise VectorReadError.mismatched_sizes(loc, line_num,
# vec_len, prev_vec_len)
# if 0 >= vec_len >= MAX_VEC_SIZE:
# raise VectorReadError.bad_size(loc, vec_len)
#
# chars = <char*>file_.alloc_read(tmp_mem, word_len, sizeof(char))
# vec = <float*>file_.alloc_read(self.mem, vec_len, sizeof(float))
#
# string_id = self.strings[chars[:word_len]]
# # Insert words into vocab to add vector.
# self.get_by_orth(self.mem, string_id)
# while string_id >= vectors.size():
# vectors.push_back(EMPTY_VEC)
# assert vec != NULL
# vectors[string_id] = vec
# line_num += 1
# cdef LexemeC* lex
# cdef size_t lex_addr
# cdef double norm = 0.0
# cdef int i
# for orth, lex_addr in self._by_orth.items():
# lex = <LexemeC*>lex_addr
# if lex.lower < vectors.size():
# lex.vector = vectors[lex.lower]
# norm = 0.0
# for i in range(vec_len):
# norm += lex.vector[i] * lex.vector[i]
# lex.l2_norm = sqrt(norm)
# else:
# lex.vector = EMPTY_VEC
# self.vectors_length = vec_len
# return vec_len
#
#
#def write_binary_vectors(in_loc, out_loc):
# cdef CFile out_file = CFile(out_loc, 'wb')
# cdef Address mem
# cdef int32_t word_len
# cdef int32_t vec_len
# cdef char* chars
# with bz2.BZ2File(in_loc, 'r') as file_:
# for line in file_:
# pieces = line.split()
# word = pieces.pop(0)
# mem = Address(len(pieces), sizeof(float))
# vec = <float*>mem.ptr
# for i, val_str in enumerate(pieces):
# vec[i] = float(val_str)
#
# word_len = len(word)
# vec_len = len(pieces)
#
# out_file.write_from(&word_len, 1, sizeof(word_len))
# out_file.write_from(&vec_len, 1, sizeof(vec_len))
#
# chars = <char*>word
# out_file.write_from(chars, len(word), sizeof(char))
# out_file.write_from(vec, vec_len, sizeof(float))
#
#
# def resize_vectors(self, int new_size):
# """
# Set vectors_length to a new size, and allocate more memory for the Lexeme
# vectors if necessary. The memory will be zeroed.
#
# Arguments:
# new_size (int): The new size of the vectors.
# """
# cdef hash_t key
# cdef size_t addr
# if new_size > self.vectors_length:
# for key, addr in self._by_hash.items():
# lex = <LexemeC*>addr
# lex.vector = <float*>self.mem.realloc(lex.vector,
# new_size * sizeof(lex.vector[0]))
# self.vectors_length = new_size
#
#
#
# def dump(self, loc=None):
# """
# Save the lexemes binary data to the given location, or
# return a byte-string with the data if loc is None.
#
# Arguments:
# loc (Path or None): The path to save to, or None.
# """
# if loc is None:
# return self.to_bytes()
# else:
# return self.to_disk(loc)
#
# def load_lexemes(self, loc):
# """
# Load the binary vocabulary data from the given location.
#
# Arguments:
# loc (Path): The path to load from.
#
# Returns:
# None
# """
# fp = CFile(loc, 'rb',
# on_open_error=lambda: IOError('LexemeCs file not found at %s' % loc))
# cdef LexemeC* lexeme = NULL
# cdef SerializedLexemeC lex_data
# cdef hash_t key
# cdef unicode py_str
# cdef attr_t orth = 0
# assert sizeof(orth) == sizeof(lexeme.orth)
# i = 0
# while True:
# try:
# fp.read_into(&orth, 1, sizeof(orth))
# except IOError:
# break
# lexeme = <LexemeC*>self.mem.alloc(sizeof(LexemeC), 1)
# # Copy data from the file into the lexeme
# fp.read_into(&lex_data.data, 1, sizeof(lex_data.data))
# Lexeme.c_from_bytes(lexeme, lex_data)
#
# lexeme.vector = EMPTY_VEC
# py_str = self.strings[lexeme.orth]
# key = hash_string(py_str)
# self._by_hash.set(key, lexeme)
# self._by_orth.set(lexeme.orth, lexeme)
# self.length += 1
# i += 1
# fp.close()

View File

@ -7,59 +7,6 @@ p
| #[code Vocab] instance also provides access to the #[code StringStore],
| and owns underlying C-data that is shared between #[code Doc] objects.
+h(2, "attributes") Attributes
+table(["Name", "Type", "Description"])
+row
+cell #[code strings]
+cell #[code StringStore]
+cell A table managing the string-to-int mapping.
+row
+cell #[code vectors_length]
+cell int
+cell The dimensionality of the word vectors, if present.
+h(2, "load") Vocab.load
+tag classmethod
p Load the vocabulary from a path.
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell #[code Path]
+cell The path to load from.
+row
+cell #[code lex_attr_getters]
+cell dict
+cell
| A dictionary mapping attribute IDs to functions to compute them.
| Defaults to #[code None].
+row
+cell #[code lemmatizer]
+cell -
+cell A lemmatizer. Defaults to #[code None].
+row
+cell #[code tag_map]
+cell dict
+cell
| A dictionary mapping fine-grained tags to coarse-grained
| parts-of-speech, and optionally morphological attributes.
+row
+cell #[code oov_prob]
+cell float
+cell The default probability for out-of-vocabulary words.
+footrow
+cell returns
+cell #[code Vocab]
+cell The newly constructed object.
+h(2, "init") Vocab.__init__
+tag method
@ -73,11 +20,6 @@ p Create the vocabulary.
| A dictionary mapping attribute IDs to functions to compute them.
| Defaults to #[code None].
+row
+cell #[code lemmatizer]
+cell -
+cell A lemmatizer. Defaults to #[code None].
+row
+cell #[code tag_map]
+cell dict
@ -86,9 +28,16 @@ p Create the vocabulary.
| parts-of-speech, and optionally morphological attributes.
+row
+cell #[code oov_prob]
+cell float
+cell The default probability for out-of-vocabulary words.
+cell #[code lemmatizer]
+cell object
+cell A lemmatizer. Defaults to #[code None].
+row
+cell #[code strings]
+cell #[code StringStore]
+cell
| A #[code StringStore] that maps strings to integers, and vice
| versa.
+footrow
+cell returns
@ -98,7 +47,11 @@ p Create the vocabulary.
+h(2, "len") Vocab.__len__
+tag method
p Get the number of lexemes in the vocabulary.
p Get the current number of lexemes in the vocabulary.
+aside-code("Example").
doc = nlp(u'This is a sentence.')
assert len(nlp.vocab) > 0
+table(["Name", "Type", "Description"])
+footrow
@ -113,6 +66,10 @@ p
| Retrieve a lexeme, given an int ID or a unicode string. If a previously
| unseen unicode string is given, a new lexeme is created and stored.
+aside-code("Example").
apple = nlp.vocab.strings['apple']
assert nlp.vocab[apple] == nlp.vocab[u'apple']
+table(["Name", "Type", "Description"])
+row
+cell #[code id_or_string]
@ -129,6 +86,9 @@ p
p Iterate over the lexemes in the vocabulary.
+aside-code("Example").
stop_words = (lex for lex in nlp.vocab if lex.is_stop)
+table(["Name", "Type", "Description"])
+footrow
+cell yields
@ -138,7 +98,16 @@ p Iterate over the lexemes in the vocabulary.
+h(2, "contains") Vocab.__contains__
+tag method
p Check whether the string has an entry in the vocabulary.
p
| Check whether the string has an entry in the vocabulary. To get the ID
| for a given string, you need to look it up in
| #[+api("vocab#attributes") #[code vocab.strings]].
+aside-code("Example").
apple = nlp.vocab.strings['apple']
oov = nlp.vocab.strings['dskfodkfos']
assert apple in nlp.vocab
assert oov not in nlp.vocab
+table(["Name", "Type", "Description"])
+row
@ -151,28 +120,23 @@ p Check whether the string has an entry in the vocabulary.
+cell bool
+cell Whether the string has an entry in the vocabulary.
+h(2, "resize_vectors") Vocab.resize_vectors
+tag method
p
| Set #[code vectors_length] to a new size, and allocate more memory for
| the #[code Lexeme] vectors if necessary. The memory will be zeroed.
+table(["Name", "Type", "Description"])
+row
+cell #[code new_size]
+cell int
+cell The new size of the vectors.
+footrow
+cell returns
+cell #[code None]
+cell -
+h(2, "add_flag") Vocab.add_flag
+tag method
p Set a new boolean flag to words in the vocabulary.
p
| Set a new boolean flag to words in the vocabulary. The #[code flag_getter]
| function will be called over the words currently in the vocab, and then
| applied to new words as they occur. You'll then be able to access the flag
| value on each token, using #[code token.check_flag(flag_id)].
+aside-code("Example").
def is_my_product(text):
products = [u'spaCy', u'Thinc', u'displaCy']
return text in products
MY_PRODUCT = nlp.vocab.add_flag(is_my_product)
doc = nlp(u'I like spaCy')
assert doc[2].check_flag(MY_PRODUCT) == True
+table(["Name", "Type", "Description"])
+row
@ -193,86 +157,124 @@ p Set a new boolean flag to words in the vocabulary.
+cell int
+cell The integer ID by which the flag value can be checked.
+h(2, "dump") Vocab.dump
+tag method
p Save the lexemes binary data to the given location.
+table(["Name", "Type", "Description"])
+row
+cell #[code loc]
+cell #[code Path]
+cell The path to load from.
+footrow
+cell returns
+cell #[code None]
+cell -
+h(2, "load_lexemes") Vocab.load_lexemes
+h(2, "resize_vectors") Vocab.resize_vectors
+tag method
+tag-model("vectors")
p
| Set #[code vectors_length] to a new size, and allocate more memory for
| the #[code Lexeme] vectors if necessary. The memory will be zeroed.
+table(["Name", "Type", "Description"])
+row
+cell #[code loc]
+cell unicode
+cell Path to load the lexemes.bin file from.
+cell #[code new_size]
+cell int
+cell The new size of the vectors.
+footrow
+cell returns
+cell #[code None]
+cell -
+h(2, "dump_vectors") Vocab.dump_vectors
+h(2, "to_disk") Vocab.to_disk
+tag method
p Save the word vectors to a binary file.
p Save the current state to a directory.
+aside-code("Example").
nlp.vocab.to_disk('/path/to/vocab')
+table(["Name", "Type", "Description"])
+row
+cell #[code loc]
+cell #[code Path]
+cell The path to save to.
+footrow
+cell returns
+cell #[code None]
+cell -
+h(2, "load_vectors") Vocab.load_vectors
+tag method
p Load vectors from a text-based file.
+table(["Name", "Type", "Description"])
+row
+cell #[code file_]
+cell buffer
+cell #[code path]
+cell unicode or #[code Path]
+cell
| The file to read from. Entries should be separated by newlines,
| and each entry should be whitespace delimited. The first value
| of the entry should be the word string, and subsequent entries
| should be the values of the vector.
| A path to a directory, which will be created if it doesn't exist.
| Paths may be either strings or #[code Path]-like objects.
+footrow
+cell returns
+cell int
+cell The length of the vectors loaded.
+h(2, "load_vectors_from_bin_loc") Vocab.load_vectors_from_bin_loc
+h(2, "from_disk") Vocab.from_disk
+tag method
p Load vectors from the location of a binary file.
p Loads state from a directory. Modifies the object in place and returns it.
+aside-code("Example").
from spacy.vocab import Vocab
vocab = Vocab().from_disk('/path/to/vocab')
+table(["Name", "Type", "Description"])
+row
+cell #[code loc]
+cell unicode
+cell The path of the binary file to load from.
+cell #[code path]
+cell unicode or #[code Path]
+cell
| A path to a directory. Paths may be either strings or
| #[code Path]-like objects.
+footrow
+cell returns
+cell #[code Vocab]
+cell The modified #[code Vocab] object.
+h(2, "to_bytes") Vocab.to_bytes
+tag method
p Serialize the current state to a binary string.
+aside-code("Example").
vocab_bytes = nlp.vocab.to_bytes()
+table(["Name", "Type", "Description"])
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being serialized.
+footrow
+cell returns
+cell bytes
+cell The serialized form of the #[code Vocab] object.
+h(2, "from_bytes") Vocab.from_bytes
+tag method
p Load state from a binary string.
+aside-code("Example").
fron spacy.vocab import Vocab
vocab_bytes = nlp.vocab.to_bytes()
vocab = Vocab()
vocab.from_bytes(vocab_bytes)
+table(["Name", "Type", "Description"])
+row
+cell #[code bytes_data]
+cell bytes
+cell The data to load from.
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being loaded.
+footrow
+cell returns
+cell bytes
+cell The serialized form of the #[code Vocab] object.
+h(2, "attributes") Attributes
+aside-code("Example").
apple_id = nlp.vocab.strings['apple']
assert type(apple_id) == int
PERSON = nlp.vocab.strings['PERSON']
assert type(PERSON) == int
+table(["Name", "Type", "Description"])
+row
+cell #[code strings]
+cell #[code StringStore]
+cell A table managing the string-to-int mapping.
+row
+cell #[code vectors_length]
+cell int
+cell The length of the vectors loaded.
+cell The dimensionality of the word vectors, if present.