mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
* Add language base class
This commit is contained in:
parent
5dd76be446
commit
f2f699ac18
195
spacy/language.py
Normal file
195
spacy/language.py
Normal file
|
@ -0,0 +1,195 @@
|
|||
class Language(object):
|
||||
@staticmethod
|
||||
def lower(string):
|
||||
return string.lower()
|
||||
|
||||
@staticmethod
|
||||
def norm(string):
|
||||
return string
|
||||
|
||||
@staticmethod
|
||||
def shape(string):
|
||||
return orth.word_shape(string)
|
||||
|
||||
@staticmethod
|
||||
def prefix(string):
|
||||
return string[0]
|
||||
|
||||
@staticmethod
|
||||
def suffix(string):
|
||||
return string[-3:]
|
||||
|
||||
@staticmethod
|
||||
def prob(string):
|
||||
return self.oov_prob
|
||||
|
||||
@staticmethod
|
||||
def cluster(string):
|
||||
return 0
|
||||
|
||||
@staticmethod
|
||||
def is_alpha(string):
|
||||
return orths.is_alpha(string)
|
||||
|
||||
@staticmethod
|
||||
def is_lower(string):
|
||||
return orths.is_lower(string)
|
||||
|
||||
@staticmethod
|
||||
def is_upper(string):
|
||||
return orths.is_upper(string)
|
||||
|
||||
@staticmethod
|
||||
def like_url(string):
|
||||
return orths.like_url(string)
|
||||
|
||||
@staticmethod
|
||||
def like_number(string):
|
||||
return orths.like_number(string)
|
||||
|
||||
@staticmethod
|
||||
def like_email(string):
|
||||
return orths.like_email(string)
|
||||
|
||||
def default_lex_attrs(cls, data_dir):
|
||||
return {
|
||||
attrs.LOWER: cls.lower,
|
||||
attrs.NORM: cls.norm,
|
||||
attrs.SHAPE: cls.shape,
|
||||
attrs.PREFIX: cls.prefix,
|
||||
attrs.SUFFIX: cls.suffix,
|
||||
attrs.CLUSTER: cls.cluster,
|
||||
attrs.PROB: cls.prob,
|
||||
|
||||
attrs.IS_ALPHA: cls.is_alpha,
|
||||
attrs.IS_ASCII: cls.is_ascii,
|
||||
attrs.IS_DIGIT: cls.is_digit,
|
||||
attrs.IS_LOWER: cls.is_lower,
|
||||
attrs.IS_UPPER: cls.is_upper,
|
||||
attrs.LIKE_URL: cls.like_url,
|
||||
attrs.LIKE_NUM: cls.like_number,
|
||||
attrs.LIKE_EMAIL: cls.like_email,
|
||||
attrs.IS_STOP: lambda string: False,
|
||||
attrs.IS_OOV: lambda string: True
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def default_data_dir(cls):
|
||||
return path.join(path.dirname(__file__), 'data')
|
||||
|
||||
@classmethod
|
||||
def default_vocab(cls, get_lex_attr=None, vectors=None, morphology=None, data_dir=None):
|
||||
if data_dir is None:
|
||||
data_dir = cls.default_data_dir()
|
||||
if vectors is None:
|
||||
vectors = cls.default_vectors(data_dir)
|
||||
if get_lex_attr is None:
|
||||
get_lex_attr = cls.default_lex_attrs(data_dir)
|
||||
if morphology is None:
|
||||
morphology = cls.default_morphology(data_dir)
|
||||
return vocab = Vocab.from_dir(data_dir, get_lex_attr, vectors, morphology)
|
||||
|
||||
@classmethod
|
||||
def default_tokenizer(cls, vocab, data_dir=None):
|
||||
if data_dir is None:
|
||||
data_dir = cls.default_data_dir()
|
||||
return Tokenizer.from_dir(data_dir, vocab)
|
||||
|
||||
@classmethod
|
||||
def default_tagger(cls, vocab, data_dir=None):
|
||||
return Tagger.from_dir(data_dir, vocab)
|
||||
|
||||
@classmethod
|
||||
def default_parser(cls, vocab, transition_system=None, data_dir=None):
|
||||
if transition_system is None:
|
||||
transition_system = ArcEager()
|
||||
return Parser.from_dir(data_dir, vocab, transition_system)
|
||||
|
||||
@classmethod
|
||||
def default_entity(cls, vocab, transition_system=None, data_dir=None):
|
||||
if transition_system is None:
|
||||
transition_system = BiluoPushDown()
|
||||
return Parser.from_dir(data_dir, vocab, transition_system)
|
||||
|
||||
@classmethod
|
||||
def default_matcher(cls, vocab, data_dir=None):
|
||||
if data_dir is None:
|
||||
data_dir = cls.default_data_dir()
|
||||
return Matcher(data_dir, vocab)
|
||||
|
||||
@classmethod
|
||||
def default_serializer(cls, vocab, data_dir=None):
|
||||
if data_dir is None:
|
||||
data_dir = cls.default_data_dir()
|
||||
return Packer(data_dir, vocab)
|
||||
|
||||
def __init__(self, vocab=None, tokenizer=None, tagger=None, parser=None,
|
||||
entity=None, matcher=None, serializer=None):
|
||||
if data_dir is None:
|
||||
data_dir = self.default_data_dir()
|
||||
if vocab is None:
|
||||
vocab = self.default_vocab(data_dir)
|
||||
if tokenizer is None:
|
||||
tokenizer = self.default_tokenizer(vocab, data_dir)
|
||||
if tagger is None:
|
||||
tagger = self.default_tagger(vocab, data_dir)
|
||||
if entity is None:
|
||||
entity = self.default_entity(vocab, data_dir)
|
||||
if parser is None:
|
||||
parser = self.default_parser(vocab, data_dir)
|
||||
if matcher is None:
|
||||
matcher = self.default_matcher(vocab, data_dir)
|
||||
if serializer is None:
|
||||
serializer = self.default_serializer(vocab, data_dir)
|
||||
self.vocab = vocab
|
||||
self.tokenizer = tokenizer
|
||||
self.tagger = tagger
|
||||
self.parser = parser
|
||||
self.entity = entity
|
||||
self.matcher = matcher
|
||||
self.serializer = serializer
|
||||
|
||||
def __call__(self, text, tag=True, parse=True, entity=True):
|
||||
"""Apply the pipeline to some text. The text can span multiple sentences,
|
||||
and can contain arbtrary whitespace. Alignment into the original string
|
||||
is preserved.
|
||||
|
||||
Args:
|
||||
text (unicode): The text to be processed.
|
||||
|
||||
Returns:
|
||||
tokens (spacy.tokens.Doc):
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> nlp = English()
|
||||
>>> tokens = nlp('An example sentence. Another example sentence.')
|
||||
>>> tokens[0].orth_, tokens[0].head.tag_
|
||||
('An', 'NN')
|
||||
"""
|
||||
tokens = self.tokenizer(text)
|
||||
if self.tagger and tag:
|
||||
self.tagger(tokens)
|
||||
if self.matcher and entity:
|
||||
self.matcher(tokens)
|
||||
if self.parser and parse:
|
||||
self.parser(tokens)
|
||||
if self.entity and entity:
|
||||
self.entity(tokens)
|
||||
return tokens
|
||||
|
||||
def end_training(self, data_dir=None):
|
||||
if data_dir is None:
|
||||
data_dir = self.data_dir
|
||||
self.parser.model.end_training()
|
||||
self.entity.model.end_training()
|
||||
self.tagger.model.end_training()
|
||||
self.vocab.strings.dump(path.join(data_dir, 'vocab', 'strings.txt'))
|
||||
|
||||
with open(path.join(data_dir, 'vocab', 'serializer.json'), 'w') as file_:
|
||||
file_.write(
|
||||
json.dumps([
|
||||
(TAG, list(self.tagger.freqs[TAG].items())),
|
||||
(DEP, list(self.parser.moves.freqs[DEP].items())),
|
||||
(ENT_IOB, list(self.entity.moves.freqs[ENT_IOB].items())),
|
||||
(ENT_TYPE, list(self.entity.moves.freqs[ENT_TYPE].items())),
|
||||
(HEAD, list(self.parser.moves.freqs[HEAD].items()))]))
|
Loading…
Reference in New Issue
Block a user