mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-29 03:16:31 +03:00
Merge branch 'master' into spacy.io
This commit is contained in:
commit
f30b9d3038
106
.github/contributors/lfiedler.md
vendored
Normal file
106
.github/contributors/lfiedler.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
# spaCy contributor agreement
|
||||||
|
|
||||||
|
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||||
|
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||||
|
The SCA applies to any contribution that you make to any product or project
|
||||||
|
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||||
|
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||||
|
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||||
|
**"you"** shall mean the person or entity identified below.
|
||||||
|
|
||||||
|
If you agree to be bound by these terms, fill in the information requested
|
||||||
|
below and include the filled-in version with your first pull request, under the
|
||||||
|
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||||
|
should be your GitHub username, with the extension `.md`. For example, the user
|
||||||
|
example_user would create the file `.github/contributors/example_user.md`.
|
||||||
|
|
||||||
|
Read this agreement carefully before signing. These terms and conditions
|
||||||
|
constitute a binding legal agreement.
|
||||||
|
|
||||||
|
## Contributor Agreement
|
||||||
|
|
||||||
|
1. The term "contribution" or "contributed materials" means any source code,
|
||||||
|
object code, patch, tool, sample, graphic, specification, manual,
|
||||||
|
documentation, or any other material posted or submitted by you to the project.
|
||||||
|
|
||||||
|
2. With respect to any worldwide copyrights, or copyright applications and
|
||||||
|
registrations, in your contribution:
|
||||||
|
|
||||||
|
* you hereby assign to us joint ownership, and to the extent that such
|
||||||
|
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||||
|
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||||
|
royalty-free, unrestricted license to exercise all rights under those
|
||||||
|
copyrights. This includes, at our option, the right to sublicense these same
|
||||||
|
rights to third parties through multiple levels of sublicensees or other
|
||||||
|
licensing arrangements;
|
||||||
|
|
||||||
|
* you agree that each of us can do all things in relation to your
|
||||||
|
contribution as if each of us were the sole owners, and if one of us makes
|
||||||
|
a derivative work of your contribution, the one who makes the derivative
|
||||||
|
work (or has it made will be the sole owner of that derivative work;
|
||||||
|
|
||||||
|
* you agree that you will not assert any moral rights in your contribution
|
||||||
|
against us, our licensees or transferees;
|
||||||
|
|
||||||
|
* you agree that we may register a copyright in your contribution and
|
||||||
|
exercise all ownership rights associated with it; and
|
||||||
|
|
||||||
|
* you agree that neither of us has any duty to consult with, obtain the
|
||||||
|
consent of, pay or render an accounting to the other for any use or
|
||||||
|
distribution of your contribution.
|
||||||
|
|
||||||
|
3. With respect to any patents you own, or that you can license without payment
|
||||||
|
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||||
|
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||||
|
|
||||||
|
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||||
|
your contribution in whole or in part, alone or in combination with or
|
||||||
|
included in any product, work or materials arising out of the project to
|
||||||
|
which your contribution was submitted, and
|
||||||
|
|
||||||
|
* at our option, to sublicense these same rights to third parties through
|
||||||
|
multiple levels of sublicensees or other licensing arrangements.
|
||||||
|
|
||||||
|
4. Except as set out above, you keep all right, title, and interest in your
|
||||||
|
contribution. The rights that you grant to us under these terms are effective
|
||||||
|
on the date you first submitted a contribution to us, even if your submission
|
||||||
|
took place before the date you sign these terms.
|
||||||
|
|
||||||
|
5. You covenant, represent, warrant and agree that:
|
||||||
|
|
||||||
|
* Each contribution that you submit is and shall be an original work of
|
||||||
|
authorship and you can legally grant the rights set out in this SCA;
|
||||||
|
|
||||||
|
* to the best of your knowledge, each contribution will not violate any
|
||||||
|
third party's copyrights, trademarks, patents, or other intellectual
|
||||||
|
property rights; and
|
||||||
|
|
||||||
|
* each contribution shall be in compliance with U.S. export control laws and
|
||||||
|
other applicable export and import laws. You agree to notify us if you
|
||||||
|
become aware of any circumstance which would make any of the foregoing
|
||||||
|
representations inaccurate in any respect. We may publicly disclose your
|
||||||
|
participation in the project, including the fact that you have signed the SCA.
|
||||||
|
|
||||||
|
6. This SCA is governed by the laws of the State of California and applicable
|
||||||
|
U.S. Federal law. Any choice of law rules will not apply.
|
||||||
|
|
||||||
|
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||||
|
mark both statements:
|
||||||
|
|
||||||
|
* [x] I am signing on behalf of myself as an individual and no other person
|
||||||
|
or entity, including my employer, has or will have rights with respect to my
|
||||||
|
contributions.
|
||||||
|
|
||||||
|
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||||
|
actual authority to contractually bind that entity.
|
||||||
|
|
||||||
|
## Contributor Details
|
||||||
|
|
||||||
|
| Field | Entry |
|
||||||
|
|------------------------------- | -------------------- |
|
||||||
|
| Name | Leander Fiedler |
|
||||||
|
| Company name (if applicable) | |
|
||||||
|
| Title or role (if applicable) | |
|
||||||
|
| Date | 06 April 2020 |
|
||||||
|
| GitHub username | lfiedler |
|
||||||
|
| Website (optional) | |
|
|
@ -567,6 +567,7 @@ class Errors(object):
|
||||||
E197 = ("Row out of bounds, unable to add row {row} for key {key}.")
|
E197 = ("Row out of bounds, unable to add row {row} for key {key}.")
|
||||||
E198 = ("Unable to return {n} most similar vectors for the current vectors "
|
E198 = ("Unable to return {n} most similar vectors for the current vectors "
|
||||||
"table, which contains {n_rows} vectors.")
|
"table, which contains {n_rows} vectors.")
|
||||||
|
E199 = ("Unable to merge 0-length span at doc[{start}:{end}].")
|
||||||
|
|
||||||
|
|
||||||
@add_codes
|
@add_codes
|
||||||
|
|
|
@ -445,10 +445,10 @@ cdef class KnowledgeBase:
|
||||||
|
|
||||||
cdef class Writer:
|
cdef class Writer:
|
||||||
def __init__(self, object loc):
|
def __init__(self, object loc):
|
||||||
if path.exists(loc):
|
|
||||||
assert not path.isdir(loc), "%s is directory." % loc
|
|
||||||
if isinstance(loc, Path):
|
if isinstance(loc, Path):
|
||||||
loc = bytes(loc)
|
loc = bytes(loc)
|
||||||
|
if path.exists(loc):
|
||||||
|
assert not path.isdir(loc), "%s is directory." % loc
|
||||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||||
self._fp = fopen(<char*>bytes_loc, 'wb')
|
self._fp = fopen(<char*>bytes_loc, 'wb')
|
||||||
if not self._fp:
|
if not self._fp:
|
||||||
|
@ -490,10 +490,10 @@ cdef class Writer:
|
||||||
|
|
||||||
cdef class Reader:
|
cdef class Reader:
|
||||||
def __init__(self, object loc):
|
def __init__(self, object loc):
|
||||||
assert path.exists(loc)
|
|
||||||
assert not path.isdir(loc)
|
|
||||||
if isinstance(loc, Path):
|
if isinstance(loc, Path):
|
||||||
loc = bytes(loc)
|
loc = bytes(loc)
|
||||||
|
assert path.exists(loc)
|
||||||
|
assert not path.isdir(loc)
|
||||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||||
self._fp = fopen(<char*>bytes_loc, 'rb')
|
self._fp = fopen(<char*>bytes_loc, 'rb')
|
||||||
if not self._fp:
|
if not self._fp:
|
||||||
|
|
|
@ -907,9 +907,8 @@ class Language(object):
|
||||||
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk(
|
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk(
|
||||||
p, exclude=["vocab"]
|
p, exclude=["vocab"]
|
||||||
)
|
)
|
||||||
serializers["meta.json"] = lambda p: p.open("w").write(
|
serializers["meta.json"] = lambda p: srsly.write_json(p, self.meta)
|
||||||
srsly.json_dumps(self.meta)
|
|
||||||
)
|
|
||||||
for name, proc in self.pipeline:
|
for name, proc in self.pipeline:
|
||||||
if not hasattr(proc, "name"):
|
if not hasattr(proc, "name"):
|
||||||
continue
|
continue
|
||||||
|
|
|
@ -203,7 +203,7 @@ class Pipe(object):
|
||||||
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
||||||
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
||||||
if self.model not in (None, True, False):
|
if self.model not in (None, True, False):
|
||||||
serialize["model"] = lambda p: p.open("wb").write(self.model.to_bytes())
|
serialize["model"] = lambda p: self.model.to_disk(p)
|
||||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||||
util.to_disk(path, serialize, exclude)
|
util.to_disk(path, serialize, exclude)
|
||||||
|
|
||||||
|
@ -626,7 +626,7 @@ class Tagger(Pipe):
|
||||||
serialize = OrderedDict((
|
serialize = OrderedDict((
|
||||||
("vocab", lambda p: self.vocab.to_disk(p)),
|
("vocab", lambda p: self.vocab.to_disk(p)),
|
||||||
("tag_map", lambda p: srsly.write_msgpack(p, tag_map)),
|
("tag_map", lambda p: srsly.write_msgpack(p, tag_map)),
|
||||||
("model", lambda p: p.open("wb").write(self.model.to_bytes())),
|
("model", lambda p: self.model.to_disk(p)),
|
||||||
("cfg", lambda p: srsly.write_json(p, self.cfg))
|
("cfg", lambda p: srsly.write_json(p, self.cfg))
|
||||||
))
|
))
|
||||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||||
|
@ -1395,7 +1395,7 @@ class EntityLinker(Pipe):
|
||||||
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
||||||
serialize["kb"] = lambda p: self.kb.dump(p)
|
serialize["kb"] = lambda p: self.kb.dump(p)
|
||||||
if self.model not in (None, True, False):
|
if self.model not in (None, True, False):
|
||||||
serialize["model"] = lambda p: p.open("wb").write(self.model.to_bytes())
|
serialize["model"] = lambda p: self.model.to_disk(p)
|
||||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||||
util.to_disk(path, serialize, exclude)
|
util.to_disk(path, serialize, exclude)
|
||||||
|
|
||||||
|
|
|
@ -425,3 +425,10 @@ def test_retokenize_skip_duplicates(en_vocab):
|
||||||
retokenizer.merge(doc[0:2])
|
retokenizer.merge(doc[0:2])
|
||||||
assert len(doc) == 2
|
assert len(doc) == 2
|
||||||
assert doc[0].text == "hello world"
|
assert doc[0].text == "hello world"
|
||||||
|
|
||||||
|
|
||||||
|
def test_retokenize_disallow_zero_length(en_vocab):
|
||||||
|
doc = Doc(en_vocab, words=["hello", "world", "!"])
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
with doc.retokenize() as retokenizer:
|
||||||
|
retokenizer.merge(doc[1:1])
|
||||||
|
|
142
spacy/tests/regression/test_issue5230.py
Normal file
142
spacy/tests/regression/test_issue5230.py
Normal file
|
@ -0,0 +1,142 @@
|
||||||
|
# coding: utf8
|
||||||
|
import warnings
|
||||||
|
from unittest import TestCase
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
import srsly
|
||||||
|
from numpy import zeros
|
||||||
|
from spacy.kb import KnowledgeBase, Writer
|
||||||
|
from spacy.vectors import Vectors
|
||||||
|
|
||||||
|
from spacy.language import Language
|
||||||
|
from spacy.pipeline import Pipe
|
||||||
|
from spacy.tests.util import make_tempdir
|
||||||
|
|
||||||
|
|
||||||
|
def nlp():
|
||||||
|
return Language()
|
||||||
|
|
||||||
|
|
||||||
|
def vectors():
|
||||||
|
data = zeros((3, 1), dtype="f")
|
||||||
|
keys = ["cat", "dog", "rat"]
|
||||||
|
return Vectors(data=data, keys=keys)
|
||||||
|
|
||||||
|
|
||||||
|
def custom_pipe():
|
||||||
|
# create dummy pipe partially implementing interface -- only want to test to_disk
|
||||||
|
class SerializableDummy(object):
|
||||||
|
def __init__(self, **cfg):
|
||||||
|
if cfg:
|
||||||
|
self.cfg = cfg
|
||||||
|
else:
|
||||||
|
self.cfg = None
|
||||||
|
super(SerializableDummy, self).__init__()
|
||||||
|
|
||||||
|
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
|
||||||
|
return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
|
||||||
|
|
||||||
|
def from_bytes(self, bytes_data, exclude):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
||||||
|
return self
|
||||||
|
|
||||||
|
class MyPipe(Pipe):
|
||||||
|
def __init__(self, vocab, model=True, **cfg):
|
||||||
|
if cfg:
|
||||||
|
self.cfg = cfg
|
||||||
|
else:
|
||||||
|
self.cfg = None
|
||||||
|
self.model = SerializableDummy()
|
||||||
|
self.vocab = SerializableDummy()
|
||||||
|
|
||||||
|
return MyPipe(None)
|
||||||
|
|
||||||
|
|
||||||
|
def tagger():
|
||||||
|
nlp = Language()
|
||||||
|
nlp.add_pipe(nlp.create_pipe("tagger"))
|
||||||
|
tagger = nlp.get_pipe("tagger")
|
||||||
|
# need to add model for two reasons:
|
||||||
|
# 1. no model leads to error in serialization,
|
||||||
|
# 2. the affected line is the one for model serialization
|
||||||
|
tagger.begin_training(pipeline=nlp.pipeline)
|
||||||
|
return tagger
|
||||||
|
|
||||||
|
|
||||||
|
def entity_linker():
|
||||||
|
nlp = Language()
|
||||||
|
nlp.add_pipe(nlp.create_pipe("entity_linker"))
|
||||||
|
entity_linker = nlp.get_pipe("entity_linker")
|
||||||
|
# need to add model for two reasons:
|
||||||
|
# 1. no model leads to error in serialization,
|
||||||
|
# 2. the affected line is the one for model serialization
|
||||||
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||||
|
entity_linker.set_kb(kb)
|
||||||
|
entity_linker.begin_training(pipeline=nlp.pipeline)
|
||||||
|
return entity_linker
|
||||||
|
|
||||||
|
|
||||||
|
objects_to_test = (
|
||||||
|
[nlp(), vectors(), custom_pipe(), tagger(), entity_linker()],
|
||||||
|
["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def write_obj_and_catch_warnings(obj):
|
||||||
|
with make_tempdir() as d:
|
||||||
|
with warnings.catch_warnings(record=True) as warnings_list:
|
||||||
|
warnings.filterwarnings("always", category=ResourceWarning)
|
||||||
|
obj.to_disk(d)
|
||||||
|
# in python3.5 it seems that deprecation warnings are not filtered by filterwarnings
|
||||||
|
return list(filter(lambda x: isinstance(x, ResourceWarning), warnings_list))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("obj", objects_to_test[0], ids=objects_to_test[1])
|
||||||
|
def test_to_disk_resource_warning(obj):
|
||||||
|
warnings_list = write_obj_and_catch_warnings(obj)
|
||||||
|
assert len(warnings_list) == 0
|
||||||
|
|
||||||
|
|
||||||
|
def test_writer_with_path_py35():
|
||||||
|
writer = None
|
||||||
|
with make_tempdir() as d:
|
||||||
|
path = d / "test"
|
||||||
|
try:
|
||||||
|
writer = Writer(path)
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(str(e))
|
||||||
|
finally:
|
||||||
|
if writer:
|
||||||
|
writer.close()
|
||||||
|
|
||||||
|
|
||||||
|
def test_save_and_load_knowledge_base():
|
||||||
|
nlp = Language()
|
||||||
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||||
|
with make_tempdir() as d:
|
||||||
|
path = d / "kb"
|
||||||
|
try:
|
||||||
|
kb.dump(path)
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(str(e))
|
||||||
|
|
||||||
|
try:
|
||||||
|
kb_loaded = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||||
|
kb_loaded.load_bulk(path)
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(str(e))
|
||||||
|
|
||||||
|
|
||||||
|
class TestToDiskResourceWarningUnittest(TestCase):
|
||||||
|
def test_resource_warning(self):
|
||||||
|
scenarios = zip(*objects_to_test)
|
||||||
|
|
||||||
|
for scenario in scenarios:
|
||||||
|
with self.subTest(msg=scenario[1]):
|
||||||
|
warnings_list = write_obj_and_catch_warnings(scenario[0])
|
||||||
|
self.assertEqual(len(warnings_list), 0)
|
|
@ -135,3 +135,14 @@ def test_ascii_filenames():
|
||||||
root = Path(__file__).parent.parent
|
root = Path(__file__).parent.parent
|
||||||
for path in root.glob("**/*"):
|
for path in root.glob("**/*"):
|
||||||
assert all(ord(c) < 128 for c in path.name), path.name
|
assert all(ord(c) < 128 for c in path.name), path.name
|
||||||
|
|
||||||
|
|
||||||
|
def test_load_model_blank_shortcut():
|
||||||
|
"""Test that using a model name like "blank:en" works as a shortcut for
|
||||||
|
spacy.blank("en").
|
||||||
|
"""
|
||||||
|
nlp = util.load_model("blank:en")
|
||||||
|
assert nlp.lang == "en"
|
||||||
|
assert nlp.pipeline == []
|
||||||
|
with pytest.raises(ImportError):
|
||||||
|
util.load_model("blank:fjsfijsdof")
|
||||||
|
|
|
@ -55,6 +55,8 @@ cdef class Retokenizer:
|
||||||
"""
|
"""
|
||||||
if (span.start, span.end) in self._spans_to_merge:
|
if (span.start, span.end) in self._spans_to_merge:
|
||||||
return
|
return
|
||||||
|
if span.end - span.start <= 0:
|
||||||
|
raise ValueError(Errors.E199.format(start=span.start, end=span.end))
|
||||||
for token in span:
|
for token in span:
|
||||||
if token.i in self.tokens_to_merge:
|
if token.i in self.tokens_to_merge:
|
||||||
raise ValueError(Errors.E102.format(token=repr(token)))
|
raise ValueError(Errors.E102.format(token=repr(token)))
|
||||||
|
|
|
@ -161,6 +161,8 @@ def load_model(name, **overrides):
|
||||||
if not data_path or not data_path.exists():
|
if not data_path or not data_path.exists():
|
||||||
raise IOError(Errors.E049.format(path=path2str(data_path)))
|
raise IOError(Errors.E049.format(path=path2str(data_path)))
|
||||||
if isinstance(name, basestring_): # in data dir / shortcut
|
if isinstance(name, basestring_): # in data dir / shortcut
|
||||||
|
if name.startswith("blank:"): # shortcut for blank model
|
||||||
|
return get_lang_class(name.replace("blank:", ""))()
|
||||||
if name in set([d.name for d in data_path.iterdir()]):
|
if name in set([d.name for d in data_path.iterdir()]):
|
||||||
return load_model_from_link(name, **overrides)
|
return load_model_from_link(name, **overrides)
|
||||||
if is_package(name): # installed as package
|
if is_package(name): # installed as package
|
||||||
|
|
|
@ -383,8 +383,16 @@ cdef class Vectors:
|
||||||
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
|
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
|
||||||
else:
|
else:
|
||||||
save_array = lambda arr, file_: xp.save(file_, arr)
|
save_array = lambda arr, file_: xp.save(file_, arr)
|
||||||
|
|
||||||
|
def save_vectors(path):
|
||||||
|
# the source of numpy.save indicates that the file object is closed after use.
|
||||||
|
# but it seems that somehow this does not happen, as ResourceWarnings are raised here.
|
||||||
|
# in order to not rely on this, wrap in context manager.
|
||||||
|
with path.open("wb") as _file:
|
||||||
|
save_array(self.data, _file)
|
||||||
|
|
||||||
serializers = OrderedDict((
|
serializers = OrderedDict((
|
||||||
("vectors", lambda p: save_array(self.data, p.open("wb"))),
|
("vectors", lambda p: save_vectors(p)),
|
||||||
("key2row", lambda p: srsly.write_msgpack(p, self.key2row))
|
("key2row", lambda p: srsly.write_msgpack(p, self.key2row))
|
||||||
))
|
))
|
||||||
return util.to_disk(path, serializers, [])
|
return util.to_disk(path, serializers, [])
|
||||||
|
|
|
@ -351,25 +351,9 @@ property to `0` for the first word of the document.
|
||||||
- assert doc[4].sent_start == 1
|
- assert doc[4].sent_start == 1
|
||||||
+ assert doc[4].is_sent_start == True
|
+ assert doc[4].is_sent_start == True
|
||||||
```
|
```
|
||||||
|
|
||||||
</Infobox>
|
</Infobox>
|
||||||
|
|
||||||
## Token.is_sent_end {#is_sent_end tag="property" new="2"}
|
|
||||||
|
|
||||||
A boolean value indicating whether the token ends a sentence. `None` if
|
|
||||||
unknown. Defaults to `True` for the last token in the `Doc`.
|
|
||||||
|
|
||||||
> #### Example
|
|
||||||
>
|
|
||||||
> ```python
|
|
||||||
> doc = nlp("Give it back! He pleaded.")
|
|
||||||
> assert doc[3].is_sent_end
|
|
||||||
> assert not doc[4].is_sent_end
|
|
||||||
> ```
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| ----------- | ---- | ------------------------------------ |
|
|
||||||
| **RETURNS** | bool | Whether the token ends a sentence. |
|
|
||||||
|
|
||||||
## Token.has_vector {#has_vector tag="property" model="vectors"}
|
## Token.has_vector {#has_vector tag="property" model="vectors"}
|
||||||
|
|
||||||
A boolean value indicating whether a word vector is associated with the token.
|
A boolean value indicating whether a word vector is associated with the token.
|
||||||
|
@ -425,7 +409,7 @@ The L2 norm of the token's vector representation.
|
||||||
## Attributes {#attributes}
|
## Attributes {#attributes}
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| -------------------------------------------- | ------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| -------------------------------------------- | ------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `doc` | `Doc` | The parent document. |
|
| `doc` | `Doc` | The parent document. |
|
||||||
| `sent` <Tag variant="new">2.0.12</Tag> | `Span` | The sentence span that this token is a part of. |
|
| `sent` <Tag variant="new">2.0.12</Tag> | `Span` | The sentence span that this token is a part of. |
|
||||||
| `text` | unicode | Verbatim text content. |
|
| `text` | unicode | Verbatim text content. |
|
||||||
|
|
Loading…
Reference in New Issue
Block a user