Add vectors option to CharacterEmbed (#6069)

* Add vectors option to CharacterEmbed

* Update spacy/pipeline/morphologizer.pyx

* Adjust default morphologizer config

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
This commit is contained in:
Adriane Boyd 2020-09-16 17:45:04 +02:00 committed by GitHub
parent d722a439aa
commit f3db3f6fe0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 31 additions and 13 deletions

View File

@ -164,7 +164,7 @@ def MultiHashEmbed(
@registry.architectures.register("spacy.CharacterEmbed.v1") @registry.architectures.register("spacy.CharacterEmbed.v1")
def CharacterEmbed(width: int, rows: int, nM: int, nC: int): def CharacterEmbed(width: int, rows: int, nM: int, nC: int, also_use_static_vectors: bool):
"""Construct an embedded representation based on character embeddings, using """Construct an embedded representation based on character embeddings, using
a feed-forward network. A fixed number of UTF-8 byte characters are used for a feed-forward network. A fixed number of UTF-8 byte characters are used for
each word, taken from the beginning and end of the word equally. Padding is each word, taken from the beginning and end of the word equally. Padding is
@ -188,7 +188,24 @@ def CharacterEmbed(width: int, rows: int, nM: int, nC: int):
nC (int): The number of UTF-8 bytes to embed per word. Recommended values nC (int): The number of UTF-8 bytes to embed per word. Recommended values
are between 3 and 8, although it may depend on the length of words in the are between 3 and 8, although it may depend on the length of words in the
language. language.
also_use_static_vectors (bool): Whether to also use static word vectors.
Requires a vectors table to be loaded in the Doc objects' vocab.
""" """
if also_use_static_vectors:
model = chain(
concatenate(
chain(_character_embed.CharacterEmbed(nM=nM, nC=nC), list2ragged()),
chain(
FeatureExtractor([NORM]),
list2ragged(),
with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)),
),
StaticVectors(width, dropout=0.0),
),
with_array(Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0)),
ragged2list(),
)
else:
model = chain( model = chain(
concatenate( concatenate(
chain(_character_embed.CharacterEmbed(nM=nM, nC=nC), list2ragged()), chain(_character_embed.CharacterEmbed(nM=nM, nC=nC), list2ragged()),

View File

@ -32,6 +32,7 @@ width = 128
rows = 7000 rows = 7000
nM = 64 nM = 64
nC = 8 nC = 8
also_use_static_vectors = false
[model.tok2vec.encode] [model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1" @architectures = "spacy.MaxoutWindowEncoder.v1"

View File

@ -63,8 +63,8 @@ def test_tok2vec_batch_sizes(batch_size, width, embed_size):
[ [
(8, MultiHashEmbed, {"rows": 100, "also_embed_subwords": True, "also_use_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 2}), (8, MultiHashEmbed, {"rows": 100, "also_embed_subwords": True, "also_use_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
(8, MultiHashEmbed, {"rows": 100, "also_embed_subwords": True, "also_use_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 6}), (8, MultiHashEmbed, {"rows": 100, "also_embed_subwords": True, "also_use_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 6}),
(8, CharacterEmbed, {"rows": 100, "nM": 64, "nC": 8}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 3}), (8, CharacterEmbed, {"rows": 100, "nM": 64, "nC": 8, "also_use_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 3}),
(8, CharacterEmbed, {"rows": 100, "nM": 16, "nC": 2}, MishWindowEncoder, {"window_size": 1, "depth": 3}), (8, CharacterEmbed, {"rows": 100, "nM": 16, "nC": 2, "also_use_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 3}),
], ],
) )
# fmt: on # fmt: on