mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Add test for Issue #910: Resuming entity training
This commit is contained in:
parent
8c82769243
commit
f40fbc3710
113
spacy/tests/regression/test_issue910.py
Normal file
113
spacy/tests/regression/test_issue910.py
Normal file
|
@ -0,0 +1,113 @@
|
|||
from __future__ import unicode_literals
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import contextlib
|
||||
import shutil
|
||||
import pytest
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
import pathlib
|
||||
from ...gold import GoldParse
|
||||
from ...pipeline import EntityRecognizer
|
||||
from ...en import English
|
||||
|
||||
try:
|
||||
unicode
|
||||
except NameError:
|
||||
unicode = str
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def train_data():
|
||||
return [
|
||||
["hey",[]],
|
||||
["howdy",[]],
|
||||
["hey there",[]],
|
||||
["hello",[]],
|
||||
["hi",[]],
|
||||
["i'm looking for a place to eat",[]],
|
||||
["i'm looking for a place in the north of town",[[31,36,"location"]]],
|
||||
["show me chinese restaurants",[[8,15,"cuisine"]]],
|
||||
["show me chines restaurants",[[8,14,"cuisine"]]],
|
||||
["yes",[]],
|
||||
["yep",[]],
|
||||
["yeah",[]],
|
||||
["show me a mexican place in the centre",[[31,37,"location"], [10,17,"cuisine"]]],
|
||||
["bye",[]],["goodbye",[]],
|
||||
["good bye",[]],
|
||||
["stop",[]],
|
||||
["end",[]],
|
||||
["i am looking for an indian spot",[[20,26,"cuisine"]]],
|
||||
["search for restaurants",[]],
|
||||
["anywhere in the west",[[16,20,"location"]]],
|
||||
["central indian restaurant",[[0,7,"location"],[8,14,"cuisine"]]],
|
||||
["indeed",[]],
|
||||
["that's right",[]],
|
||||
["ok",[]],
|
||||
["great",[]]
|
||||
]
|
||||
|
||||
@pytest.fixture
|
||||
def additional_entity_types():
|
||||
return ['cuisine', 'location']
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def temp_save_model(model):
|
||||
model_dir = Path(tempfile.mkdtemp())
|
||||
# store the fine tuned model
|
||||
with (model_dir / "config.json").open('w') as file_:
|
||||
data = json.dumps(model.cfg)
|
||||
if not isinstance(data, unicode):
|
||||
data = data.decode('utf8')
|
||||
file_.write(data)
|
||||
model.model.dump((model_dir / 'model').as_posix())
|
||||
yield model_dir
|
||||
shutil.rmtree(model_dir.as_posix())
|
||||
|
||||
|
||||
|
||||
@pytest.mark.xfail
|
||||
@pytest.mark.models
|
||||
def test_issue910(train_data, additional_entity_types):
|
||||
'''Test that adding entities and resuming training works passably OK.
|
||||
There are two issues here:
|
||||
|
||||
1) We have to readd labels. This isn't very nice.
|
||||
2) There's no way to set the learning rate for the weight update, so we
|
||||
end up out-of-scale, causing it to learn too fast.
|
||||
'''
|
||||
nlp = English()
|
||||
doc = nlp(u"I am looking for a restaurant in Berlin")
|
||||
ents_before_train = [(ent.label_, ent.text) for ent in doc.ents]
|
||||
# Fine tune the ner model
|
||||
for entity_type in additional_entity_types:
|
||||
if entity_type not in nlp.entity.cfg['actions']['1']:
|
||||
nlp.entity.add_label(entity_type)
|
||||
|
||||
nlp.entity.learn_rate = 0.001
|
||||
for itn in range(4):
|
||||
random.shuffle(train_data)
|
||||
for raw_text, entity_offsets in train_data:
|
||||
doc = nlp.make_doc(raw_text)
|
||||
nlp.tagger(doc)
|
||||
gold = GoldParse(doc, entities=entity_offsets)
|
||||
loss = nlp.entity.update(doc, gold)
|
||||
|
||||
with temp_save_model(nlp.entity) as model_dir:
|
||||
# Load the fine tuned model
|
||||
loaded_ner = EntityRecognizer.load(model_dir, nlp.vocab)
|
||||
|
||||
for entity_type in additional_entity_types:
|
||||
if entity_type not in loaded_ner.cfg['actions']['1']:
|
||||
loaded_ner.add_label(entity_type)
|
||||
|
||||
doc = nlp(u"I am looking for a restaurant in Berlin", entity=False)
|
||||
nlp.tagger(doc)
|
||||
loaded_ner(doc)
|
||||
|
||||
ents_after_train = [(ent.label_, ent.text) for ent in doc.ents]
|
||||
assert ents_before_train == ents_after_train
|
Loading…
Reference in New Issue
Block a user