mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-20 21:40:35 +03:00
Update v2.3.x branch (#5636)
* Fix typos and auto-format [ci skip] * Add pkuseg warnings and auto-format [ci skip] * Update Binder URL [ci skip] * Update Binder version [ci skip] * Update alignment example for new gold.align * Update POS in tagging example * Fix numpy.zeros() dtype for Doc.from_array * Change example title to Dr. Change example title to Dr. so the current model does exclude the title in the initial example. * Fix spacy convert argument * Warning for sudachipy 0.4.5 (#5611) * Create myavrum.md (#5612) * Update lex_attrs.py (#5608) * Create mahnerak.md (#5615) * Some changes for Armenian (#5616) * Fixing numericals * We need a Armenian question sign to make the sentence a question * Add Nepali Language (#5622) * added support for nepali lang * added examples and test files * added spacy contributor agreement * Japanese model: add user_dict entries and small refactor (#5573) * user_dict fields: adding inflections, reading_forms, sub_tokens deleting: unidic_tags improve code readability around the token alignment procedure * add test cases, replace fugashi with sudachipy in conftest * move bunsetu.py to spaCy Universe as a pipeline component BunsetuRecognizer * tag is space -> both surface and tag are spaces * consider len(text)==0 * Add warnings example in v2.3 migration guide (#5627) * contribute (#5632) * Fix polarity of Token.is_oov and Lexeme.is_oov (#5634) Fix `Token.is_oov` and `Lexeme.is_oov` so they return `True` when the lexeme does **not** have a vector. * Extend what's new in v2.3 with vocab / is_oov (#5635) * Skip vocab in component config overrides (#5624) * Fix backslashes in warnings config diff (#5640) Fix backslashes in warnings config diff in v2.3 migration section. * Disregard special tag _SP in check for new tag map (#5641) * Skip special tag _SP in check for new tag map In `Tagger.begin_training()` check for new tags aside from `_SP` in the new tag map initialized from the provided gold tuples when determining whether to reinitialize the morphology with the new tag map. * Simplify _SP check Co-authored-by: Ines Montani <ines@ines.io> Co-authored-by: Marat M. Yavrumyan <myavrum@ysu.am> Co-authored-by: Karen Hambardzumyan <mahnerak@gmail.com> Co-authored-by: Rameshh <30867740+rameshhpathak@users.noreply.github.com> Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
This commit is contained in:
parent
e9d3e177f0
commit
f42c9026f5
106
.github/contributors/mahnerak.md
vendored
Normal file
106
.github/contributors/mahnerak.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Karen Hambardzumyan |
|
||||
| Company name (if applicable) | YerevaNN |
|
||||
| Title or role (if applicable) | Researcher |
|
||||
| Date | 2020-06-19 |
|
||||
| GitHub username | mahnerak |
|
||||
| Website (optional) | https://mahnerak.com/|
|
106
.github/contributors/myavrum.md
vendored
Normal file
106
.github/contributors/myavrum.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Marat M. Yavrumyan |
|
||||
| Company name (if applicable) | YSU, UD_Armenian Project |
|
||||
| Title or role (if applicable) | Dr., Principal Investigator |
|
||||
| Date | 2020-06-19 |
|
||||
| GitHub username | myavrum |
|
||||
| Website (optional) | http://armtreebank.yerevann.com/ |
|
106
.github/contributors/rameshhpathak.md
vendored
Normal file
106
.github/contributors/rameshhpathak.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Ramesh Pathak |
|
||||
| Company name (if applicable) | Diyo AI |
|
||||
| Title or role (if applicable) | AI Engineer |
|
||||
| Date | June 21, 2020 |
|
||||
| GitHub username | rameshhpathak |
|
||||
| Website (optional) |rameshhpathak.github.io| |
|
106
.github/contributors/richardliaw.md
vendored
Normal file
106
.github/contributors/richardliaw.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Richard Liaw |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 06/22/2020 |
|
||||
| GitHub username | richardliaw |
|
||||
| Website (optional) | |
|
|
@ -11,6 +11,6 @@ Example sentences to test spaCy and its language models.
|
|||
sentences = [
|
||||
"Լոնդոնը Միացյալ Թագավորության մեծ քաղաք է։",
|
||||
"Ո՞վ է Ֆրանսիայի նախագահը։",
|
||||
"Որն է Միացյալ Նահանգների մայրաքաղաքը։",
|
||||
"Ո՞րն է Միացյալ Նահանգների մայրաքաղաքը։",
|
||||
"Ե՞րբ է ծնվել Բարաք Օբաման։",
|
||||
]
|
||||
|
|
|
@ -5,8 +5,8 @@ from ...attrs import LIKE_NUM
|
|||
|
||||
|
||||
_num_words = [
|
||||
"զրօ",
|
||||
"մէկ",
|
||||
"զրո",
|
||||
"մեկ",
|
||||
"երկու",
|
||||
"երեք",
|
||||
"չորս",
|
||||
|
@ -18,20 +18,21 @@ _num_words = [
|
|||
"տասը",
|
||||
"տասնմեկ",
|
||||
"տասներկու",
|
||||
"տասներեք",
|
||||
"տասնչորս",
|
||||
"տասնհինգ",
|
||||
"տասնվեց",
|
||||
"տասնյոթ",
|
||||
"տասնութ",
|
||||
"տասնինը",
|
||||
"քսան" "երեսուն",
|
||||
"տասներեք",
|
||||
"տասնչորս",
|
||||
"տասնհինգ",
|
||||
"տասնվեց",
|
||||
"տասնյոթ",
|
||||
"տասնութ",
|
||||
"տասնինը",
|
||||
"քսան",
|
||||
"երեսուն",
|
||||
"քառասուն",
|
||||
"հիսուն",
|
||||
"վաթցսուն",
|
||||
"վաթսուն",
|
||||
"յոթանասուն",
|
||||
"ութսուն",
|
||||
"ինիսուն",
|
||||
"իննսուն",
|
||||
"հարյուր",
|
||||
"հազար",
|
||||
"միլիոն",
|
||||
|
|
|
@ -20,12 +20,7 @@ from ... import util
|
|||
|
||||
|
||||
# Hold the attributes we need with convenient names
|
||||
DetailedToken = namedtuple("DetailedToken", ["surface", "pos", "lemma"])
|
||||
|
||||
# Handling for multiple spaces in a row is somewhat awkward, this simplifies
|
||||
# the flow by creating a dummy with the same interface.
|
||||
DummyNode = namedtuple("DummyNode", ["surface", "pos", "lemma"])
|
||||
DummySpace = DummyNode(" ", " ", " ")
|
||||
DetailedToken = namedtuple("DetailedToken", ["surface", "tag", "inf", "lemma", "reading", "sub_tokens"])
|
||||
|
||||
|
||||
def try_sudachi_import(split_mode="A"):
|
||||
|
@ -53,7 +48,7 @@ def try_sudachi_import(split_mode="A"):
|
|||
)
|
||||
|
||||
|
||||
def resolve_pos(orth, pos, next_pos):
|
||||
def resolve_pos(orth, tag, next_tag):
|
||||
"""If necessary, add a field to the POS tag for UD mapping.
|
||||
Under Universal Dependencies, sometimes the same Unidic POS tag can
|
||||
be mapped differently depending on the literal token or its context
|
||||
|
@ -64,124 +59,77 @@ def resolve_pos(orth, pos, next_pos):
|
|||
# Some tokens have their UD tag decided based on the POS of the following
|
||||
# token.
|
||||
|
||||
# orth based rules
|
||||
if pos[0] in TAG_ORTH_MAP:
|
||||
orth_map = TAG_ORTH_MAP[pos[0]]
|
||||
# apply orth based mapping
|
||||
if tag in TAG_ORTH_MAP:
|
||||
orth_map = TAG_ORTH_MAP[tag]
|
||||
if orth in orth_map:
|
||||
return orth_map[orth], None
|
||||
return orth_map[orth], None # current_pos, next_pos
|
||||
|
||||
# tag bi-gram mapping
|
||||
if next_pos:
|
||||
tag_bigram = pos[0], next_pos[0]
|
||||
# apply tag bi-gram mapping
|
||||
if next_tag:
|
||||
tag_bigram = tag, next_tag
|
||||
if tag_bigram in TAG_BIGRAM_MAP:
|
||||
bipos = TAG_BIGRAM_MAP[tag_bigram]
|
||||
if bipos[0] is None:
|
||||
return TAG_MAP[pos[0]][POS], bipos[1]
|
||||
current_pos, next_pos = TAG_BIGRAM_MAP[tag_bigram]
|
||||
if current_pos is None: # apply tag uni-gram mapping for current_pos
|
||||
return TAG_MAP[tag][POS], next_pos # only next_pos is identified by tag bi-gram mapping
|
||||
else:
|
||||
return bipos
|
||||
return current_pos, next_pos
|
||||
|
||||
return TAG_MAP[pos[0]][POS], None
|
||||
# apply tag uni-gram mapping
|
||||
return TAG_MAP[tag][POS], None
|
||||
|
||||
|
||||
# Use a mapping of paired punctuation to avoid splitting quoted sentences.
|
||||
pairpunct = {'「':'」', '『': '』', '【': '】'}
|
||||
|
||||
|
||||
def separate_sentences(doc):
|
||||
"""Given a doc, mark tokens that start sentences based on Unidic tags.
|
||||
"""
|
||||
|
||||
stack = [] # save paired punctuation
|
||||
|
||||
for i, token in enumerate(doc[:-2]):
|
||||
# Set all tokens after the first to false by default. This is necessary
|
||||
# for the doc code to be aware we've done sentencization, see
|
||||
# `is_sentenced`.
|
||||
token.sent_start = (i == 0)
|
||||
if token.tag_:
|
||||
if token.tag_ == "補助記号-括弧開":
|
||||
ts = str(token)
|
||||
if ts in pairpunct:
|
||||
stack.append(pairpunct[ts])
|
||||
elif stack and ts == stack[-1]:
|
||||
stack.pop()
|
||||
|
||||
if token.tag_ == "補助記号-句点":
|
||||
next_token = doc[i+1]
|
||||
if next_token.tag_ != token.tag_ and not stack:
|
||||
next_token.sent_start = True
|
||||
|
||||
|
||||
def get_dtokens(tokenizer, text):
|
||||
tokens = tokenizer.tokenize(text)
|
||||
words = []
|
||||
for ti, token in enumerate(tokens):
|
||||
tag = '-'.join([xx for xx in token.part_of_speech()[:4] if xx != '*'])
|
||||
inf = '-'.join([xx for xx in token.part_of_speech()[4:] if xx != '*'])
|
||||
dtoken = DetailedToken(
|
||||
token.surface(),
|
||||
(tag, inf),
|
||||
token.dictionary_form())
|
||||
if ti > 0 and words[-1].pos[0] == '空白' and tag == '空白':
|
||||
# don't add multiple space tokens in a row
|
||||
continue
|
||||
words.append(dtoken)
|
||||
|
||||
# remove empty tokens. These can be produced with characters like … that
|
||||
# Sudachi normalizes internally.
|
||||
words = [ww for ww in words if len(ww.surface) > 0]
|
||||
return words
|
||||
|
||||
|
||||
def get_words_lemmas_tags_spaces(dtokens, text, gap_tag=("空白", "")):
|
||||
def get_dtokens_and_spaces(dtokens, text, gap_tag="空白"):
|
||||
# Compare the content of tokens and text, first
|
||||
words = [x.surface for x in dtokens]
|
||||
if "".join("".join(words).split()) != "".join(text.split()):
|
||||
raise ValueError(Errors.E194.format(text=text, words=words))
|
||||
text_words = []
|
||||
text_lemmas = []
|
||||
text_tags = []
|
||||
|
||||
text_dtokens = []
|
||||
text_spaces = []
|
||||
text_pos = 0
|
||||
# handle empty and whitespace-only texts
|
||||
if len(words) == 0:
|
||||
return text_words, text_lemmas, text_tags, text_spaces
|
||||
return text_dtokens, text_spaces
|
||||
elif len([word for word in words if not word.isspace()]) == 0:
|
||||
assert text.isspace()
|
||||
text_words = [text]
|
||||
text_lemmas = [text]
|
||||
text_tags = [gap_tag]
|
||||
text_dtokens = [DetailedToken(text, gap_tag, '', text, None, None)]
|
||||
text_spaces = [False]
|
||||
return text_words, text_lemmas, text_tags, text_spaces
|
||||
# normalize words to remove all whitespace tokens
|
||||
norm_words, norm_dtokens = zip(*[(word, dtokens) for word, dtokens in zip(words, dtokens) if not word.isspace()])
|
||||
# align words with text
|
||||
for word, dtoken in zip(norm_words, norm_dtokens):
|
||||
return text_dtokens, text_spaces
|
||||
|
||||
# align words and dtokens by referring text, and insert gap tokens for the space char spans
|
||||
for word, dtoken in zip(words, dtokens):
|
||||
# skip all space tokens
|
||||
if word.isspace():
|
||||
continue
|
||||
try:
|
||||
word_start = text[text_pos:].index(word)
|
||||
except ValueError:
|
||||
raise ValueError(Errors.E194.format(text=text, words=words))
|
||||
|
||||
# space token
|
||||
if word_start > 0:
|
||||
w = text[text_pos:text_pos + word_start]
|
||||
text_words.append(w)
|
||||
text_lemmas.append(w)
|
||||
text_tags.append(gap_tag)
|
||||
text_dtokens.append(DetailedToken(w, gap_tag, '', w, None, None))
|
||||
text_spaces.append(False)
|
||||
text_pos += word_start
|
||||
text_words.append(word)
|
||||
text_lemmas.append(dtoken.lemma)
|
||||
text_tags.append(dtoken.pos)
|
||||
|
||||
# content word
|
||||
text_dtokens.append(dtoken)
|
||||
text_spaces.append(False)
|
||||
text_pos += len(word)
|
||||
# poll a space char after the word
|
||||
if text_pos < len(text) and text[text_pos] == " ":
|
||||
text_spaces[-1] = True
|
||||
text_pos += 1
|
||||
|
||||
# trailing space token
|
||||
if text_pos < len(text):
|
||||
w = text[text_pos:]
|
||||
text_words.append(w)
|
||||
text_lemmas.append(w)
|
||||
text_tags.append(gap_tag)
|
||||
text_dtokens.append(DetailedToken(w, gap_tag, '', w, None, None))
|
||||
text_spaces.append(False)
|
||||
return text_words, text_lemmas, text_tags, text_spaces
|
||||
|
||||
return text_dtokens, text_spaces
|
||||
|
||||
|
||||
class JapaneseTokenizer(DummyTokenizer):
|
||||
|
@ -191,29 +139,78 @@ class JapaneseTokenizer(DummyTokenizer):
|
|||
self.tokenizer = try_sudachi_import(self.split_mode)
|
||||
|
||||
def __call__(self, text):
|
||||
dtokens = get_dtokens(self.tokenizer, text)
|
||||
# convert sudachipy.morpheme.Morpheme to DetailedToken and merge continuous spaces
|
||||
sudachipy_tokens = self.tokenizer.tokenize(text)
|
||||
dtokens = self._get_dtokens(sudachipy_tokens)
|
||||
dtokens, spaces = get_dtokens_and_spaces(dtokens, text)
|
||||
|
||||
words, lemmas, unidic_tags, spaces = get_words_lemmas_tags_spaces(dtokens, text)
|
||||
# create Doc with tag bi-gram based part-of-speech identification rules
|
||||
words, tags, inflections, lemmas, readings, sub_tokens_list = zip(*dtokens) if dtokens else [[]] * 6
|
||||
sub_tokens_list = list(sub_tokens_list)
|
||||
doc = Doc(self.vocab, words=words, spaces=spaces)
|
||||
next_pos = None
|
||||
for idx, (token, lemma, unidic_tag) in enumerate(zip(doc, lemmas, unidic_tags)):
|
||||
token.tag_ = unidic_tag[0]
|
||||
if next_pos:
|
||||
next_pos = None # for bi-gram rules
|
||||
for idx, (token, dtoken) in enumerate(zip(doc, dtokens)):
|
||||
token.tag_ = dtoken.tag
|
||||
if next_pos: # already identified in previous iteration
|
||||
token.pos = next_pos
|
||||
next_pos = None
|
||||
else:
|
||||
token.pos, next_pos = resolve_pos(
|
||||
token.orth_,
|
||||
unidic_tag,
|
||||
unidic_tags[idx + 1] if idx + 1 < len(unidic_tags) else None
|
||||
dtoken.tag,
|
||||
tags[idx + 1] if idx + 1 < len(tags) else None
|
||||
)
|
||||
|
||||
# if there's no lemma info (it's an unk) just use the surface
|
||||
token.lemma_ = lemma
|
||||
doc.user_data["unidic_tags"] = unidic_tags
|
||||
token.lemma_ = dtoken.lemma if dtoken.lemma else dtoken.surface
|
||||
|
||||
doc.user_data["inflections"] = inflections
|
||||
doc.user_data["reading_forms"] = readings
|
||||
doc.user_data["sub_tokens"] = sub_tokens_list
|
||||
|
||||
return doc
|
||||
|
||||
def _get_dtokens(self, sudachipy_tokens, need_sub_tokens=True):
|
||||
sub_tokens_list = self._get_sub_tokens(sudachipy_tokens) if need_sub_tokens else None
|
||||
dtokens = [
|
||||
DetailedToken(
|
||||
token.surface(), # orth
|
||||
'-'.join([xx for xx in token.part_of_speech()[:4] if xx != '*']), # tag
|
||||
','.join([xx for xx in token.part_of_speech()[4:] if xx != '*']), # inf
|
||||
token.dictionary_form(), # lemma
|
||||
token.reading_form(), # user_data['reading_forms']
|
||||
sub_tokens_list[idx] if sub_tokens_list else None, # user_data['sub_tokens']
|
||||
) for idx, token in enumerate(sudachipy_tokens) if len(token.surface()) > 0
|
||||
# remove empty tokens which can be produced with characters like … that
|
||||
]
|
||||
# Sudachi normalizes internally and outputs each space char as a token.
|
||||
# This is the preparation for get_dtokens_and_spaces() to merge the continuous space tokens
|
||||
return [
|
||||
t for idx, t in enumerate(dtokens) if
|
||||
idx == 0 or
|
||||
not t.surface.isspace() or t.tag != '空白' or
|
||||
not dtokens[idx - 1].surface.isspace() or dtokens[idx - 1].tag != '空白'
|
||||
]
|
||||
|
||||
def _get_sub_tokens(self, sudachipy_tokens):
|
||||
if self.split_mode is None or self.split_mode == "A": # do nothing for default split mode
|
||||
return None
|
||||
|
||||
sub_tokens_list = [] # list of (list of list of DetailedToken | None)
|
||||
for token in sudachipy_tokens:
|
||||
sub_a = token.split(self.tokenizer.SplitMode.A)
|
||||
if len(sub_a) == 1: # no sub tokens
|
||||
sub_tokens_list.append(None)
|
||||
elif self.split_mode == "B":
|
||||
sub_tokens_list.append([self._get_dtokens(sub_a, False)])
|
||||
else: # "C"
|
||||
sub_b = token.split(self.tokenizer.SplitMode.B)
|
||||
if len(sub_a) == len(sub_b):
|
||||
dtokens = self._get_dtokens(sub_a, False)
|
||||
sub_tokens_list.append([dtokens, dtokens])
|
||||
else:
|
||||
sub_tokens_list.append([self._get_dtokens(sub_a, False), self._get_dtokens(sub_b, False)])
|
||||
return sub_tokens_list
|
||||
|
||||
def _get_config(self):
|
||||
config = OrderedDict(
|
||||
(
|
||||
|
|
|
@ -1,144 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
|
||||
|
||||
POS_PHRASE_MAP = {
|
||||
"NOUN": "NP",
|
||||
"NUM": "NP",
|
||||
"PRON": "NP",
|
||||
"PROPN": "NP",
|
||||
|
||||
"VERB": "VP",
|
||||
|
||||
"ADJ": "ADJP",
|
||||
|
||||
"ADV": "ADVP",
|
||||
|
||||
"CCONJ": "CCONJP",
|
||||
}
|
||||
|
||||
|
||||
# return value: [(bunsetu_tokens, phrase_type={'NP', 'VP', 'ADJP', 'ADVP'}, phrase_tokens)]
|
||||
def yield_bunsetu(doc, debug=False):
|
||||
bunsetu = []
|
||||
bunsetu_may_end = False
|
||||
phrase_type = None
|
||||
phrase = None
|
||||
prev = None
|
||||
prev_tag = None
|
||||
prev_dep = None
|
||||
prev_head = None
|
||||
for t in doc:
|
||||
pos = t.pos_
|
||||
pos_type = POS_PHRASE_MAP.get(pos, None)
|
||||
tag = t.tag_
|
||||
dep = t.dep_
|
||||
head = t.head.i
|
||||
if debug:
|
||||
print(t.i, t.orth_, pos, pos_type, dep, head, bunsetu_may_end, phrase_type, phrase, bunsetu)
|
||||
|
||||
# DET is always an individual bunsetu
|
||||
if pos == "DET":
|
||||
if bunsetu:
|
||||
yield bunsetu, phrase_type, phrase
|
||||
yield [t], None, None
|
||||
bunsetu = []
|
||||
bunsetu_may_end = False
|
||||
phrase_type = None
|
||||
phrase = None
|
||||
|
||||
# PRON or Open PUNCT always splits bunsetu
|
||||
elif tag == "補助記号-括弧開":
|
||||
if bunsetu:
|
||||
yield bunsetu, phrase_type, phrase
|
||||
bunsetu = [t]
|
||||
bunsetu_may_end = True
|
||||
phrase_type = None
|
||||
phrase = None
|
||||
|
||||
# bunsetu head not appeared
|
||||
elif phrase_type is None:
|
||||
if bunsetu and prev_tag == "補助記号-読点":
|
||||
yield bunsetu, phrase_type, phrase
|
||||
bunsetu = []
|
||||
bunsetu_may_end = False
|
||||
phrase_type = None
|
||||
phrase = None
|
||||
bunsetu.append(t)
|
||||
if pos_type: # begin phrase
|
||||
phrase = [t]
|
||||
phrase_type = pos_type
|
||||
if pos_type in {"ADVP", "CCONJP"}:
|
||||
bunsetu_may_end = True
|
||||
|
||||
# entering new bunsetu
|
||||
elif pos_type and (
|
||||
pos_type != phrase_type or # different phrase type arises
|
||||
bunsetu_may_end # same phrase type but bunsetu already ended
|
||||
):
|
||||
# exceptional case: NOUN to VERB
|
||||
if phrase_type == "NP" and pos_type == "VP" and prev_dep == 'compound' and prev_head == t.i:
|
||||
bunsetu.append(t)
|
||||
phrase_type = "VP"
|
||||
phrase.append(t)
|
||||
# exceptional case: VERB to NOUN
|
||||
elif phrase_type == "VP" and pos_type == "NP" and (
|
||||
prev_dep == 'compound' and prev_head == t.i or
|
||||
dep == 'compound' and prev == head or
|
||||
prev_dep == 'nmod' and prev_head == t.i
|
||||
):
|
||||
bunsetu.append(t)
|
||||
phrase_type = "NP"
|
||||
phrase.append(t)
|
||||
else:
|
||||
yield bunsetu, phrase_type, phrase
|
||||
bunsetu = [t]
|
||||
bunsetu_may_end = False
|
||||
phrase_type = pos_type
|
||||
phrase = [t]
|
||||
|
||||
# NOUN bunsetu
|
||||
elif phrase_type == "NP":
|
||||
bunsetu.append(t)
|
||||
if not bunsetu_may_end and ((
|
||||
(pos_type == "NP" or pos == "SYM") and (prev_head == t.i or prev_head == head) and prev_dep in {'compound', 'nummod'}
|
||||
) or (
|
||||
pos == "PART" and (prev == head or prev_head == head) and dep == 'mark'
|
||||
)):
|
||||
phrase.append(t)
|
||||
else:
|
||||
bunsetu_may_end = True
|
||||
|
||||
# VERB bunsetu
|
||||
elif phrase_type == "VP":
|
||||
bunsetu.append(t)
|
||||
if not bunsetu_may_end and pos == "VERB" and prev_head == t.i and prev_dep == 'compound':
|
||||
phrase.append(t)
|
||||
else:
|
||||
bunsetu_may_end = True
|
||||
|
||||
# ADJ bunsetu
|
||||
elif phrase_type == "ADJP" and tag != '連体詞':
|
||||
bunsetu.append(t)
|
||||
if not bunsetu_may_end and ((
|
||||
pos == "NOUN" and (prev_head == t.i or prev_head == head) and prev_dep in {'amod', 'compound'}
|
||||
) or (
|
||||
pos == "PART" and (prev == head or prev_head == head) and dep == 'mark'
|
||||
)):
|
||||
phrase.append(t)
|
||||
else:
|
||||
bunsetu_may_end = True
|
||||
|
||||
# other bunsetu
|
||||
else:
|
||||
bunsetu.append(t)
|
||||
|
||||
prev = t.i
|
||||
prev_tag = t.tag_
|
||||
prev_dep = t.dep_
|
||||
prev_head = head
|
||||
|
||||
if bunsetu:
|
||||
yield bunsetu, phrase_type, phrase
|
23
spacy/lang/ne/__init__.py
Normal file
23
spacy/lang/ne/__init__.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
|
||||
from ...language import Language
|
||||
from ...attrs import LANG
|
||||
|
||||
|
||||
class NepaliDefaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
lex_attr_getters.update(LEX_ATTRS)
|
||||
lex_attr_getters[LANG] = lambda text: "ne" # Nepali language ISO code
|
||||
stop_words = STOP_WORDS
|
||||
|
||||
|
||||
class Nepali(Language):
|
||||
lang = "ne"
|
||||
Defaults = NepaliDefaults
|
||||
|
||||
|
||||
__all__ = ["Nepali"]
|
22
spacy/lang/ne/examples.py
Normal file
22
spacy/lang/ne/examples.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
|
||||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.ne.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
|
||||
sentences = [
|
||||
"एप्पलले अमेरिकी स्टार्टअप १ अर्ब डलरमा किन्ने सोच्दै छ",
|
||||
"स्वायत्त कारहरूले बीमा दायित्व निर्माताहरु तिर बदल्छन्",
|
||||
"स्यान फ्रांसिस्कोले फुटपाथ वितरण रोबोटहरु प्रतिबंध गर्ने विचार गर्दै छ",
|
||||
"लन्डन यूनाइटेड किंगडमको एक ठूलो शहर हो।",
|
||||
"तिमी कहाँ छौ?",
|
||||
"फ्रान्स को राष्ट्रपति को हो?",
|
||||
"संयुक्त राज्यको राजधानी के हो?",
|
||||
"बराक ओबामा कहिले कहिले जन्मेका हुन्?",
|
||||
]
|
98
spacy/lang/ne/lex_attrs.py
Normal file
98
spacy/lang/ne/lex_attrs.py
Normal file
|
@ -0,0 +1,98 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ..norm_exceptions import BASE_NORMS
|
||||
from ...attrs import NORM, LIKE_NUM
|
||||
|
||||
|
||||
# fmt: off
|
||||
_stem_suffixes = [
|
||||
["ा", "ि", "ी", "ु", "ू", "ृ", "े", "ै", "ो", "ौ"],
|
||||
["ँ", "ं", "्", "ः"],
|
||||
["लाई", "ले", "बाट", "को", "मा", "हरू"],
|
||||
["हरूलाई", "हरूले", "हरूबाट", "हरूको", "हरूमा"],
|
||||
["इलो", "िलो", "नु", "ाउनु", "ई", "इन", "इन्", "इनन्"],
|
||||
["एँ", "इँन्", "इस्", "इनस्", "यो", "एन", "यौं", "एनौं", "ए", "एनन्"],
|
||||
["छु", "छौँ", "छस्", "छौ", "छ", "छन्", "छेस्", "छे", "छ्यौ", "छिन्", "हुन्छ"],
|
||||
["दै", "दिन", "दिँन", "दैनस्", "दैन", "दैनौँ", "दैनौं", "दैनन्"],
|
||||
["हुन्न", "न्न", "न्न्स्", "न्नौं", "न्नौ", "न्न्न्", "िई"],
|
||||
["अ", "ओ", "ऊ", "अरी", "साथ", "वित्तिकै", "पूर्वक"],
|
||||
["याइ", "ाइ", "बार", "वार", "चाँहि"],
|
||||
["ने", "ेको", "ेकी", "ेका", "ेर", "दै", "तै", "िकन", "उ", "न", "नन्"]
|
||||
]
|
||||
# fmt: on
|
||||
|
||||
# reference 1: https://en.wikipedia.org/wiki/Numbers_in_Nepali_language
|
||||
# reference 2: https://www.imnepal.com/nepali-numbers/
|
||||
_num_words = [
|
||||
"शुन्य",
|
||||
"एक",
|
||||
"दुई",
|
||||
"तीन",
|
||||
"चार",
|
||||
"पाँच",
|
||||
"छ",
|
||||
"सात",
|
||||
"आठ",
|
||||
"नौ",
|
||||
"दश",
|
||||
"एघार",
|
||||
"बाह्र",
|
||||
"तेह्र",
|
||||
"चौध",
|
||||
"पन्ध्र",
|
||||
"सोह्र",
|
||||
"सोह्र",
|
||||
"सत्र",
|
||||
"अठार",
|
||||
"उन्नाइस",
|
||||
"बीस",
|
||||
"तीस",
|
||||
"चालीस",
|
||||
"पचास",
|
||||
"साठी",
|
||||
"सत्तरी",
|
||||
"असी",
|
||||
"नब्बे",
|
||||
"सय",
|
||||
"हजार",
|
||||
"लाख",
|
||||
"करोड",
|
||||
"अर्ब",
|
||||
"खर्ब",
|
||||
]
|
||||
|
||||
|
||||
def norm(string):
|
||||
# normalise base exceptions, e.g. punctuation or currency symbols
|
||||
if string in BASE_NORMS:
|
||||
return BASE_NORMS[string]
|
||||
# set stem word as norm, if available, adapted from:
|
||||
# https://github.com/explosion/spaCy/blob/master/spacy/lang/hi/lex_attrs.py
|
||||
# https://www.researchgate.net/publication/237261579_Structure_of_Nepali_Grammar
|
||||
for suffix_group in reversed(_stem_suffixes):
|
||||
length = len(suffix_group[0])
|
||||
if len(string) <= length:
|
||||
break
|
||||
for suffix in suffix_group:
|
||||
if string.endswith(suffix):
|
||||
return string[:-length]
|
||||
return string
|
||||
|
||||
|
||||
def like_num(text):
|
||||
if text.startswith(("+", "-", "±", "~")):
|
||||
text = text[1:]
|
||||
text = text.replace(", ", "").replace(".", "")
|
||||
if text.isdigit():
|
||||
return True
|
||||
if text.count("/") == 1:
|
||||
num, denom = text.split("/")
|
||||
if num.isdigit() and denom.isdigit():
|
||||
return True
|
||||
if text.lower() in _num_words:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
LEX_ATTRS = {NORM: norm, LIKE_NUM: like_num}
|
498
spacy/lang/ne/stop_words.py
Normal file
498
spacy/lang/ne/stop_words.py
Normal file
|
@ -0,0 +1,498 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
|
||||
# Source: https://github.com/sanjaalcorps/NepaliStopWords/blob/master/NepaliStopWords.txt
|
||||
|
||||
STOP_WORDS = set(
|
||||
"""
|
||||
अक्सर
|
||||
अगाडि
|
||||
अगाडी
|
||||
अघि
|
||||
अझै
|
||||
अठार
|
||||
अथवा
|
||||
अनि
|
||||
अनुसार
|
||||
अन्तर्गत
|
||||
अन्य
|
||||
अन्यत्र
|
||||
अन्यथा
|
||||
अब
|
||||
अरु
|
||||
अरुलाई
|
||||
अरू
|
||||
अर्को
|
||||
अर्थात
|
||||
अर्थात्
|
||||
अलग
|
||||
अलि
|
||||
अवस्था
|
||||
अहिले
|
||||
आए
|
||||
आएका
|
||||
आएको
|
||||
आज
|
||||
आजको
|
||||
आठ
|
||||
आत्म
|
||||
आदि
|
||||
आदिलाई
|
||||
आफनो
|
||||
आफू
|
||||
आफूलाई
|
||||
आफै
|
||||
आफैँ
|
||||
आफ्नै
|
||||
आफ्नो
|
||||
आयो
|
||||
उ
|
||||
उक्त
|
||||
उदाहरण
|
||||
उनको
|
||||
उनलाई
|
||||
उनले
|
||||
उनि
|
||||
उनी
|
||||
उनीहरुको
|
||||
उन्नाइस
|
||||
उप
|
||||
उसको
|
||||
उसलाई
|
||||
उसले
|
||||
उहालाई
|
||||
ऊ
|
||||
एउटा
|
||||
एउटै
|
||||
एक
|
||||
एकदम
|
||||
एघार
|
||||
ओठ
|
||||
औ
|
||||
औं
|
||||
कता
|
||||
कति
|
||||
कतै
|
||||
कम
|
||||
कमसेकम
|
||||
कसरि
|
||||
कसरी
|
||||
कसै
|
||||
कसैको
|
||||
कसैलाई
|
||||
कसैले
|
||||
कसैसँग
|
||||
कस्तो
|
||||
कहाँबाट
|
||||
कहिलेकाहीं
|
||||
का
|
||||
काम
|
||||
कारण
|
||||
कि
|
||||
किन
|
||||
किनभने
|
||||
कुन
|
||||
कुनै
|
||||
कुन्नी
|
||||
कुरा
|
||||
कृपया
|
||||
के
|
||||
केहि
|
||||
केही
|
||||
को
|
||||
कोहि
|
||||
कोहिपनि
|
||||
कोही
|
||||
कोहीपनि
|
||||
क्रमशः
|
||||
गए
|
||||
गएको
|
||||
गएर
|
||||
गयौ
|
||||
गरि
|
||||
गरी
|
||||
गरे
|
||||
गरेका
|
||||
गरेको
|
||||
गरेर
|
||||
गरौं
|
||||
गर्छ
|
||||
गर्छन्
|
||||
गर्छु
|
||||
गर्दा
|
||||
गर्दै
|
||||
गर्न
|
||||
गर्नु
|
||||
गर्नुपर्छ
|
||||
गर्ने
|
||||
गैर
|
||||
घर
|
||||
चार
|
||||
चाले
|
||||
चाहनुहुन्छ
|
||||
चाहन्छु
|
||||
चाहिं
|
||||
चाहिए
|
||||
चाहिंले
|
||||
चाहीं
|
||||
चाहेको
|
||||
चाहेर
|
||||
चोटी
|
||||
चौथो
|
||||
चौध
|
||||
छ
|
||||
छन
|
||||
छन्
|
||||
छु
|
||||
छू
|
||||
छैन
|
||||
छैनन्
|
||||
छौ
|
||||
छौं
|
||||
जता
|
||||
जताततै
|
||||
जना
|
||||
जनाको
|
||||
जनालाई
|
||||
जनाले
|
||||
जब
|
||||
जबकि
|
||||
जबकी
|
||||
जसको
|
||||
जसबाट
|
||||
जसमा
|
||||
जसरी
|
||||
जसलाई
|
||||
जसले
|
||||
जस्ता
|
||||
जस्तै
|
||||
जस्तो
|
||||
जस्तोसुकै
|
||||
जहाँ
|
||||
जान
|
||||
जाने
|
||||
जाहिर
|
||||
जुन
|
||||
जुनै
|
||||
जे
|
||||
जो
|
||||
जोपनि
|
||||
जोपनी
|
||||
झैं
|
||||
ठाउँमा
|
||||
ठीक
|
||||
ठूलो
|
||||
त
|
||||
तता
|
||||
तत्काल
|
||||
तथा
|
||||
तथापि
|
||||
तथापी
|
||||
तदनुसार
|
||||
तपाइ
|
||||
तपाई
|
||||
तपाईको
|
||||
तब
|
||||
तर
|
||||
तर्फ
|
||||
तल
|
||||
तसरी
|
||||
तापनि
|
||||
तापनी
|
||||
तिन
|
||||
तिनि
|
||||
तिनिहरुलाई
|
||||
तिनी
|
||||
तिनीहरु
|
||||
तिनीहरुको
|
||||
तिनीहरू
|
||||
तिनीहरूको
|
||||
तिनै
|
||||
तिमी
|
||||
तिर
|
||||
तिरको
|
||||
ती
|
||||
तीन
|
||||
तुरन्त
|
||||
तुरुन्त
|
||||
तुरुन्तै
|
||||
तेश्रो
|
||||
तेस्कारण
|
||||
तेस्रो
|
||||
तेह्र
|
||||
तैपनि
|
||||
तैपनी
|
||||
त्यत्तिकै
|
||||
त्यत्तिकैमा
|
||||
त्यस
|
||||
त्यसकारण
|
||||
त्यसको
|
||||
त्यसले
|
||||
त्यसैले
|
||||
त्यसो
|
||||
त्यस्तै
|
||||
त्यस्तो
|
||||
त्यहाँ
|
||||
त्यहिँ
|
||||
त्यही
|
||||
त्यहीँ
|
||||
त्यहीं
|
||||
त्यो
|
||||
त्सपछि
|
||||
त्सैले
|
||||
थप
|
||||
थरि
|
||||
थरी
|
||||
थाहा
|
||||
थिए
|
||||
थिएँ
|
||||
थिएन
|
||||
थियो
|
||||
दर्ता
|
||||
दश
|
||||
दिए
|
||||
दिएको
|
||||
दिन
|
||||
दिनुभएको
|
||||
दिनुहुन्छ
|
||||
दुइ
|
||||
दुइवटा
|
||||
दुई
|
||||
देखि
|
||||
देखिन्छ
|
||||
देखियो
|
||||
देखे
|
||||
देखेको
|
||||
देखेर
|
||||
दोश्री
|
||||
दोश्रो
|
||||
दोस्रो
|
||||
द्वारा
|
||||
धन्न
|
||||
धेरै
|
||||
धौ
|
||||
न
|
||||
नगर्नु
|
||||
नगर्नू
|
||||
नजिकै
|
||||
नत्र
|
||||
नत्रभने
|
||||
नभई
|
||||
नभएको
|
||||
नभनेर
|
||||
नयाँ
|
||||
नि
|
||||
निकै
|
||||
निम्ति
|
||||
निम्न
|
||||
निम्नानुसार
|
||||
निर्दिष्ट
|
||||
नै
|
||||
नौ
|
||||
पक्का
|
||||
पक्कै
|
||||
पछाडि
|
||||
पछाडी
|
||||
पछि
|
||||
पछिल्लो
|
||||
पछी
|
||||
पटक
|
||||
पनि
|
||||
पन्ध्र
|
||||
पर्छ
|
||||
पर्थ्यो
|
||||
पर्दैन
|
||||
पर्ने
|
||||
पर्नेमा
|
||||
पर्याप्त
|
||||
पहिले
|
||||
पहिलो
|
||||
पहिल्यै
|
||||
पाँच
|
||||
पांच
|
||||
पाचौँ
|
||||
पाँचौं
|
||||
पिच्छे
|
||||
पूर्व
|
||||
पो
|
||||
प्रति
|
||||
प्रतेक
|
||||
प्रत्यक
|
||||
प्राय
|
||||
प्लस
|
||||
फरक
|
||||
फेरि
|
||||
फेरी
|
||||
बढी
|
||||
बताए
|
||||
बने
|
||||
बरु
|
||||
बाट
|
||||
बारे
|
||||
बाहिर
|
||||
बाहेक
|
||||
बाह्र
|
||||
बिच
|
||||
बिचमा
|
||||
बिरुद्ध
|
||||
बिशेष
|
||||
बिस
|
||||
बीच
|
||||
बीचमा
|
||||
बीस
|
||||
भए
|
||||
भएँ
|
||||
भएका
|
||||
भएकालाई
|
||||
भएको
|
||||
भएन
|
||||
भएर
|
||||
भन
|
||||
भने
|
||||
भनेको
|
||||
भनेर
|
||||
भन्
|
||||
भन्छन्
|
||||
भन्छु
|
||||
भन्दा
|
||||
भन्दै
|
||||
भन्नुभयो
|
||||
भन्ने
|
||||
भन्या
|
||||
भयेन
|
||||
भयो
|
||||
भर
|
||||
भरि
|
||||
भरी
|
||||
भा
|
||||
भित्र
|
||||
भित्री
|
||||
भीत्र
|
||||
म
|
||||
मध्य
|
||||
मध्ये
|
||||
मलाई
|
||||
मा
|
||||
मात्र
|
||||
मात्रै
|
||||
माथि
|
||||
माथी
|
||||
मुख्य
|
||||
मुनि
|
||||
मुन्तिर
|
||||
मेरो
|
||||
मैले
|
||||
यति
|
||||
यथोचित
|
||||
यदि
|
||||
यद्ध्यपि
|
||||
यद्यपि
|
||||
यस
|
||||
यसका
|
||||
यसको
|
||||
यसपछि
|
||||
यसबाहेक
|
||||
यसमा
|
||||
यसरी
|
||||
यसले
|
||||
यसो
|
||||
यस्तै
|
||||
यस्तो
|
||||
यहाँ
|
||||
यहाँसम्म
|
||||
यही
|
||||
या
|
||||
यी
|
||||
यो
|
||||
र
|
||||
रही
|
||||
रहेका
|
||||
रहेको
|
||||
रहेछ
|
||||
राखे
|
||||
राख्छ
|
||||
राम्रो
|
||||
रुपमा
|
||||
रूप
|
||||
रे
|
||||
लगभग
|
||||
लगायत
|
||||
लाई
|
||||
लाख
|
||||
लागि
|
||||
लागेको
|
||||
ले
|
||||
वटा
|
||||
वरीपरी
|
||||
वा
|
||||
वाट
|
||||
वापत
|
||||
वास्तवमा
|
||||
शायद
|
||||
सक्छ
|
||||
सक्ने
|
||||
सँग
|
||||
संग
|
||||
सँगको
|
||||
सँगसँगै
|
||||
सँगै
|
||||
संगै
|
||||
सङ्ग
|
||||
सङ्गको
|
||||
सट्टा
|
||||
सत्र
|
||||
सधै
|
||||
सबै
|
||||
सबैको
|
||||
सबैलाई
|
||||
समय
|
||||
समेत
|
||||
सम्भव
|
||||
सम्म
|
||||
सय
|
||||
सरह
|
||||
सहित
|
||||
सहितै
|
||||
सही
|
||||
साँच्चै
|
||||
सात
|
||||
साथ
|
||||
साथै
|
||||
सायद
|
||||
सारा
|
||||
सुनेको
|
||||
सुनेर
|
||||
सुरु
|
||||
सुरुको
|
||||
सुरुमै
|
||||
सो
|
||||
सोचेको
|
||||
सोचेर
|
||||
सोही
|
||||
सोह्र
|
||||
स्थित
|
||||
स्पष्ट
|
||||
हजार
|
||||
हरे
|
||||
हरेक
|
||||
हामी
|
||||
हामीले
|
||||
हाम्रा
|
||||
हाम्रो
|
||||
हुँदैन
|
||||
हुन
|
||||
हुनत
|
||||
हुनु
|
||||
हुने
|
||||
हुनेछ
|
||||
हुन्
|
||||
हुन्छ
|
||||
हुन्थ्यो
|
||||
हैन
|
||||
हो
|
||||
होइन
|
||||
होकि
|
||||
होला
|
||||
""".split()
|
||||
)
|
|
@ -349,7 +349,7 @@ cdef class Lexeme:
|
|||
@property
|
||||
def is_oov(self):
|
||||
"""RETURNS (bool): Whether the lexeme is out-of-vocabulary."""
|
||||
return self.orth in self.vocab.vectors
|
||||
return self.orth not in self.vocab.vectors
|
||||
|
||||
property is_stop:
|
||||
"""RETURNS (bool): Whether the lexeme is a stop word."""
|
||||
|
|
|
@ -528,10 +528,10 @@ class Tagger(Pipe):
|
|||
new_tag_map[tag] = orig_tag_map[tag]
|
||||
else:
|
||||
new_tag_map[tag] = {POS: X}
|
||||
if "_SP" in orig_tag_map:
|
||||
new_tag_map["_SP"] = orig_tag_map["_SP"]
|
||||
cdef Vocab vocab = self.vocab
|
||||
if new_tag_map:
|
||||
if "_SP" in orig_tag_map:
|
||||
new_tag_map["_SP"] = orig_tag_map["_SP"]
|
||||
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
||||
vocab.morphology.lemmatizer,
|
||||
exc=vocab.morphology.exc)
|
||||
|
|
|
@ -170,6 +170,11 @@ def nb_tokenizer():
|
|||
return get_lang_class("nb").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def ne_tokenizer():
|
||||
return get_lang_class("ne").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def nl_tokenizer():
|
||||
return get_lang_class("nl").Defaults.create_tokenizer()
|
||||
|
|
|
@ -4,7 +4,7 @@ from __future__ import unicode_literals
|
|||
import pytest
|
||||
|
||||
from ...tokenizer.test_naughty_strings import NAUGHTY_STRINGS
|
||||
from spacy.lang.ja import Japanese
|
||||
from spacy.lang.ja import Japanese, DetailedToken
|
||||
|
||||
# fmt: off
|
||||
TOKENIZER_TESTS = [
|
||||
|
@ -96,6 +96,57 @@ def test_ja_tokenizer_split_modes(ja_tokenizer, text, len_a, len_b, len_c):
|
|||
assert len(nlp_c(text)) == len_c
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,sub_tokens_list_a,sub_tokens_list_b,sub_tokens_list_c",
|
||||
[
|
||||
(
|
||||
"選挙管理委員会",
|
||||
[None, None, None, None],
|
||||
[None, None, [
|
||||
[
|
||||
DetailedToken(surface='委員', tag='名詞-普通名詞-一般', inf='', lemma='委員', reading='イイン', sub_tokens=None),
|
||||
DetailedToken(surface='会', tag='名詞-普通名詞-一般', inf='', lemma='会', reading='カイ', sub_tokens=None),
|
||||
]
|
||||
]],
|
||||
[[
|
||||
[
|
||||
DetailedToken(surface='選挙', tag='名詞-普通名詞-サ変可能', inf='', lemma='選挙', reading='センキョ', sub_tokens=None),
|
||||
DetailedToken(surface='管理', tag='名詞-普通名詞-サ変可能', inf='', lemma='管理', reading='カンリ', sub_tokens=None),
|
||||
DetailedToken(surface='委員', tag='名詞-普通名詞-一般', inf='', lemma='委員', reading='イイン', sub_tokens=None),
|
||||
DetailedToken(surface='会', tag='名詞-普通名詞-一般', inf='', lemma='会', reading='カイ', sub_tokens=None),
|
||||
], [
|
||||
DetailedToken(surface='選挙', tag='名詞-普通名詞-サ変可能', inf='', lemma='選挙', reading='センキョ', sub_tokens=None),
|
||||
DetailedToken(surface='管理', tag='名詞-普通名詞-サ変可能', inf='', lemma='管理', reading='カンリ', sub_tokens=None),
|
||||
DetailedToken(surface='委員会', tag='名詞-普通名詞-一般', inf='', lemma='委員会', reading='イインカイ', sub_tokens=None),
|
||||
]
|
||||
]]
|
||||
),
|
||||
]
|
||||
)
|
||||
def test_ja_tokenizer_sub_tokens(ja_tokenizer, text, sub_tokens_list_a, sub_tokens_list_b, sub_tokens_list_c):
|
||||
nlp_a = Japanese(meta={"tokenizer": {"config": {"split_mode": "A"}}})
|
||||
nlp_b = Japanese(meta={"tokenizer": {"config": {"split_mode": "B"}}})
|
||||
nlp_c = Japanese(meta={"tokenizer": {"config": {"split_mode": "C"}}})
|
||||
|
||||
assert ja_tokenizer(text).user_data["sub_tokens"] == sub_tokens_list_a
|
||||
assert nlp_a(text).user_data["sub_tokens"] == sub_tokens_list_a
|
||||
assert nlp_b(text).user_data["sub_tokens"] == sub_tokens_list_b
|
||||
assert nlp_c(text).user_data["sub_tokens"] == sub_tokens_list_c
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,inflections,reading_forms",
|
||||
[
|
||||
(
|
||||
"取ってつけた",
|
||||
("五段-ラ行,連用形-促音便", "", "下一段-カ行,連用形-一般", "助動詞-タ,終止形-一般"),
|
||||
("トッ", "テ", "ツケ", "タ"),
|
||||
),
|
||||
]
|
||||
)
|
||||
def test_ja_tokenizer_inflections_reading_forms(ja_tokenizer, text, inflections, reading_forms):
|
||||
assert ja_tokenizer(text).user_data["inflections"] == inflections
|
||||
assert ja_tokenizer(text).user_data["reading_forms"] == reading_forms
|
||||
|
||||
|
||||
def test_ja_tokenizer_emptyish_texts(ja_tokenizer):
|
||||
doc = ja_tokenizer("")
|
||||
assert len(doc) == 0
|
||||
|
|
0
spacy/tests/lang/ne/__init__.py
Normal file
0
spacy/tests/lang/ne/__init__.py
Normal file
19
spacy/tests/lang/ne/test_text.py
Normal file
19
spacy/tests/lang/ne/test_text.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_ne_tokenizer_handlers_long_text(ne_tokenizer):
|
||||
text = """मैले पाएको सर्टिफिकेटलाई म त बोक्रो सम्झन्छु र अभ्यास तब सुरु भयो, जब मैले कलेज पार गरेँ र जीवनको पढाइ सुरु गरेँ ।"""
|
||||
tokens = ne_tokenizer(text)
|
||||
assert len(tokens) == 24
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text,length",
|
||||
[("समय जान कति पनि बेर लाग्दैन ।", 7), ("म ठूलो हुँदै थिएँ ।", 5)],
|
||||
)
|
||||
def test_ne_tokenizer_handles_cnts(ne_tokenizer, text, length):
|
||||
tokens = ne_tokenizer(text)
|
||||
assert len(tokens) == length
|
|
@ -3,6 +3,7 @@ from __future__ import unicode_literals
|
|||
|
||||
import pytest
|
||||
from spacy.language import Language
|
||||
from spacy.symbols import POS, NOUN
|
||||
|
||||
|
||||
def test_label_types():
|
||||
|
@ -11,3 +12,16 @@ def test_label_types():
|
|||
nlp.get_pipe("tagger").add_label("A")
|
||||
with pytest.raises(ValueError):
|
||||
nlp.get_pipe("tagger").add_label(9)
|
||||
|
||||
|
||||
def test_tagger_begin_training_tag_map():
|
||||
"""Test that Tagger.begin_training() without gold tuples does not clobber
|
||||
the tag map."""
|
||||
nlp = Language()
|
||||
tagger = nlp.create_pipe("tagger")
|
||||
orig_tag_count = len(tagger.labels)
|
||||
tagger.add_label("A", {"POS": "NOUN"})
|
||||
nlp.add_pipe(tagger)
|
||||
nlp.begin_training()
|
||||
assert nlp.vocab.morphology.tag_map["A"] == {POS: NOUN}
|
||||
assert orig_tag_count + 1 == len(nlp.get_pipe("tagger").labels)
|
||||
|
|
|
@ -376,6 +376,6 @@ def test_vector_is_oov():
|
|||
data[1] = 2.0
|
||||
vocab.set_vector("cat", data[0])
|
||||
vocab.set_vector("dog", data[1])
|
||||
assert vocab["cat"].is_oov is True
|
||||
assert vocab["dog"].is_oov is True
|
||||
assert vocab["hamster"].is_oov is False
|
||||
assert vocab["cat"].is_oov is False
|
||||
assert vocab["dog"].is_oov is False
|
||||
assert vocab["hamster"].is_oov is True
|
||||
|
|
|
@ -923,7 +923,7 @@ cdef class Token:
|
|||
@property
|
||||
def is_oov(self):
|
||||
"""RETURNS (bool): Whether the token is out-of-vocabulary."""
|
||||
return self.c.lex.orth in self.vocab.vectors
|
||||
return self.c.lex.orth not in self.vocab.vectors
|
||||
|
||||
@property
|
||||
def is_stop(self):
|
||||
|
|
|
@ -208,6 +208,10 @@ def load_model_from_path(model_path, meta=False, **overrides):
|
|||
pipeline = nlp.Defaults.pipe_names
|
||||
elif pipeline in (False, None):
|
||||
pipeline = []
|
||||
# skip "vocab" from overrides in component initialization since vocab is
|
||||
# already configured from overrides when nlp is initialized above
|
||||
if "vocab" in overrides:
|
||||
del overrides["vocab"]
|
||||
for name in pipeline:
|
||||
if name not in disable:
|
||||
config = meta.get("pipeline_args", {}).get(name, {})
|
||||
|
|
|
@ -12,18 +12,18 @@ expects true examples of a label to have the value `1.0`, and negative examples
|
|||
of a label to have the value `0.0`. Labels not in the dictionary are treated as
|
||||
missing – the gradient for those labels will be zero.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `doc` | `Doc` | The document the annotations refer to. |
|
||||
| `words` | iterable | A sequence of unicode word strings. |
|
||||
| `tags` | iterable | A sequence of strings, representing tag annotations. |
|
||||
| `heads` | iterable | A sequence of integers, representing syntactic head offsets. |
|
||||
| `deps` | iterable | A sequence of strings, representing the syntactic relation types. |
|
||||
| `entities` | iterable | A sequence of named entity annotations, either as BILUO tag strings, or as `(start_char, end_char, label)` tuples, representing the entity positions. If BILUO tag strings, you can specify missing values by setting the tag to None. |
|
||||
| `cats` | dict | Labels for text classification. Each key in the dictionary is a string label for the category and each value is `1.0` (positive) or `0.0` (negative). |
|
||||
| `links` | dict | Labels for entity linking. A dict with `(start_char, end_char)` keys, and the values being dicts with `kb_id:value` entries, representing external KB IDs mapped to either `1.0` (positive) or `0.0` (negative). |
|
||||
| `make_projective` | bool | Whether to projectivize the dependency tree. Defaults to `False.`. |
|
||||
| **RETURNS** | `GoldParse` | The newly constructed object. |
|
||||
| Name | Type | Description |
|
||||
| ----------------- | ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `doc` | `Doc` | The document the annotations refer to. |
|
||||
| `words` | iterable | A sequence of unicode word strings. |
|
||||
| `tags` | iterable | A sequence of strings, representing tag annotations. |
|
||||
| `heads` | iterable | A sequence of integers, representing syntactic head offsets. |
|
||||
| `deps` | iterable | A sequence of strings, representing the syntactic relation types. |
|
||||
| `entities` | iterable | A sequence of named entity annotations, either as BILUO tag strings, or as `(start_char, end_char, label)` tuples, representing the entity positions. If BILUO tag strings, you can specify missing values by setting the tag to None. |
|
||||
| `cats` | dict | Labels for text classification. Each key in the dictionary is a string label for the category and each value is `1.0` (positive) or `0.0` (negative). |
|
||||
| `links` | dict | Labels for entity linking. A dict with `(start_char, end_char)` keys, and the values being dicts with `kb_id:value` entries, representing external KB IDs mapped to either `1.0` (positive) or `0.0` (negative). |
|
||||
| `make_projective` | bool | Whether to projectivize the dependency tree. Defaults to `False`. |
|
||||
| **RETURNS** | `GoldParse` | The newly constructed object. |
|
||||
|
||||
## GoldParse.\_\_len\_\_ {#len tag="method"}
|
||||
|
||||
|
@ -43,17 +43,17 @@ Whether the provided syntactic annotations form a projective dependency tree.
|
|||
|
||||
## Attributes {#attributes}
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------------------------------ | ---- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `words` | list | The words. |
|
||||
| `tags` | list | The part-of-speech tag annotations. |
|
||||
| `heads` | list | The syntactic head annotations. |
|
||||
| `labels` | list | The syntactic relation-type annotations. |
|
||||
| `ner` | list | The named entity annotations as BILUO tags. |
|
||||
| `cand_to_gold` | list | The alignment from candidate tokenization to gold tokenization. |
|
||||
| `gold_to_cand` | list | The alignment from gold tokenization to candidate tokenization. |
|
||||
| `cats` <Tag variant="new">2</Tag> | dict | Keys in the dictionary are string category labels with values `1.0` or `0.0`. |
|
||||
| `links` <Tag variant="new">2.2</Tag> | dict | Keys in the dictionary are `(start_char, end_char)` triples, and the values are dictionaries with `kb_id:value` entries. |
|
||||
| Name | Type | Description |
|
||||
| ------------------------------------ | ---- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `words` | list | The words. |
|
||||
| `tags` | list | The part-of-speech tag annotations. |
|
||||
| `heads` | list | The syntactic head annotations. |
|
||||
| `labels` | list | The syntactic relation-type annotations. |
|
||||
| `ner` | list | The named entity annotations as BILUO tags. |
|
||||
| `cand_to_gold` | list | The alignment from candidate tokenization to gold tokenization. |
|
||||
| `gold_to_cand` | list | The alignment from gold tokenization to candidate tokenization. |
|
||||
| `cats` <Tag variant="new">2</Tag> | dict | Keys in the dictionary are string category labels with values `1.0` or `0.0`. |
|
||||
| `links` <Tag variant="new">2.2</Tag> | dict | Keys in the dictionary are `(start_char, end_char)` triples, and the values are dictionaries with `kb_id:value` entries. |
|
||||
|
||||
## Utilities {#util}
|
||||
|
||||
|
@ -61,7 +61,8 @@ Whether the provided syntactic annotations form a projective dependency tree.
|
|||
|
||||
Convert a list of Doc objects into the
|
||||
[JSON-serializable format](/api/annotation#json-input) used by the
|
||||
[`spacy train`](/api/cli#train) command. Each input doc will be treated as a 'paragraph' in the output doc.
|
||||
[`spacy train`](/api/cli#train) command. Each input doc will be treated as a
|
||||
'paragraph' in the output doc.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
|
|
|
@ -57,7 +57,7 @@ spaCy v2.3, the `Matcher` can also be called on `Span` objects.
|
|||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `doclike` | `Doc`/`Span` | The document to match over or a `Span` (as of v2.3).. |
|
||||
| `doclike` | `Doc`/`Span` | The document to match over or a `Span` (as of v2.3). |
|
||||
| **RETURNS** | list | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. |
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
|
|
@ -36,7 +36,7 @@ for token in doc:
|
|||
| Text | Lemma | POS | Tag | Dep | Shape | alpha | stop |
|
||||
| ------- | ------- | ------- | ----- | ---------- | ------- | ------- | ------- |
|
||||
| Apple | apple | `PROPN` | `NNP` | `nsubj` | `Xxxxx` | `True` | `False` |
|
||||
| is | be | `VERB` | `VBZ` | `aux` | `xx` | `True` | `True` |
|
||||
| is | be | `AUX` | `VBZ` | `aux` | `xx` | `True` | `True` |
|
||||
| looking | look | `VERB` | `VBG` | `ROOT` | `xxxx` | `True` | `False` |
|
||||
| at | at | `ADP` | `IN` | `prep` | `xx` | `True` | `True` |
|
||||
| buying | buy | `VERB` | `VBG` | `pcomp` | `xxxx` | `True` | `False` |
|
||||
|
|
|
@ -662,7 +662,7 @@ One thing to keep in mind is that spaCy expects to train its models from **whole
|
|||
documents**, not just single sentences. If your corpus only contains single
|
||||
sentences, spaCy's models will never learn to expect multi-sentence documents,
|
||||
leading to low performance on real text. To mitigate this problem, you can use
|
||||
the `-N` argument to the `spacy convert` command, to merge some of the sentences
|
||||
the `-n` argument to the `spacy convert` command, to merge some of the sentences
|
||||
into longer pseudo-documents.
|
||||
|
||||
### Training the tagger and parser {#train-tagger-parser}
|
||||
|
|
|
@ -471,7 +471,7 @@ doc = nlp.make_doc("London is a big city in the United Kingdom.")
|
|||
print("Before", doc.ents) # []
|
||||
|
||||
header = [ENT_IOB, ENT_TYPE]
|
||||
attr_array = numpy.zeros((len(doc), len(header)))
|
||||
attr_array = numpy.zeros((len(doc), len(header)), dtype="uint64")
|
||||
attr_array[0, 0] = 3 # B
|
||||
attr_array[0, 1] = doc.vocab.strings["GPE"]
|
||||
doc.from_array(header, attr_array)
|
||||
|
@ -1143,9 +1143,9 @@ from spacy.gold import align
|
|||
other_tokens = ["i", "listened", "to", "obama", "'", "s", "podcasts", "."]
|
||||
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
|
||||
cost, a2b, b2a, a2b_multi, b2a_multi = align(other_tokens, spacy_tokens)
|
||||
print("Misaligned tokens:", cost) # 2
|
||||
print("Edit distance:", cost) # 3
|
||||
print("One-to-one mappings a -> b", a2b) # array([0, 1, 2, 3, -1, -1, 5, 6])
|
||||
print("One-to-one mappings b -> a", b2a) # array([0, 1, 2, 3, 5, 6, 7])
|
||||
print("One-to-one mappings b -> a", b2a) # array([0, 1, 2, 3, -1, 6, 7])
|
||||
print("Many-to-one mappings a -> b", a2b_multi) # {4: 4, 5: 4}
|
||||
print("Many-to-one mappings b-> a", b2a_multi) # {}
|
||||
```
|
||||
|
@ -1153,7 +1153,7 @@ print("Many-to-one mappings b-> a", b2a_multi) # {}
|
|||
Here are some insights from the alignment information generated in the example
|
||||
above:
|
||||
|
||||
- Two tokens are misaligned.
|
||||
- The edit distance (cost) is `3`: two deletions and one insertion.
|
||||
- The one-to-one mappings for the first four tokens are identical, which means
|
||||
they map to each other. This makes sense because they're also identical in the
|
||||
input: `"i"`, `"listened"`, `"to"` and `"obama"`.
|
||||
|
|
|
@ -117,6 +117,18 @@ The Chinese language class supports three word segmentation options:
|
|||
better segmentation for Chinese OntoNotes and the new
|
||||
[Chinese models](/models/zh).
|
||||
|
||||
<Infobox variant="warning">
|
||||
|
||||
Note that [`pkuseg`](https://github.com/lancopku/pkuseg-python) doesn't yet ship
|
||||
with pre-compiled wheels for Python 3.8. If you're running Python 3.8, you can
|
||||
install it from our fork and compile it locally:
|
||||
|
||||
```bash
|
||||
$ pip install https://github.com/honnibal/pkuseg-python/archive/master.zip
|
||||
```
|
||||
|
||||
</Infobox>
|
||||
|
||||
<Accordion title="Details on spaCy's PKUSeg API">
|
||||
|
||||
The `meta` argument of the `Chinese` language class supports the following
|
||||
|
@ -196,12 +208,20 @@ nlp = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "/path/to/pkuseg_mo
|
|||
|
||||
The Japanese language class uses
|
||||
[SudachiPy](https://github.com/WorksApplications/SudachiPy) for word
|
||||
segmentation and part-of-speech tagging. The default Japanese language class
|
||||
and the provided Japanese models use SudachiPy split mode `A`.
|
||||
segmentation and part-of-speech tagging. The default Japanese language class and
|
||||
the provided Japanese models use SudachiPy split mode `A`.
|
||||
|
||||
The `meta` argument of the `Japanese` language class can be used to configure
|
||||
the split mode to `A`, `B` or `C`.
|
||||
|
||||
<Infobox variant="warning">
|
||||
|
||||
If you run into errors related to `sudachipy`, which is currently under active
|
||||
development, we suggest downgrading to `sudachipy==0.4.5`, which is the version
|
||||
used for training the current [Japanese models](/models/ja).
|
||||
|
||||
</Infobox>
|
||||
|
||||
## Installing and using models {#download}
|
||||
|
||||
> #### Downloading models in spaCy < v1.7
|
||||
|
|
|
@ -1158,17 +1158,17 @@ what you need for your application.
|
|||
> available corpus.
|
||||
|
||||
For example, the corpus spaCy's [English models](/models/en) were trained on
|
||||
defines a `PERSON` entity as just the **person name**, without titles like "Mr"
|
||||
or "Dr". This makes sense, because it makes it easier to resolve the entity type
|
||||
back to a knowledge base. But what if your application needs the full names,
|
||||
_including_ the titles?
|
||||
defines a `PERSON` entity as just the **person name**, without titles like "Mr."
|
||||
or "Dr.". This makes sense, because it makes it easier to resolve the entity
|
||||
type back to a knowledge base. But what if your application needs the full
|
||||
names, _including_ the titles?
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
import spacy
|
||||
|
||||
nlp = spacy.load("en_core_web_sm")
|
||||
doc = nlp("Dr Alex Smith chaired first board meeting of Acme Corp Inc.")
|
||||
doc = nlp("Dr. Alex Smith chaired first board meeting of Acme Corp Inc.")
|
||||
print([(ent.text, ent.label_) for ent in doc.ents])
|
||||
```
|
||||
|
||||
|
@ -1233,7 +1233,7 @@ def expand_person_entities(doc):
|
|||
# Add the component after the named entity recognizer
|
||||
nlp.add_pipe(expand_person_entities, after='ner')
|
||||
|
||||
doc = nlp("Dr Alex Smith chaired first board meeting of Acme Corp Inc.")
|
||||
doc = nlp("Dr. Alex Smith chaired first board meeting of Acme Corp Inc.")
|
||||
print([(ent.text, ent.label_) for ent in doc.ents])
|
||||
```
|
||||
|
||||
|
|
|
@ -14,10 +14,10 @@ all language models, and decreased model size and loading times for models with
|
|||
vectors. We've added pretrained models for **Chinese, Danish, Japanese, Polish
|
||||
and Romanian** and updated the training data and vectors for most languages.
|
||||
Model packages with vectors are about **2×** smaller on disk and load
|
||||
**2-4×** faster. For the full changelog, see the [release notes on
|
||||
GitHub](https://github.com/explosion/spaCy/releases/tag/v2.3.0). For more
|
||||
details and a behind-the-scenes look at the new release, [see our blog
|
||||
post](https://explosion.ai/blog/spacy-v2-3).
|
||||
**2-4×** faster. For the full changelog, see the
|
||||
[release notes on GitHub](https://github.com/explosion/spaCy/releases/tag/v2.3.0).
|
||||
For more details and a behind-the-scenes look at the new release,
|
||||
[see our blog post](https://explosion.ai/blog/spacy-v2-3).
|
||||
|
||||
### Expanded model families with vectors {#models}
|
||||
|
||||
|
@ -33,10 +33,10 @@ post](https://explosion.ai/blog/spacy-v2-3).
|
|||
|
||||
With new model families for Chinese, Danish, Polish, Romanian and Chinese plus
|
||||
`md` and `lg` models with word vectors for all languages, this release provides
|
||||
a total of 46 model packages. For models trained using [Universal
|
||||
Dependencies](https://universaldependencies.org) corpora, the training data has
|
||||
been updated to UD v2.5 (v2.6 for Japanese, v2.3 for Polish) and Dutch has been
|
||||
extended to include both UD Dutch Alpino and LassySmall.
|
||||
a total of 46 model packages. For models trained using
|
||||
[Universal Dependencies](https://universaldependencies.org) corpora, the
|
||||
training data has been updated to UD v2.5 (v2.6 for Japanese, v2.3 for Polish)
|
||||
and Dutch has been extended to include both UD Dutch Alpino and LassySmall.
|
||||
|
||||
<Infobox>
|
||||
|
||||
|
@ -48,6 +48,7 @@ extended to include both UD Dutch Alpino and LassySmall.
|
|||
### Chinese {#chinese}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.lang.zh import Chinese
|
||||
>
|
||||
|
@ -57,41 +58,49 @@ extended to include both UD Dutch Alpino and LassySmall.
|
|||
>
|
||||
> # Append words to user dict
|
||||
> nlp.tokenizer.pkuseg_update_user_dict(["中国", "ABC"])
|
||||
> ```
|
||||
|
||||
This release adds support for
|
||||
[pkuseg](https://github.com/lancopku/pkuseg-python) for word segmentation and
|
||||
the new Chinese models ship with a custom pkuseg model trained on OntoNotes.
|
||||
The Chinese tokenizer can be initialized with both `pkuseg` and custom models
|
||||
and the `pkuseg` user dictionary is easy to customize.
|
||||
[`pkuseg`](https://github.com/lancopku/pkuseg-python) for word segmentation and
|
||||
the new Chinese models ship with a custom pkuseg model trained on OntoNotes. The
|
||||
Chinese tokenizer can be initialized with both `pkuseg` and custom models and
|
||||
the `pkuseg` user dictionary is easy to customize. Note that
|
||||
[`pkuseg`](https://github.com/lancopku/pkuseg-python) doesn't yet ship with
|
||||
pre-compiled wheels for Python 3.8. See the
|
||||
[usage documentation](/usage/models#chinese) for details on how to install it on
|
||||
Python 3.8.
|
||||
|
||||
<Infobox>
|
||||
|
||||
**Chinese:** [Chinese tokenizer usage](/usage/models#chinese)
|
||||
**Models:** [Chinese models](/models/zh) **Usage: **
|
||||
[Chinese tokenizer usage](/usage/models#chinese)
|
||||
|
||||
</Infobox>
|
||||
|
||||
### Japanese {#japanese}
|
||||
|
||||
The updated Japanese language class switches to
|
||||
[SudachiPy](https://github.com/WorksApplications/SudachiPy) for word
|
||||
segmentation and part-of-speech tagging. Using `sudachipy` greatly simplifies
|
||||
[`SudachiPy`](https://github.com/WorksApplications/SudachiPy) for word
|
||||
segmentation and part-of-speech tagging. Using `SudachiPy` greatly simplifies
|
||||
installing spaCy for Japanese, which is now possible with a single command:
|
||||
`pip install spacy[ja]`.
|
||||
|
||||
<Infobox>
|
||||
|
||||
**Japanese:** [Japanese tokenizer usage](/usage/models#japanese)
|
||||
**Models:** [Japanese models](/models/ja) **Usage:**
|
||||
[Japanese tokenizer usage](/usage/models#japanese)
|
||||
|
||||
</Infobox>
|
||||
|
||||
### Small CLI updates
|
||||
|
||||
- `spacy debug-data` provides the coverage of the vectors in a base model with
|
||||
`spacy debug-data lang train dev -b base_model`
|
||||
- `spacy evaluate` supports `blank:lg` (e.g. `spacy evaluate blank:en
|
||||
dev.json`) to evaluate the tokenization accuracy without loading a model
|
||||
- `spacy train` on GPU restricts the CPU timing evaluation to the first
|
||||
iteration
|
||||
- [`spacy debug-data`](/api/cli#debug-data) provides the coverage of the vectors
|
||||
in a base model with `spacy debug-data lang train dev -b base_model`
|
||||
- [`spacy evaluate`](/api/cli#evaluate) supports `blank:lg` (e.g.
|
||||
`spacy evaluate blank:en dev.json`) to evaluate the tokenization accuracy
|
||||
without loading a model
|
||||
- [`spacy train`](/api/cli#train) on GPU restricts the CPU timing evaluation to
|
||||
the first iteration
|
||||
|
||||
## Backwards incompatibilities {#incompat}
|
||||
|
||||
|
@ -100,8 +109,8 @@ installing spaCy for Japanese, which is now possible with a single command:
|
|||
If you've been training **your own models**, you'll need to **retrain** them
|
||||
with the new version. Also don't forget to upgrade all models to the latest
|
||||
versions. Models for earlier v2 releases (v2.0, v2.1, v2.2) aren't compatible
|
||||
with models for v2.3. To check if all of your models are up to date, you can
|
||||
run the [`spacy validate`](/api/cli#validate) command.
|
||||
with models for v2.3. To check if all of your models are up to date, you can run
|
||||
the [`spacy validate`](/api/cli#validate) command.
|
||||
|
||||
</Infobox>
|
||||
|
||||
|
@ -116,21 +125,20 @@ run the [`spacy validate`](/api/cli#validate) command.
|
|||
> directly.
|
||||
|
||||
- If you're training new models, you'll want to install the package
|
||||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data),
|
||||
which now includes both the lemmatization tables (as in v2.2) and the
|
||||
normalization tables (new in v2.3). If you're using pretrained models,
|
||||
**nothing changes**, because the relevant tables are included in the model
|
||||
packages.
|
||||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data), which
|
||||
now includes both the lemmatization tables (as in v2.2) and the normalization
|
||||
tables (new in v2.3). If you're using pretrained models, **nothing changes**,
|
||||
because the relevant tables are included in the model packages.
|
||||
- Due to the updated Universal Dependencies training data, the fine-grained
|
||||
part-of-speech tags will change for many provided language models. The
|
||||
coarse-grained part-of-speech tagset remains the same, but the mapping from
|
||||
particular fine-grained to coarse-grained tags may show minor differences.
|
||||
- For French, Italian, Portuguese and Spanish, the fine-grained part-of-speech
|
||||
tagsets contain new merged tags related to contracted forms, such as
|
||||
`ADP_DET` for French `"au"`, which maps to UPOS `ADP` based on the head
|
||||
`"à"`. This increases the accuracy of the models by improving the alignment
|
||||
between spaCy's tokenization and Universal Dependencies multi-word tokens
|
||||
used for contractions.
|
||||
tagsets contain new merged tags related to contracted forms, such as `ADP_DET`
|
||||
for French `"au"`, which maps to UPOS `ADP` based on the head `"à"`. This
|
||||
increases the accuracy of the models by improving the alignment between
|
||||
spaCy's tokenization and Universal Dependencies multi-word tokens used for
|
||||
contractions.
|
||||
|
||||
### Migrating from spaCy 2.2 {#migrating}
|
||||
|
||||
|
@ -143,29 +151,81 @@ v2.3 so that `token_match` has priority over prefixes and suffixes as in v2.2.1
|
|||
and earlier versions.
|
||||
|
||||
A new tokenizer setting `url_match` has been introduced in v2.3.0 to handle
|
||||
cases like URLs where the tokenizer should remove prefixes and suffixes (e.g.,
|
||||
a comma at the end of a URL) before applying the match. See the full [tokenizer
|
||||
documentation](/usage/linguistic-features#tokenization) and try out
|
||||
cases like URLs where the tokenizer should remove prefixes and suffixes (e.g., a
|
||||
comma at the end of a URL) before applying the match. See the full
|
||||
[tokenizer documentation](/usage/linguistic-features#tokenization) and try out
|
||||
[`nlp.tokenizer.explain()`](/usage/linguistic-features#tokenizer-debug) when
|
||||
debugging your tokenizer configuration.
|
||||
|
||||
#### Warnings configuration
|
||||
|
||||
spaCy's custom warnings have been replaced with native python
|
||||
spaCy's custom warnings have been replaced with native Python
|
||||
[`warnings`](https://docs.python.org/3/library/warnings.html). Instead of
|
||||
setting `SPACY_WARNING_IGNORE`, use the [warnings
|
||||
setting `SPACY_WARNING_IGNORE`, use the [`warnings`
|
||||
filters](https://docs.python.org/3/library/warnings.html#the-warnings-filter)
|
||||
to manage warnings.
|
||||
|
||||
```diff
|
||||
import spacy
|
||||
+ import warnings
|
||||
|
||||
- spacy.errors.SPACY_WARNING_IGNORE.append('W007')
|
||||
+ warnings.filterwarnings("ignore", message=r"\\[W007\\]", category=UserWarning)
|
||||
```
|
||||
|
||||
#### Normalization tables
|
||||
|
||||
The normalization tables have moved from the language data in
|
||||
[`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang) to
|
||||
the package
|
||||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). If
|
||||
you're adding data for a new language, the normalization table should be added
|
||||
to `spacy-lookups-data`. See [adding norm
|
||||
exceptions](/usage/adding-languages#norm-exceptions).
|
||||
[`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang) to the
|
||||
package [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data).
|
||||
If you're adding data for a new language, the normalization table should be
|
||||
added to `spacy-lookups-data`. See
|
||||
[adding norm exceptions](/usage/adding-languages#norm-exceptions).
|
||||
|
||||
#### No preloaded lexemes/vocab for models with vectors
|
||||
|
||||
To reduce the initial loading time, the lexemes in `nlp.vocab` are no longer
|
||||
loaded on initialization for models with vectors. As you process texts, the
|
||||
lexemes will be added to the vocab automatically, just as in models without
|
||||
vectors.
|
||||
|
||||
To see the number of unique vectors and number of words with vectors, see
|
||||
`nlp.meta['vectors']`, for example for `en_core_web_md` there are `20000`
|
||||
unique vectors and `684830` words with vectors:
|
||||
|
||||
```python
|
||||
{
|
||||
'width': 300,
|
||||
'vectors': 20000,
|
||||
'keys': 684830,
|
||||
'name': 'en_core_web_md.vectors'
|
||||
}
|
||||
```
|
||||
|
||||
If required, for instance if you are working directly with word vectors rather
|
||||
than processing texts, you can load all lexemes for words with vectors at once:
|
||||
|
||||
```python
|
||||
for orth in nlp.vocab.vectors:
|
||||
_ = nlp.vocab[orth]
|
||||
```
|
||||
|
||||
#### Lexeme.is_oov and Token.is_oov
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
Due to a bug, the values for `is_oov` are reversed in v2.3.0, but this will be
|
||||
fixed in the next patch release v2.3.1.
|
||||
|
||||
</Infobox>
|
||||
|
||||
In v2.3, `Lexeme.is_oov` and `Token.is_oov` are `True` if the lexeme does not
|
||||
have a word vector. This is equivalent to `token.orth not in
|
||||
nlp.vocab.vectors`.
|
||||
|
||||
Previously in v2.2, `is_oov` corresponded to whether a lexeme had stored
|
||||
probability and cluster features. The probability and cluster features are no
|
||||
longer included in the provided medium and large models (see the next section).
|
||||
|
||||
#### Probability and cluster features
|
||||
|
||||
|
@ -181,28 +241,28 @@ exceptions](/usage/adding-languages#norm-exceptions).
|
|||
|
||||
The `Token.prob` and `Token.cluster` features, which are no longer used by the
|
||||
core pipeline components as of spaCy v2, are no longer provided in the
|
||||
pretrained models to reduce the model size. To keep these features available
|
||||
for users relying on them, the `prob` and `cluster` features for the most
|
||||
frequent 1M tokens have been moved to
|
||||
pretrained models to reduce the model size. To keep these features available for
|
||||
users relying on them, the `prob` and `cluster` features for the most frequent
|
||||
1M tokens have been moved to
|
||||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) as
|
||||
`extra` features for the relevant languages (English, German, Greek and
|
||||
Spanish).
|
||||
|
||||
The extra tables are loaded lazily, so if you have `spacy-lookups-data`
|
||||
installed and your code accesses `Token.prob`, the full table is loaded into
|
||||
the model vocab, which will take a few seconds on initial loading. When you
|
||||
save this model after loading the `prob` table, the full `prob` table will be
|
||||
saved as part of the model vocab.
|
||||
installed and your code accesses `Token.prob`, the full table is loaded into the
|
||||
model vocab, which will take a few seconds on initial loading. When you save
|
||||
this model after loading the `prob` table, the full `prob` table will be saved
|
||||
as part of the model vocab.
|
||||
|
||||
If you'd like to include custom `cluster`, `prob`, or `sentiment` tables as
|
||||
part of a new model, add the data to
|
||||
If you'd like to include custom `cluster`, `prob`, or `sentiment` tables as part
|
||||
of a new model, add the data to
|
||||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) under
|
||||
the entry point `lg_extra`, e.g. `en_extra` for English. Alternatively, you can
|
||||
initialize your [`Vocab`](/api/vocab) with the `lookups_extra` argument with a
|
||||
[`Lookups`](/api/lookups) object that includes the tables `lexeme_cluster`,
|
||||
`lexeme_prob`, `lexeme_sentiment` or `lexeme_settings`. `lexeme_settings` is
|
||||
currently only used to provide a custom `oov_prob`. See examples in the [`data`
|
||||
directory](https://github.com/explosion/spacy-lookups-data/tree/master/spacy_lookups_data/data)
|
||||
currently only used to provide a custom `oov_prob`. See examples in the
|
||||
[`data` directory](https://github.com/explosion/spacy-lookups-data/tree/master/spacy_lookups_data/data)
|
||||
in `spacy-lookups-data`.
|
||||
|
||||
#### Initializing new models without extra lookups tables
|
||||
|
|
|
@ -23,9 +23,9 @@
|
|||
"apiKey": "371e26ed49d29a27bd36273dfdaf89af",
|
||||
"indexName": "spacy"
|
||||
},
|
||||
"binderUrl": "ines/spacy-io-binder",
|
||||
"binderUrl": "explosion/spacy-io-binder",
|
||||
"binderBranch": "live",
|
||||
"binderVersion": "2.2.0",
|
||||
"binderVersion": "2.3.0",
|
||||
"sections": [
|
||||
{ "id": "usage", "title": "Usage Documentation", "theme": "blue" },
|
||||
{ "id": "models", "title": "Models Documentation", "theme": "blue" },
|
||||
|
|
Loading…
Reference in New Issue
Block a user