mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Remove unused, experimental multi-task components (#11919)
* Remove experimental multi-task components
These are incomplete implementations and are not usable in their current state.
* Remove orphaned error message
* Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)
* Switch ubuntu-latest to ubuntu-20.04 in main tests
* Only use 20.04 for 3.6
* Revert "Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)"
This reverts commit 77c0fd7b17
.
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
This commit is contained in:
parent
d60997febb
commit
f5aabaf7d6
1
setup.py
1
setup.py
|
@ -38,7 +38,6 @@ MOD_NAMES = [
|
|||
"spacy.pipeline.dep_parser",
|
||||
"spacy.pipeline._edit_tree_internals.edit_trees",
|
||||
"spacy.pipeline.morphologizer",
|
||||
"spacy.pipeline.multitask",
|
||||
"spacy.pipeline.ner",
|
||||
"spacy.pipeline.pipe",
|
||||
"spacy.pipeline.trainable_pipe",
|
||||
|
|
|
@ -243,8 +243,6 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"https://spacy.io/usage/models")
|
||||
E011 = ("Unknown operator: '{op}'. Options: {opts}")
|
||||
E012 = ("Cannot add pattern for zero tokens to matcher.\nKey: {key}")
|
||||
E016 = ("MultitaskObjective target should be function or one of: dep, "
|
||||
"tag, ent, dep_tag_offset, ent_tag.")
|
||||
E017 = ("Can only add 'str' inputs to StringStore. Got type: {value_type}")
|
||||
E018 = ("Can't retrieve string for hash '{hash_value}'. This usually "
|
||||
"refers to an issue with the `Vocab` or `StringStore`.")
|
||||
|
|
|
@ -1,221 +0,0 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import Optional
|
||||
import numpy
|
||||
from thinc.api import CosineDistance, to_categorical, Model, Config
|
||||
from thinc.api import set_dropout_rate
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
from .trainable_pipe import TrainablePipe
|
||||
from .tagger import Tagger
|
||||
from ..training import validate_examples
|
||||
from ..language import Language
|
||||
from ._parser_internals import nonproj
|
||||
from ..attrs import POS, ID
|
||||
from ..errors import Errors
|
||||
|
||||
|
||||
default_model_config = """
|
||||
[model]
|
||||
@architectures = "spacy.MultiTask.v1"
|
||||
maxout_pieces = 3
|
||||
token_vector_width = 96
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.HashEmbedCNN.v2"
|
||||
pretrained_vectors = null
|
||||
width = 96
|
||||
depth = 4
|
||||
embed_size = 2000
|
||||
window_size = 1
|
||||
maxout_pieces = 2
|
||||
subword_features = true
|
||||
"""
|
||||
DEFAULT_MT_MODEL = Config().from_str(default_model_config)["model"]
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"nn_labeller",
|
||||
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
|
||||
)
|
||||
def make_nn_labeller(nlp: Language, name: str, model: Model, labels: Optional[dict], target: str):
|
||||
return MultitaskObjective(nlp.vocab, model, name)
|
||||
|
||||
|
||||
class MultitaskObjective(Tagger):
|
||||
"""Experimental: Assist training of a parser or tagger, by training a
|
||||
side-objective.
|
||||
"""
|
||||
|
||||
def __init__(self, vocab, model, name="nn_labeller", *, target):
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self.name = name
|
||||
if target == "dep":
|
||||
self.make_label = self.make_dep
|
||||
elif target == "tag":
|
||||
self.make_label = self.make_tag
|
||||
elif target == "ent":
|
||||
self.make_label = self.make_ent
|
||||
elif target == "dep_tag_offset":
|
||||
self.make_label = self.make_dep_tag_offset
|
||||
elif target == "ent_tag":
|
||||
self.make_label = self.make_ent_tag
|
||||
elif target == "sent_start":
|
||||
self.make_label = self.make_sent_start
|
||||
elif hasattr(target, "__call__"):
|
||||
self.make_label = target
|
||||
else:
|
||||
raise ValueError(Errors.E016)
|
||||
cfg = {"labels": {}, "target": target}
|
||||
self.cfg = dict(cfg)
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
return self.cfg.setdefault("labels", {})
|
||||
|
||||
@labels.setter
|
||||
def labels(self, value):
|
||||
self.cfg["labels"] = value
|
||||
|
||||
def set_annotations(self, docs, dep_ids):
|
||||
pass
|
||||
|
||||
def initialize(self, get_examples, nlp=None, labels=None):
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
err = Errors.E930.format(name="MultitaskObjective", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
if labels is not None:
|
||||
self.labels = labels
|
||||
else:
|
||||
for example in get_examples():
|
||||
for token in example.y:
|
||||
label = self.make_label(token)
|
||||
if label is not None and label not in self.labels:
|
||||
self.labels[label] = len(self.labels)
|
||||
self.model.initialize() # TODO: fix initialization by defining X and Y
|
||||
|
||||
def predict(self, docs):
|
||||
tokvecs = self.model.get_ref("tok2vec")(docs)
|
||||
scores = self.model.get_ref("softmax")(tokvecs)
|
||||
return tokvecs, scores
|
||||
|
||||
def get_loss(self, examples, scores):
|
||||
cdef int idx = 0
|
||||
correct = numpy.zeros((scores.shape[0],), dtype="i")
|
||||
guesses = scores.argmax(axis=1)
|
||||
docs = [eg.predicted for eg in examples]
|
||||
for i, eg in enumerate(examples):
|
||||
# Handles alignment for tokenization differences
|
||||
doc_annots = eg.get_aligned() # TODO
|
||||
for j in range(len(eg.predicted)):
|
||||
tok_annots = {key: values[j] for key, values in tok_annots.items()}
|
||||
label = self.make_label(j, tok_annots)
|
||||
if label is None or label not in self.labels:
|
||||
correct[idx] = guesses[idx]
|
||||
else:
|
||||
correct[idx] = self.labels[label]
|
||||
idx += 1
|
||||
correct = self.model.ops.xp.array(correct, dtype="i")
|
||||
d_scores = scores - to_categorical(correct, n_classes=scores.shape[1])
|
||||
loss = (d_scores**2).sum()
|
||||
return float(loss), d_scores
|
||||
|
||||
@staticmethod
|
||||
def make_dep(token):
|
||||
return token.dep_
|
||||
|
||||
@staticmethod
|
||||
def make_tag(token):
|
||||
return token.tag_
|
||||
|
||||
@staticmethod
|
||||
def make_ent(token):
|
||||
if token.ent_iob_ == "O":
|
||||
return "O"
|
||||
else:
|
||||
return token.ent_iob_ + "-" + token.ent_type_
|
||||
|
||||
@staticmethod
|
||||
def make_dep_tag_offset(token):
|
||||
dep = token.dep_
|
||||
tag = token.tag_
|
||||
offset = token.head.i - token.i
|
||||
offset = min(offset, 2)
|
||||
offset = max(offset, -2)
|
||||
return f"{dep}-{tag}:{offset}"
|
||||
|
||||
@staticmethod
|
||||
def make_ent_tag(token):
|
||||
if token.ent_iob_ == "O":
|
||||
ent = "O"
|
||||
else:
|
||||
ent = token.ent_iob_ + "-" + token.ent_type_
|
||||
tag = token.tag_
|
||||
return f"{tag}-{ent}"
|
||||
|
||||
@staticmethod
|
||||
def make_sent_start(token):
|
||||
"""A multi-task objective for representing sentence boundaries,
|
||||
using BILU scheme. (O is impossible)
|
||||
"""
|
||||
if token.is_sent_start and token.is_sent_end:
|
||||
return "U-SENT"
|
||||
elif token.is_sent_start:
|
||||
return "B-SENT"
|
||||
else:
|
||||
return "I-SENT"
|
||||
|
||||
|
||||
class ClozeMultitask(TrainablePipe):
|
||||
def __init__(self, vocab, model, **cfg):
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self.cfg = cfg
|
||||
self.distance = CosineDistance(ignore_zeros=True, normalize=False) # TODO: in config
|
||||
|
||||
def set_annotations(self, docs, dep_ids):
|
||||
pass
|
||||
|
||||
def initialize(self, get_examples, nlp=None):
|
||||
self.model.initialize() # TODO: fix initialization by defining X and Y
|
||||
X = self.model.ops.alloc((5, self.model.get_ref("tok2vec").get_dim("nO")))
|
||||
self.model.output_layer.initialize(X)
|
||||
|
||||
def predict(self, docs):
|
||||
tokvecs = self.model.get_ref("tok2vec")(docs)
|
||||
vectors = self.model.get_ref("output_layer")(tokvecs)
|
||||
return tokvecs, vectors
|
||||
|
||||
def get_loss(self, examples, vectors, prediction):
|
||||
validate_examples(examples, "ClozeMultitask.get_loss")
|
||||
# The simplest way to implement this would be to vstack the
|
||||
# token.vector values, but that's a bit inefficient, especially on GPU.
|
||||
# Instead we fetch the index into the vectors table for each of our tokens,
|
||||
# and look them up all at once. This prevents data copying.
|
||||
ids = self.model.ops.flatten([eg.predicted.to_array(ID).ravel() for eg in examples])
|
||||
target = vectors[ids]
|
||||
gradient = self.distance.get_grad(prediction, target)
|
||||
loss = self.distance.get_loss(prediction, target)
|
||||
return float(loss), gradient
|
||||
|
||||
def update(self, examples, *, drop=0., sgd=None, losses=None):
|
||||
pass
|
||||
|
||||
def rehearse(self, examples, drop=0., sgd=None, losses=None):
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
set_dropout_rate(self.model, drop)
|
||||
validate_examples(examples, "ClozeMultitask.rehearse")
|
||||
docs = [eg.predicted for eg in examples]
|
||||
predictions, bp_predictions = self.model.begin_update()
|
||||
loss, d_predictions = self.get_loss(examples, self.vocab.vectors.data, predictions)
|
||||
bp_predictions(d_predictions)
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
return losses
|
||||
|
||||
def add_label(self, label):
|
||||
raise NotImplementedError
|
Loading…
Reference in New Issue
Block a user