Add first draft of spaCy+keras integration example.

This commit is contained in:
Matthew Honnibal 2016-10-19 14:43:13 +02:00
parent 04d1c959da
commit f60cefc048

View File

@ -0,0 +1,164 @@
import numpy
from collections import defaultdict
import spacy
class SentimentAnalyser(object):
@classmethod
def load(cls, path, nlp):
pass
def __init__(self, model):
self._model = model
def __call__(self, doc):
X = get_features([doc], self.max_length)
y = self._keras_model.predict(X)
self.set_sentiment(doc, y)
def pipe(self, docs, batch_size=1000, n_threads=2):
for minibatch in partition_all(batch_size, docs):
Xs = _get_features(minibatch)
ys = self._model.predict(X)
for i, doc in enumerate(minibatch):
doc.user_data['sentiment'] = ys[i]
def set_sentiment(self, doc, y):
doc.user_data['sentiment'] = y
def compile_lstm(embeddings, shape, settings, optimizer):
model = Sequential()
model.add(
Embedding(
embeddings.shape[1],
embeddings.shape[0],
input_length=shape['max_length'],
trainable=False,
weights=[embeddings]
)
)
model.add(Bidirectional(LSTM(shape['nr_hidden'])))
model.add(Dropout(settings['dropout']))
model.add(Dense(shape['nr_class'], activation='sigmoid'))
return model
def get_embeddings(vocab):
'''
Get a numpy vector of the word embeddings. The Lexeme.rank attribute will
be the index into the table. We're going to be "decadent" here and use
1m vectors, because we're not going to fine-tune them.
'''
max_rank = max(lex.rank for lex in nlp.vocab if lex.has_vector)
vectors = numpy.ndarray((max_rank+1, nlp.vocab.vectors_length), dtype='float32')
for lex in vocab:
if lex.has_vector:
vectors[lex.rank] = lex.vector
return vectors
def get_features(docs, max_length):
Xs = numpy.zeros(len(docs), max_length, dtype='int32')
for i, doc in enumerate(minibatch):
for j, token in enumerate(doc[:max_length]):
Xs[i, j] = token.rank if token.has_vector else 0
return Xs
def train(train_texts, train_labels, dev_texts, dev_labels,
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5):
nlp = spacy.load('en', parser=False, tagger=False, entity=False)
model = _compile_model(
_get_embeddings(
nlp.vocab),
lstm_shape,
lstm_settings,
lstm_optimizer)
model.fit(
_get_features(
nlp.pipe(
train_texts)),
train_ys,
_get_features(
nlp.pipe(
dev_texts)),
dev_ys,
nb_epoch=nb_epoch,
batch_size=batch_size)
model.save(model_dir)
def demonstrate_runtime(model_dir, texts):
'''Demonstrate runtime usage of the custom sentiment model with spaCy.
Here we return a dictionary mapping entities to the average sentiment of the
documents they occurred in.
'''
def create_pipeline(nlp):
'''
This could be a lambda, but named functions are easier to read in Python.
'''
return [nlp.tagger, nlp.entity, SentimentAnalyser.load(model_dir, nlp)]
nlp = spacy.load('en', create_pipeline=create_pipeline)
entity_sentiments = defaultdict(float)
entity_freqs = defaultdict(int)
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
sentiment = doc.user_data['sentiment']
for ent in doc.ents:
entity_sentiments[ent.text] += sentiment
entity_freqs[ent.text] += 1
# Compute estimate of P(sentiment | entity)
for entity, sentiment in entity_freqs.items():
entity_sentiments[entity] /= entity_freqs[entity]
return entity_sentiments
def read_data(data_dir, limit=0):
examples = []
for subdir, label in (('pos', 1), ('neg', 0)):
for filename in (data_dir / subdir).iterdir():
with filename.open() as file_:
text = filename.read()
examples.append((text, label))
random.shuffle(examples)
if limit >= 1:
examples = examples[:limit]
return zip(*examples) # Unzips into two lists
@plac.annotations(
language=("The language to train", "positional", None, str, ['en','de', 'zh']),
train_loc=("Location of training file or directory"),
dev_loc=("Location of development file or directory"),
model_dir=("Location of output model directory",),
is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
nr_hidden=("Number of hidden units", "flag", "H", int),
max_length=("Maximum sentence length", "flag", "L", int),
dropout=("Dropout", "flag", "d", float),
nr_epoch=("Number of training epochs", "flag", "i", int),
batch_size=("Size of minibatches for training LSTM", "flag", "b", int),
nr_examples=("Limit to N examples", "flag", "n", int)
)
def main(model_dir, train_dir, dev_dir,
is_runtime=False,
nr_hidden=64, max_length=100, # Shape
dropout=0.5, # General NN config
nb_epoch=5, batch_size=100, nr_examples=-1): # Training params
if is_runtime:
dev_texts, dev_labels = read_dev(dev_dir)
demonstrate_runtime(model_dir, dev_texts)
else:
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
dev_texts, dev_labels = read_dev(dev_dir)
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
{'nr_hidden': nr_hidden, 'max_length': max_length},
{'dropout': 0.5},
{},
nb_epoch=nb_epoch, batch_size=batch_size)
if __name__ == '__main__':
plac.call(main)