mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 09:26:27 +03:00
Fix absolute imports and avoid importing from cli
This commit is contained in:
parent
7e8be44218
commit
f65e36925d
15
spacy/_ml.py
15
spacy/_ml.py
|
@ -808,3 +808,18 @@ def _replace_word(word, random_words, mask="[MASK]"):
|
|||
return random_words.next()
|
||||
else:
|
||||
return word
|
||||
|
||||
|
||||
def get_cossim_loss(yh, y):
|
||||
# Add a small constant to avoid 0 vectors
|
||||
yh = yh + 1e-8
|
||||
y = y + 1e-8
|
||||
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
|
||||
xp = get_array_module(yh)
|
||||
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
|
||||
norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
|
||||
mul_norms = norm_yh * norm_y
|
||||
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
|
||||
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
|
||||
loss = xp.abs(cosine - 1).sum()
|
||||
return loss, -d_yh
|
||||
|
|
|
@ -10,7 +10,7 @@ from collections import Counter
|
|||
from pathlib import Path
|
||||
from thinc.v2v import Affine, Maxout
|
||||
from thinc.misc import LayerNorm as LN
|
||||
from thinc.neural.util import prefer_gpu, get_array_module
|
||||
from thinc.neural.util import prefer_gpu
|
||||
from wasabi import Printer
|
||||
import srsly
|
||||
|
||||
|
@ -18,7 +18,7 @@ from ..errors import Errors
|
|||
from ..tokens import Doc
|
||||
from ..attrs import ID, HEAD
|
||||
from .._ml import Tok2Vec, flatten, chain, create_default_optimizer
|
||||
from .._ml import masked_language_model
|
||||
from .._ml import masked_language_model, get_cossim_loss
|
||||
from .. import util
|
||||
from .train import _load_pretrained_tok2vec
|
||||
|
||||
|
@ -307,21 +307,6 @@ def get_vectors_loss(ops, docs, prediction, objective="L2"):
|
|||
return loss, d_target
|
||||
|
||||
|
||||
def get_cossim_loss(yh, y):
|
||||
# Add a small constant to avoid 0 vectors
|
||||
yh = yh + 1e-8
|
||||
y = y + 1e-8
|
||||
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
|
||||
xp = get_array_module(yh)
|
||||
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
|
||||
norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
|
||||
mul_norms = norm_yh * norm_y
|
||||
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
|
||||
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
|
||||
loss = xp.abs(cosine - 1).sum()
|
||||
return loss, -d_yh
|
||||
|
||||
|
||||
def create_pretraining_model(nlp, tok2vec):
|
||||
"""Define a network for the pretraining. We simply add an output layer onto
|
||||
the tok2vec input model. The tok2vec input model needs to be a model that
|
||||
|
|
|
@ -13,9 +13,6 @@ from thinc.misc import LayerNorm
|
|||
from thinc.neural.util import to_categorical
|
||||
from thinc.neural.util import get_array_module
|
||||
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
from spacy.cli.pretrain import get_cossim_loss
|
||||
from .functions import merge_subtokens
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..syntax.nn_parser cimport Parser
|
||||
|
@ -27,7 +24,8 @@ from ..vocab cimport Vocab
|
|||
from ..syntax import nonproj
|
||||
from ..attrs import POS, ID
|
||||
from ..parts_of_speech import X
|
||||
from .._ml import Tok2Vec, build_tagger_model, cosine
|
||||
from ..kb import KnowledgeBase
|
||||
from .._ml import Tok2Vec, build_tagger_model, cosine, get_cossim_loss
|
||||
from .._ml import build_text_classifier, build_simple_cnn_text_classifier
|
||||
from .._ml import build_bow_text_classifier, build_nel_encoder
|
||||
from .._ml import link_vectors_to_models, zero_init, flatten
|
||||
|
|
Loading…
Reference in New Issue
Block a user