This commit is contained in:
Matthew Honnibal 2015-10-13 05:25:49 +02:00
commit f6d74b14de
21 changed files with 198 additions and 18 deletions

View File

@ -29,5 +29,6 @@ cdef class Model:
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
cdef object model_loc
cdef object _templates
cdef Extractor _extractor
cdef LinearModel _model

View File

@ -3,6 +3,7 @@ from __future__ import unicode_literals
from __future__ import division
from os import path
import tempfile
import os
import shutil
import json
@ -52,6 +53,7 @@ cdef class Model:
def __init__(self, n_classes, templates, model_loc=None):
if model_loc is not None and path.isdir(model_loc):
model_loc = path.join(model_loc, 'model')
self._templates = templates
self.n_classes = n_classes
self._extractor = Extractor(templates)
self.n_feats = self._extractor.n_templ
@ -60,6 +62,18 @@ cdef class Model:
if self.model_loc and path.exists(self.model_loc):
self._model.load(self.model_loc, freq_thresh=0)
def __reduce__(self):
model_loc = tempfile.mkstemp()
# TODO: This is a potentially buggy implementation. We're not really
# given a good guarantee that all internal state is saved correctly here,
# since there are learning parameters for e.g. the model averaging in
# averaged perceptron, the gradient calculations in AdaGrad, etc
# that aren't necessarily saved. So, if we're part way through training
# the model, and then we pickle it, we won't recover the state correctly.
self._model.dump(model_loc)
return (Model, (self.n_classes, self.templates, model_loc),
None, None)
def predict(self, Example eg):
self.set_scores(eg.c.scores, eg.c.atoms)
eg.c.guess = arg_max_if_true(eg.c.scores, eg.c.is_valid, self.n_classes)

View File

@ -207,6 +207,12 @@ class Language(object):
self.entity = entity
self.matcher = matcher
def __reduce__(self):
return (self.__class__,
(None, self.vocab, self.tokenizer, self.tagger, self.parser,
self.entity, self.matcher, None),
None, None)
def __call__(self, text, tag=True, parse=True, entity=True):
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string

View File

@ -168,13 +168,7 @@ cdef class Matcher:
cdef Pool mem
cdef vector[Pattern*] patterns
cdef readonly Vocab vocab
def __init__(self, vocab, patterns):
self.vocab = vocab
self.mem = Pool()
self.vocab = vocab
for entity_key, (etype, attrs, specs) in sorted(patterns.items()):
self.add(entity_key, etype, attrs, specs)
cdef object _patterns
@classmethod
def from_dir(cls, data_dir, Vocab vocab):
@ -186,10 +180,22 @@ cdef class Matcher:
else:
return cls(vocab, {})
def __init__(self, vocab, patterns):
self.vocab = vocab
self.mem = Pool()
self.vocab = vocab
self._patterns = dict(patterns)
for entity_key, (etype, attrs, specs) in sorted(patterns.items()):
self.add(entity_key, etype, attrs, specs)
def __reduce__(self):
return (self.__class__, (self.vocab, self._patterns), None, None)
property n_patterns:
def __get__(self): return self.patterns.size()
def add(self, entity_key, etype, attrs, specs):
self._patterns[entity_key] = (etype, dict(attrs), list(specs))
if isinstance(entity_key, basestring):
entity_key = self.vocab.strings[entity_key]
if isinstance(etype, basestring):

View File

@ -25,6 +25,7 @@ cdef class Morphology:
cdef readonly Pool mem
cdef readonly StringStore strings
cdef public object lemmatizer
cdef readonly object tag_map
cdef public object n_tags
cdef public object reverse_index
cdef public object tag_names

View File

@ -14,6 +14,7 @@ cdef class Morphology:
def __init__(self, StringStore string_store, tag_map, lemmatizer):
self.mem = Pool()
self.strings = string_store
self.tag_map = tag_map
self.lemmatizer = lemmatizer
self.n_tags = len(tag_map) + 1
self.tag_names = tuple(sorted(tag_map.keys()))
@ -28,6 +29,9 @@ cdef class Morphology:
self.reverse_index[self.rich_tags[i].name] = i
self._cache = PreshMapArray(self.n_tags)
def __reduce__(self):
return (Morphology, (self.strings, self.tag_map, self.lemmatizer), None, None)
cdef int assign_tag(self, TokenC* token, tag) except -1:
cdef int tag_id
if isinstance(tag, basestring):

View File

@ -25,4 +25,4 @@ IDS = {
}
NAMES = [key for key, value in sorted(IDS.items(), key=lambda item: item[1])]
NAMES = {value: key for key, value in IDS.items()}

View File

@ -69,12 +69,15 @@ cdef Utf8Str _allocate(Pool mem, const unsigned char* chars, int length) except
cdef class StringStore:
'''Map strings to and from integer IDs.'''
def __init__(self):
def __init__(self, strings=None):
self.mem = Pool()
self._map = PreshMap()
self._resize_at = 10000
self.c = <Utf8Str*>self.mem.alloc(self._resize_at, sizeof(Utf8Str))
self.size = 1
if strings is not None:
for string in strings:
_ = self[string]
property size:
def __get__(self):
@ -113,6 +116,14 @@ cdef class StringStore:
for i in range(self.size):
yield self[i]
def __reduce__(self):
strings = [""]
for i in range(1, self.size):
string = &self.c[i]
py_string = _decode(string)
strings.append(py_string)
return (StringStore, (strings,), None, None, None)
cdef const Utf8Str* intern(self, unsigned char* chars, int length) except NULL:
# 0 means missing, but we don't bother offsetting the index.
key = hash64(chars, length * sizeof(char), 0)

View File

@ -83,7 +83,6 @@ cdef class Parser:
model = Model(moves.n_moves, templates, model_dir)
return cls(strings, moves, model)
def __call__(self, Doc tokens):
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
@ -93,6 +92,9 @@ cdef class Parser:
self.parse(stcls, eg.c)
tokens.set_parse(stcls._sent)
def __reduce__(self):
return (Parser, (self.moves.strings, self.moves, self.model), None, None)
cdef void predict(self, StateClass stcls, ExampleC* eg) nogil:
memset(eg.scores, 0, eg.nr_class * sizeof(weight_t))
self.moves.set_valid(eg.is_valid, stcls)

View File

@ -37,6 +37,8 @@ cdef class TransitionSystem:
cdef public int root_label
cdef public freqs
cdef object _labels_by_action
cdef int initialize_state(self, StateClass state) except -1
cdef int finalize_state(self, StateClass state) nogil

View File

@ -15,7 +15,8 @@ class OracleError(Exception):
cdef class TransitionSystem:
def __init__(self, StringStore string_table, dict labels_by_action):
def __init__(self, StringStore string_table, dict labels_by_action, _freqs=None):
self._labels_by_action = labels_by_action
self.mem = Pool()
self.n_moves = sum(len(labels) for labels in labels_by_action.values())
self._is_valid = <bint*>self.mem.alloc(self.n_moves, sizeof(bint))
@ -30,7 +31,7 @@ cdef class TransitionSystem:
i += 1
self.c = moves
self.root_label = self.strings['ROOT']
self.freqs = {}
self.freqs = {} if _freqs is None else _freqs
for attr in (TAG, HEAD, DEP, ENT_TYPE, ENT_IOB):
self.freqs[attr] = defaultdict(int)
self.freqs[attr][0] = 1
@ -39,6 +40,11 @@ cdef class TransitionSystem:
self.freqs[HEAD][i] = 1
self.freqs[HEAD][-i] = 1
def __reduce__(self):
return (self.__class__,
(self.strings, self._labels_by_action, self.freqs),
None, None)
cdef int initialize_state(self, StateClass state) except -1:
pass

View File

@ -148,6 +148,9 @@ cdef class Tagger:
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
def __reduce__(self):
return (self.__class__, (self.vocab, self.model), None, None)
def tag_from_strings(self, Doc tokens, object tag_strs):
cdef int i
for i in range(tokens.length):

View File

@ -25,7 +25,6 @@ cdef struct _Cached:
cdef class Vocab:
cpdef public lexeme_props_getter
cdef Pool mem
cpdef readonly StringStore strings
cpdef readonly Morphology morphology
@ -33,7 +32,6 @@ cdef class Vocab:
cdef public object _serializer
cdef public object data_dir
cdef public object get_lex_attr
cdef public object pos_tags
cdef public object serializer_freqs
cdef const LexemeC* get(self, Pool mem, unicode string) except NULL

View File

@ -10,6 +10,8 @@ from os import path
import io
import math
import json
import tempfile
import copy_reg
from .lexeme cimport EMPTY_LEXEME
from .lexeme cimport Lexeme
@ -96,6 +98,20 @@ cdef class Vocab:
"""The current number of lexemes stored."""
return self.length
def __reduce__(self):
# TODO: Dump vectors
tmp_dir = tempfile.mkdtemp()
lex_loc = path.join(tmp_dir, 'lexemes.bin')
str_loc = path.join(tmp_dir, 'strings.txt')
vec_loc = path.join(self.data_dir, 'vec.bin') if self.data_dir is not None else None
self.dump(lex_loc)
self.strings.dump(str_loc)
state = (str_loc, lex_loc, vec_loc, self.morphology, self.get_lex_attr,
self.serializer_freqs, self.data_dir)
return (unpickle_vocab, state, None, None)
cdef const LexemeC* get(self, Pool mem, unicode string) except NULL:
'''Get a pointer to a LexemeC from the lexicon, creating a new Lexeme
if necessary, using memory acquired from the given pool. If the pool
@ -271,17 +287,17 @@ cdef class Vocab:
i += 1
fp.close()
def load_vectors(self, loc_or_file):
def load_vectors(self, file_):
cdef LexemeC* lexeme
cdef attr_t orth
cdef int32_t vec_len = -1
for line_num, line in enumerate(loc_or_file):
for line_num, line in enumerate(file_):
pieces = line.split()
word_str = pieces.pop(0)
if vec_len == -1:
vec_len = len(pieces)
elif vec_len != len(pieces):
raise VectorReadError.mismatched_sizes(loc_or_file, line_num,
raise VectorReadError.mismatched_sizes(file_, line_num,
vec_len, len(pieces))
orth = self.strings[word_str]
lexeme = <LexemeC*><void*>self.get_by_orth(self.mem, orth)
@ -339,6 +355,25 @@ cdef class Vocab:
return vec_len
def unpickle_vocab(strings_loc, lex_loc, vec_loc, morphology, get_lex_attr,
serializer_freqs, data_dir):
cdef Vocab vocab = Vocab()
vocab.get_lex_attr = get_lex_attr
vocab.morphology = morphology
vocab.strings = morphology.strings
vocab.data_dir = data_dir
vocab.serializer_freqs = serializer_freqs
vocab.load_lexemes(strings_loc, lex_loc)
if vec_loc is not None:
vocab.load_vectors_from_bin_loc(vec_loc)
return vocab
copy_reg.constructor(unpickle_vocab)
def write_binary_vectors(in_loc, out_loc):
cdef CFile out_file = CFile(out_loc, 'wb')
cdef Address mem

View File

@ -0,0 +1,17 @@
import pytest
import pickle
import StringIO
from spacy.morphology import Morphology
from spacy.lemmatizer import Lemmatizer
from spacy.strings import StringStore
def test_pickle():
morphology = Morphology(StringStore(), {}, Lemmatizer({}, {}, {}))
file_ = StringIO.StringIO()
pickle.dump(morphology, file_)

View File

@ -7,7 +7,8 @@ import pytest
@pytest.fixture
def sun_text():
with io.open(path.join(path.dirname(__file__), 'sun.txt'), 'r', encoding='utf8') as file_:
with io.open(path.join(path.dirname(__file__), '..', 'sun.txt'), 'r',
encoding='utf8') as file_:
text = file_.read()
return text

View File

@ -0,0 +1,16 @@
import pytest
import pickle
import cloudpickle
import StringIO
@pytest.mark.models
def test_pickle(EN):
file_ = StringIO.StringIO()
cloudpickle.dump(EN.parser, file_)
file_.seek(0)
loaded = pickle.load(file_)

View File

@ -1,5 +1,7 @@
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import StringIO
import pickle
from spacy.lemmatizer import Lemmatizer, read_index, read_exc
from spacy.en import LOCAL_DATA_DIR
@ -41,3 +43,12 @@ def test_smart_quotes(lemmatizer):
do = lemmatizer.punct
assert do('') == set(['"'])
assert do('') == set(['"'])
def test_pickle_lemmatizer(lemmatizer):
file_ = StringIO.StringIO()
pickle.dump(lemmatizer, file_)
file_.seek(0)
loaded = pickle.load(file_)

15
tests/test_pickle.py Normal file
View File

@ -0,0 +1,15 @@
import pytest
import StringIO
import cloudpickle
import pickle
@pytest.mark.models
def test_pickle_english(EN):
file_ = StringIO.StringIO()
cloudpickle.dump(EN, file_)
file_.seek(0)
loaded = pickle.load(file_)

View File

@ -1,5 +1,7 @@
# -*- coding: utf8 -*-
from __future__ import unicode_literals
import pickle
import StringIO
from spacy.strings import StringStore
@ -76,3 +78,18 @@ def test_massive_strings(sstore):
s513 = '1' * 513
orth = sstore[s513]
assert sstore[orth] == s513
def test_pickle_string_store(sstore):
hello_id = sstore[u'Hi']
string_file = StringIO.StringIO()
pickle.dump(sstore, string_file)
string_file.seek(0)
loaded = pickle.load(string_file)
assert loaded[hello_id] == u'Hi'

View File

@ -1,5 +1,11 @@
from __future__ import unicode_literals
import pytest
import StringIO
import cloudpickle
import pickle
from spacy.attrs import LEMMA, ORTH, PROB, IS_ALPHA
from spacy.parts_of_speech import NOUN, VERB
from spacy.attrs import LEMMA, ORTH, PROB, IS_ALPHA
from spacy.parts_of_speech import NOUN, VERB
@ -38,3 +44,11 @@ def test_symbols(en_vocab):
assert en_vocab.strings['ORTH'] == ORTH
assert en_vocab.strings['PROB'] == PROB
def test_pickle_vocab(en_vocab):
file_ = StringIO.StringIO()
cloudpickle.dump(en_vocab, file_)
file_.seek(0)
loaded = pickle.load(file_)