mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Move to spacy.analysis
This commit is contained in:
parent
78d79d94ce
commit
f7f6df7275
|
@ -173,3 +173,24 @@ def print_summary(nlp, pretty=True, no_print=False):
|
|||
msg.good("No problems found.")
|
||||
if no_print:
|
||||
return {"overview": overview, "problems": problems}
|
||||
|
||||
|
||||
def count_pipeline_interdependencies(pipeline):
|
||||
"""Count how many subsequent components require an annotation set by each
|
||||
component in the pipeline.
|
||||
"""
|
||||
pipe_assigns = []
|
||||
pipe_requires = []
|
||||
for name, pipe in pipeline:
|
||||
pipe_assigns.append(set(getattr(pipe, "assigns", [])))
|
||||
pipe_requires.append(set(getattr(pipe, "requires", [])))
|
||||
counts = []
|
||||
for i, assigns in enumerate(pipe_assigns):
|
||||
count = 0
|
||||
for requires in pipe_requires[i+1:]:
|
||||
if assigns.intersection(requires):
|
||||
count += 1
|
||||
counts.append(count)
|
||||
return counts
|
||||
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@ from .vocab import Vocab
|
|||
from .lemmatizer import Lemmatizer
|
||||
from .lookups import Lookups
|
||||
from .analysis import analyze_pipes, analyze_all_pipes, validate_attrs
|
||||
from .analysis import count_pipeline_interdependencies
|
||||
from .gold import Example
|
||||
from .scorer import Scorer
|
||||
from .util import link_vectors_to_models, create_default_optimizer, registry
|
||||
|
@ -545,7 +546,7 @@ class Language(object):
|
|||
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
component_deps = _count_pipeline_inter_dependencies(self.pipeline)
|
||||
component_deps = count_pipeline_interdependencies(self.pipeline)
|
||||
# Determine whether component should set annotations. In theory I guess
|
||||
# we should do this by inspecting the meta? Or we could just always
|
||||
# say "yes"
|
||||
|
@ -1160,25 +1161,6 @@ class DisabledPipes(list):
|
|||
self[:] = []
|
||||
|
||||
|
||||
def _count_pipeline_inter_dependencies(pipeline):
|
||||
"""Count how many subsequent components require an annotation set by each
|
||||
component in the pipeline.
|
||||
"""
|
||||
pipe_assigns = []
|
||||
pipe_requires = []
|
||||
for name, pipe in pipeline:
|
||||
pipe_assigns.append(set(getattr(pipe, "assigns", [])))
|
||||
pipe_requires.append(set(getattr(pipe, "requires", [])))
|
||||
counts = []
|
||||
for i, assigns in enumerate(pipe_assigns):
|
||||
count = 0
|
||||
for requires in pipe_requires[i+1:]:
|
||||
if assigns.intersection(requires):
|
||||
count += 1
|
||||
counts.append(count)
|
||||
return counts
|
||||
|
||||
|
||||
def _pipe(examples, proc, kwargs):
|
||||
# We added some args for pipe that __call__ doesn't expect.
|
||||
kwargs = dict(kwargs)
|
||||
|
|
|
@ -2,6 +2,7 @@ import spacy.language
|
|||
from spacy.language import Language, component
|
||||
from spacy.analysis import print_summary, validate_attrs
|
||||
from spacy.analysis import get_assigns_for_attr, get_requires_for_attr
|
||||
from spacy.analysis import count_pipeline_interdependencies
|
||||
from mock import Mock, ANY
|
||||
import pytest
|
||||
|
||||
|
@ -161,3 +162,19 @@ def test_analysis_validate_attrs_remove_pipe():
|
|||
with pytest.warns(None) as record:
|
||||
nlp.remove_pipe("c2")
|
||||
assert not record.list
|
||||
|
||||
|
||||
def test_pipe_interdependencies():
|
||||
class Fancifier:
|
||||
name = "fancifier"
|
||||
assigns = ("doc._.fancy",)
|
||||
requires = tuple()
|
||||
|
||||
class FancyNeeder:
|
||||
name = "needer"
|
||||
assigns = tuple()
|
||||
requires = ("doc._.fancy",)
|
||||
|
||||
pipeline = [("fancifier", Fancifier()), ("needer", FancyNeeder())]
|
||||
counts = count_pipeline_interdependencies(pipeline)
|
||||
assert counts == [1, 0]
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import pytest
|
||||
from spacy.language import Language, _count_pipeline_inter_dependencies
|
||||
from spacy.language import Language
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -198,19 +198,3 @@ def test_pipe_labels(nlp):
|
|||
assert len(nlp.pipe_labels) == len(input_labels)
|
||||
for name, labels in nlp.pipe_labels.items():
|
||||
assert sorted(input_labels[name]) == sorted(labels)
|
||||
|
||||
|
||||
def test_pipe_inter_dependencies():
|
||||
class Fancifier:
|
||||
name = "fancifier"
|
||||
assigns = ("doc._.fancy",)
|
||||
requires = tuple()
|
||||
|
||||
class FancyNeeder:
|
||||
name = "needer"
|
||||
assigns = tuple()
|
||||
requires = ("doc._.fancy",)
|
||||
|
||||
pipeline = [("fancifier", Fancifier()), ("needer", FancyNeeder())]
|
||||
counts = _count_pipeline_inter_dependencies(pipeline)
|
||||
assert counts == [1, 0]
|
||||
|
|
Loading…
Reference in New Issue
Block a user