mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-04 04:10:20 +03:00
Add docs and unify default configs for spancat and span finder
* Add `allow_overlap=True` to span finder scorer
This commit is contained in:
parent
9372b22d32
commit
f84b59d68a
|
@ -27,8 +27,8 @@ nO = 2
|
||||||
[model.tok2vec.embed]
|
[model.tok2vec.embed]
|
||||||
@architectures = "spacy.MultiHashEmbed.v2"
|
@architectures = "spacy.MultiHashEmbed.v2"
|
||||||
width = 96
|
width = 96
|
||||||
rows = [5000, 2000, 1000, 1000]
|
rows = [5000, 1000, 2500, 1000]
|
||||||
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
||||||
include_static_vectors = false
|
include_static_vectors = false
|
||||||
|
|
||||||
[model.tok2vec.encode]
|
[model.tok2vec.encode]
|
||||||
|
@ -63,23 +63,26 @@ def make_span_finder(
|
||||||
nlp: Language,
|
nlp: Language,
|
||||||
name: str,
|
name: str,
|
||||||
model: Model[Iterable[Doc], Floats2d],
|
model: Model[Iterable[Doc], Floats2d],
|
||||||
scorer: Optional[Callable],
|
spans_key: str,
|
||||||
threshold: float,
|
threshold: float,
|
||||||
max_length: Optional[int],
|
max_length: Optional[int],
|
||||||
min_length: Optional[int],
|
min_length: Optional[int],
|
||||||
spans_key: str,
|
scorer: Optional[Callable],
|
||||||
) -> "SpanFinder":
|
) -> "SpanFinder":
|
||||||
"""Create a SpanFinder component. The component predicts whether a token is
|
"""Create a SpanFinder component. The component predicts whether a token is
|
||||||
the start or the end of a potential span.
|
the start or the end of a potential span.
|
||||||
|
|
||||||
model (Model[List[Doc], Floats2d]): A model instance that
|
model (Model[List[Doc], Floats2d]): A model instance that
|
||||||
is given a list of documents and predicts a probability for each token.
|
is given a list of documents and predicts a probability for each token.
|
||||||
threshold (float): Minimum probability to consider a prediction positive.
|
|
||||||
spans_key (str): Key of the doc.spans dict to save the spans under. During
|
spans_key (str): Key of the doc.spans dict to save the spans under. During
|
||||||
initialization and training, the component will look for spans on the
|
initialization and training, the component will look for spans on the
|
||||||
reference document under the same key.
|
reference document under the same key.
|
||||||
|
threshold (float): Minimum probability to consider a prediction positive.
|
||||||
max_length (Optional[int]): Max length of the produced spans, defaults to None meaning unlimited length.
|
max_length (Optional[int]): Max length of the produced spans, defaults to None meaning unlimited length.
|
||||||
min_length (Optional[int]): Min length of the produced spans, defaults to None meaining shortest span is length 1.
|
min_length (Optional[int]): Min length of the produced spans, defaults to None meaining shortest span is length 1.
|
||||||
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||||
|
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||||
|
spans allowed.
|
||||||
"""
|
"""
|
||||||
return SpanFinder(
|
return SpanFinder(
|
||||||
nlp,
|
nlp,
|
||||||
|
@ -107,6 +110,7 @@ def span_finder_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
||||||
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
|
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
|
||||||
)
|
)
|
||||||
kwargs.setdefault("has_annotation", lambda doc: key in doc.spans)
|
kwargs.setdefault("has_annotation", lambda doc: key in doc.spans)
|
||||||
|
kwargs.setdefault("allow_overlap", True)
|
||||||
scores = Scorer.score_spans(examples, **kwargs)
|
scores = Scorer.score_spans(examples, **kwargs)
|
||||||
scores.pop(f"{kwargs['attr']}_per_type", None)
|
scores.pop(f"{kwargs['attr']}_per_type", None)
|
||||||
return scores
|
return scores
|
||||||
|
@ -141,11 +145,11 @@ class SpanFinder(TrainablePipe):
|
||||||
model: Model[Iterable[Doc], Floats2d],
|
model: Model[Iterable[Doc], Floats2d],
|
||||||
name: str = "span_finder",
|
name: str = "span_finder",
|
||||||
*,
|
*,
|
||||||
|
spans_key: str = DEFAULT_SPANS_KEY,
|
||||||
threshold: float = 0.5,
|
threshold: float = 0.5,
|
||||||
max_length: Optional[int] = None,
|
max_length: Optional[int] = None,
|
||||||
min_length: Optional[int] = None,
|
min_length: Optional[int] = None,
|
||||||
scorer: Optional[Callable] = span_finder_score,
|
scorer: Optional[Callable] = span_finder_score,
|
||||||
spans_key: str = DEFAULT_SPANS_KEY,
|
|
||||||
) -> None:
|
) -> None:
|
||||||
"""Initialize the span boundary detector.
|
"""Initialize the span boundary detector.
|
||||||
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
||||||
|
|
|
@ -31,8 +31,8 @@ hidden_size = 128
|
||||||
[model.tok2vec.embed]
|
[model.tok2vec.embed]
|
||||||
@architectures = "spacy.MultiHashEmbed.v2"
|
@architectures = "spacy.MultiHashEmbed.v2"
|
||||||
width = 96
|
width = 96
|
||||||
rows = [5000, 2000, 1000, 1000]
|
rows = [5000, 1000, 2500, 1000]
|
||||||
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
||||||
include_static_vectors = false
|
include_static_vectors = false
|
||||||
|
|
||||||
[model.tok2vec.encode]
|
[model.tok2vec.encode]
|
||||||
|
|
|
@ -445,7 +445,7 @@ def test_overfitting_IO():
|
||||||
spans = doc.spans[SPAN_KEY]
|
spans = doc.spans[SPAN_KEY]
|
||||||
assert len(spans) == 2
|
assert len(spans) == 2
|
||||||
assert len(spans.attrs["scores"]) == 2
|
assert len(spans.attrs["scores"]) == 2
|
||||||
assert min(spans.attrs["scores"]) > 0.9
|
assert min(spans.attrs["scores"]) > 0.8
|
||||||
assert set([span.text for span in spans]) == {"London", "Berlin"}
|
assert set([span.text for span in spans]) == {"London", "Berlin"}
|
||||||
assert set([span.label_ for span in spans]) == {"LOC"}
|
assert set([span.label_ for span in spans]) == {"LOC"}
|
||||||
|
|
||||||
|
@ -457,7 +457,7 @@ def test_overfitting_IO():
|
||||||
spans2 = doc2.spans[SPAN_KEY]
|
spans2 = doc2.spans[SPAN_KEY]
|
||||||
assert len(spans2) == 2
|
assert len(spans2) == 2
|
||||||
assert len(spans2.attrs["scores"]) == 2
|
assert len(spans2.attrs["scores"]) == 2
|
||||||
assert min(spans2.attrs["scores"]) > 0.9
|
assert min(spans2.attrs["scores"]) > 0.8
|
||||||
assert set([span.text for span in spans2]) == {"London", "Berlin"}
|
assert set([span.text for span in spans2]) == {"London", "Berlin"}
|
||||||
assert set([span.label_ for span in spans2]) == {"LOC"}
|
assert set([span.label_ for span in spans2]) == {"LOC"}
|
||||||
|
|
||||||
|
|
|
@ -105,7 +105,7 @@ architectures and their arguments and hyperparameters.
|
||||||
>
|
>
|
||||||
> # Construction via add_pipe with custom model
|
> # Construction via add_pipe with custom model
|
||||||
> config = {"model": {"@architectures": "my_spancat"}}
|
> config = {"model": {"@architectures": "my_spancat"}}
|
||||||
> parser = nlp.add_pipe("spancat", config=config)
|
> spancat = nlp.add_pipe("spancat", config=config)
|
||||||
>
|
>
|
||||||
> # Construction from class
|
> # Construction from class
|
||||||
> from spacy.pipeline import SpanCategorizer
|
> from spacy.pipeline import SpanCategorizer
|
||||||
|
@ -524,3 +524,22 @@ has two columns, indicating the start and end position.
|
||||||
| `min_size` | The minimal phrase lengths to suggest (inclusive). ~~[int]~~ |
|
| `min_size` | The minimal phrase lengths to suggest (inclusive). ~~[int]~~ |
|
||||||
| `max_size` | The maximal phrase lengths to suggest (exclusive). ~~[int]~~ |
|
| `max_size` | The maximal phrase lengths to suggest (exclusive). ~~[int]~~ |
|
||||||
| **CREATES** | The suggester function. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
| **CREATES** | The suggester function. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
||||||
|
|
||||||
|
### spacy.preset_spans_suggester.v1 {id="preset_spans_suggester"}
|
||||||
|
|
||||||
|
> #### Example Config
|
||||||
|
>
|
||||||
|
> ```ini
|
||||||
|
> [components.spancat.suggester]
|
||||||
|
> @misc = "spacy.preset_spans_suggester.v1"
|
||||||
|
> spans_key = "my_spans"
|
||||||
|
> ```
|
||||||
|
|
||||||
|
Suggest all spans that are already stored in doc.spans[spans_key]. This is
|
||||||
|
useful when an upstream component is used to set the spans on the Doc such as a
|
||||||
|
[`SpanRuler`](/api/spanruler) or [`SpanFinder`](/api/spanfinder).
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| ----------- | ----------------------------------------------------------------------------- |
|
||||||
|
| `spans_key` | Key of [`Doc.spans`](/api/doc/#spans) that provides spans to suggest. ~~str~~ |
|
||||||
|
| **CREATES** | The suggester function. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
||||||
|
|
372
website/docs/api/spanfinder.mdx
Normal file
372
website/docs/api/spanfinder.mdx
Normal file
|
@ -0,0 +1,372 @@
|
||||||
|
---
|
||||||
|
title: SpanFinder
|
||||||
|
tag: class,experimental
|
||||||
|
source: spacy/pipeline/span_finder.py
|
||||||
|
version: 3.6
|
||||||
|
teaser:
|
||||||
|
'Pipeline component for identifying potentially overlapping spans of text'
|
||||||
|
api_base_class: /api/pipe
|
||||||
|
api_string_name: span_finder
|
||||||
|
api_trainable: true
|
||||||
|
---
|
||||||
|
|
||||||
|
The span finder identifies potentially overlapping, unlabeled spans. It
|
||||||
|
identifies tokens that start or end spans and annotates unlabeled spans between
|
||||||
|
starts and ends, with optional filters for min and max span length. It is
|
||||||
|
intended for use in combination with a component like
|
||||||
|
[`SpanCategorizer`](/api/spancategorizer) that may further filter or label the
|
||||||
|
spans. Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the
|
||||||
|
doc under `doc.spans[spans_key]`, where `spans_key` is a component config
|
||||||
|
setting.
|
||||||
|
|
||||||
|
## Assigned Attributes {id="assigned-attributes"}
|
||||||
|
|
||||||
|
Predictions will be saved to `Doc.spans[spans_key]` as a
|
||||||
|
[`SpanGroup`](/api/spangroup).
|
||||||
|
|
||||||
|
`spans_key` defaults to `"sc"`, but can be passed as a parameter. The
|
||||||
|
`span_finder` component will overwrite any existing spans under the spans key
|
||||||
|
`doc.spans[spans_key]`.
|
||||||
|
|
||||||
|
| Location | Value |
|
||||||
|
| ---------------------- | ---------------------------------- |
|
||||||
|
| `Doc.spans[spans_key]` | The unlabeled spans. ~~SpanGroup~~ |
|
||||||
|
|
||||||
|
## Config and implementation {id="config"}
|
||||||
|
|
||||||
|
The default config is defined by the pipeline component factory and describes
|
||||||
|
how the component should be configured. You can override its settings via the
|
||||||
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||||||
|
[`config.cfg` for training](/usage/training#config). See the
|
||||||
|
[model architectures](/api/architectures) documentation for details on the
|
||||||
|
architectures and their arguments and hyperparameters.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> from spacy.pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
|
||||||
|
> config = {
|
||||||
|
> "threshold": 0.5,
|
||||||
|
> "spans_key": "my_spans",
|
||||||
|
> "max_length": None,
|
||||||
|
> "min_length": None,
|
||||||
|
> "model": DEFAULT_SPAN_FINDER_MODEL,
|
||||||
|
> }
|
||||||
|
> nlp.add_pipe("span_finder", config=config)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Setting | Description |
|
||||||
|
| ------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `model` | A model instance that is given a list of documents and predicts a probability for each token. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||||
|
| `threshold` | Minimum probability to consider a prediction positive. Defaults to `0.5`. ~~float~~ |
|
||||||
|
| `max_length` | Max length of the produced spans, defaults to `None` meaning unlimited length. ~~Optional[int]~~ |
|
||||||
|
| `min_length` | Min length of the produced spans, defaults to `None` meaning shortest span is length 1. ~~Optional[int]~~ |
|
||||||
|
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
||||||
|
|
||||||
|
```python
|
||||||
|
%%GITHUB_SPACY/spacy/pipeline/span_finder.py
|
||||||
|
```
|
||||||
|
|
||||||
|
## SpanFinder.\_\_init\_\_ {id="init",tag="method"}
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> # Construction via add_pipe with default model
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
>
|
||||||
|
> # Construction via add_pipe with custom model
|
||||||
|
> config = {"model": {"@architectures": "my_span_finder"}}
|
||||||
|
> span_finder = nlp.add_pipe("span_finder", config=config)
|
||||||
|
>
|
||||||
|
> # Construction from class
|
||||||
|
> from spacy.pipeline import SpanFinder
|
||||||
|
> span_finder = SpanFinder(nlp.vocab, model)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
Create a new pipeline instance. In your application, you would normally use a
|
||||||
|
shortcut for this and instantiate the component using its string name and
|
||||||
|
[`nlp.add_pipe`](/api/language#create_pipe).
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||||
|
| `model` | A model instance that is given a list of documents and predicts a probability for each token. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||||
|
| _keyword-only_ | |
|
||||||
|
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||||
|
| `threshold` | Minimum probability to consider a prediction positive. Defaults to `0.5`. ~~float~~ |
|
||||||
|
| `max_length` | Max length of the produced spans, defaults to `None` meaning unlimited length. ~~Optional[int]~~ |
|
||||||
|
| `min_length` | Min length of the produced spans, defaults to `None` meaning shortest span is length 1. ~~Optional[int]~~ |
|
||||||
|
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
||||||
|
|
||||||
|
## SpanFinder.\_\_call\_\_ {id="call",tag="method"}
|
||||||
|
|
||||||
|
Apply the pipe to one document. The document is modified in place, and returned.
|
||||||
|
This usually happens under the hood when the `nlp` object is called on a text
|
||||||
|
and all pipeline components are applied to the `Doc` in order. Both
|
||||||
|
[`__call__`](/api/spanfinder#call) and [`pipe`](/api/spanfinder#pipe) delegate
|
||||||
|
to the [`predict`](/api/spanfinder#predict) and
|
||||||
|
[`set_annotations`](/api/spanfinder#set_annotations) methods.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> doc = nlp("This is a sentence.")
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> # This usually happens under the hood
|
||||||
|
> processed = span_finder(doc)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| ----------- | -------------------------------- |
|
||||||
|
| `doc` | The document to process. ~~Doc~~ |
|
||||||
|
| **RETURNS** | The processed document. ~~Doc~~ |
|
||||||
|
|
||||||
|
## SpanFinder.pipe {id="pipe",tag="method"}
|
||||||
|
|
||||||
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||||
|
when the `nlp` object is called on a text and all pipeline components are
|
||||||
|
applied to the `Doc` in order. Both [`__call__`](/api/spanfinder#call) and
|
||||||
|
[`pipe`](/api/spanfinder#pipe) delegate to the
|
||||||
|
[`predict`](/api/spanfinder#predict) and
|
||||||
|
[`set_annotations`](/api/spanfinder#set_annotations) methods.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> for doc in span_finder.pipe(docs, batch_size=50):
|
||||||
|
> pass
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | ------------------------------------------------------------- |
|
||||||
|
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||||||
|
| _keyword-only_ | |
|
||||||
|
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||||
|
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||||
|
|
||||||
|
## SpanFinder.initialize {id="initialize",tag="method"}
|
||||||
|
|
||||||
|
Initialize the component for training. `get_examples` should be a function that
|
||||||
|
returns an iterable of [`Example`](/api/example) objects. **At least one example
|
||||||
|
should be supplied.** The data examples are used to **initialize the model** of
|
||||||
|
the component and can either be the full training data or a representative
|
||||||
|
sample. Initialization includes validating the network and
|
||||||
|
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) This
|
||||||
|
method is typically called by [`Language.initialize`](/api/language#initialize)
|
||||||
|
and lets you customize arguments it receives via the
|
||||||
|
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
|
||||||
|
config.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> span_finder.initialize(lambda: examples, nlp=nlp)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
||||||
|
| _keyword-only_ | |
|
||||||
|
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||||
|
|
||||||
|
## SpanFinder.predict {id="predict",tag="method"}
|
||||||
|
|
||||||
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> scores = span_finder.predict([doc1, doc2])
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| ----------- | ------------------------------------------- |
|
||||||
|
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||||||
|
| **RETURNS** | The model's prediction for each document. |
|
||||||
|
|
||||||
|
## SpanFinder.set_annotations {id="set_annotations",tag="method"}
|
||||||
|
|
||||||
|
Modify a batch of [`Doc`](/api/doc) objects using pre-computed scores.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> scores = span_finder.predict(docs)
|
||||||
|
> span_finder.set_annotations(docs, scores)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------- | ---------------------------------------------------- |
|
||||||
|
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||||
|
| `scores` | The scores to set, produced by `SpanFinder.predict`. |
|
||||||
|
|
||||||
|
## SpanFinder.update {id="update",tag="method"}
|
||||||
|
|
||||||
|
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||||
|
predictions and gold-standard annotations, and update the component's model.
|
||||||
|
Delegates to [`predict`](/api/spanfinder#predict) and
|
||||||
|
[`get_loss`](/api/spanfinder#get_loss).
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> optimizer = nlp.initialize()
|
||||||
|
> losses = span_finder.update(examples, sgd=optimizer)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||||
|
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||||
|
| _keyword-only_ | |
|
||||||
|
| `drop` | The dropout rate. ~~float~~ |
|
||||||
|
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||||
|
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||||
|
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||||
|
|
||||||
|
## SpanFinder.get_loss {id="get_loss",tag="method"}
|
||||||
|
|
||||||
|
Find the loss and gradient of loss for the batch of documents and their
|
||||||
|
predicted scores.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> scores = span_finder.predict([eg.predicted for eg in examples])
|
||||||
|
> loss, d_loss = span_finder.get_loss(examples, scores)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | --------------------------------------------------------------------------- |
|
||||||
|
| `examples` | The batch of examples. ~~Iterable[Example]~~ |
|
||||||
|
| `spans_scores` | Scores representing the model's predictions. ~~Tuple[Ragged, Floats2d]~~ |
|
||||||
|
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
|
||||||
|
|
||||||
|
## SpanFinder.create_optimizer {id="create_optimizer",tag="method"}
|
||||||
|
|
||||||
|
Create an optimizer for the pipeline component.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> optimizer = span_finder.create_optimizer()
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| ----------- | ---------------------------- |
|
||||||
|
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||||||
|
|
||||||
|
## SpanFinder.use_params {id="use_params",tag="method, contextmanager"}
|
||||||
|
|
||||||
|
Modify the pipe's model to use the given parameter values.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> with span_finder.use_params(optimizer.averages):
|
||||||
|
> span_finder.to_disk("/best_model")
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------- | -------------------------------------------------- |
|
||||||
|
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||||||
|
|
||||||
|
## SpanFinder.to_disk {id="to_disk",tag="method"}
|
||||||
|
|
||||||
|
Serialize the pipe to disk.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> span_finder.to_disk("/path/to/span_finder")
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||||
|
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||||
|
| _keyword-only_ | |
|
||||||
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||||
|
|
||||||
|
## SpanFinder.from_disk {id="from_disk",tag="method"}
|
||||||
|
|
||||||
|
Load the pipe from disk. Modifies the object in place and returns it.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> span_finder.from_disk("/path/to/span_finder")
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||||||
|
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||||
|
| _keyword-only_ | |
|
||||||
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||||
|
| **RETURNS** | The modified `SpanFinder` object. ~~SpanFinder~~ |
|
||||||
|
|
||||||
|
## SpanFinder.to_bytes {id="to_bytes",tag="method"}
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> span_finder_bytes = span_finder.to_bytes()
|
||||||
|
> ```
|
||||||
|
|
||||||
|
Serialize the pipe to a bytestring.
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||||
|
| _keyword-only_ | |
|
||||||
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||||
|
| **RETURNS** | The serialized form of the `SpanFinder` object. ~~bytes~~ |
|
||||||
|
|
||||||
|
## SpanFinder.from_bytes {id="from_bytes",tag="method"}
|
||||||
|
|
||||||
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> span_finder_bytes = span_finder.to_bytes()
|
||||||
|
> span_finder = nlp.add_pipe("span_finder")
|
||||||
|
> span_finder.from_bytes(span_finder_bytes)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||||
|
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||||||
|
| _keyword-only_ | |
|
||||||
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||||
|
| **RETURNS** | The `SpanFinder` object. ~~SpanFinder~~ |
|
||||||
|
|
||||||
|
## Serialization fields {id="serialization-fields"}
|
||||||
|
|
||||||
|
During serialization, spaCy will export several data fields used to restore
|
||||||
|
different aspects of the object. If needed, you can exclude them from
|
||||||
|
serialization by passing in the string names via the `exclude` argument.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> data = span_finder.to_disk("/path", exclude=["vocab"])
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| ------- | -------------------------------------------------------------- |
|
||||||
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||||
|
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||||
|
| `model` | The binary model data. You usually don't want to exclude this. |
|
|
@ -106,6 +106,7 @@
|
||||||
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
|
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
|
||||||
{ "text": "Sentencizer", "url": "/api/sentencizer" },
|
{ "text": "Sentencizer", "url": "/api/sentencizer" },
|
||||||
{ "text": "SpanCategorizer", "url": "/api/spancategorizer" },
|
{ "text": "SpanCategorizer", "url": "/api/spancategorizer" },
|
||||||
|
{ "text": "SpanFinder", "url": "/api/spanfinder" },
|
||||||
{ "text": "SpanResolver", "url": "/api/span-resolver" },
|
{ "text": "SpanResolver", "url": "/api/span-resolver" },
|
||||||
{ "text": "SpanRuler", "url": "/api/spanruler" },
|
{ "text": "SpanRuler", "url": "/api/spanruler" },
|
||||||
{ "text": "Tagger", "url": "/api/tagger" },
|
{ "text": "Tagger", "url": "/api/tagger" },
|
||||||
|
|
Loading…
Reference in New Issue
Block a user