mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Split span predictor component into its own file
This runs. The imports in both of the split files could probably use a close check to remove extras.
This commit is contained in:
		
							parent
							
								
									117a9ef2bf
								
							
						
					
					
						commit
						f852c5cea4
					
				| 
						 | 
				
			
			@ -1,5 +1,6 @@
 | 
			
		|||
from .attributeruler import AttributeRuler
 | 
			
		||||
from .coref import CoreferenceResolver
 | 
			
		||||
from .span_predictor import SpanPredictor
 | 
			
		||||
from .dep_parser import DependencyParser
 | 
			
		||||
from .edit_tree_lemmatizer import EditTreeLemmatizer
 | 
			
		||||
from .entity_linker import EntityLinker
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -56,7 +56,7 @@ window_size = 1
 | 
			
		|||
maxout_pieces = 3
 | 
			
		||||
depth = 2
 | 
			
		||||
"""
 | 
			
		||||
DEFAULT_MODEL = Config().from_str(default_config)["model"]
 | 
			
		||||
DEFAULT_COREF_MODEL = Config().from_str(default_config)["model"]
 | 
			
		||||
 | 
			
		||||
DEFAULT_CLUSTERS_PREFIX = "coref_clusters"
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -66,7 +66,7 @@ DEFAULT_CLUSTERS_PREFIX = "coref_clusters"
 | 
			
		|||
    assigns=["doc.spans"],
 | 
			
		||||
    requires=["doc.spans"],
 | 
			
		||||
    default_config={
 | 
			
		||||
        "model": DEFAULT_MODEL,
 | 
			
		||||
        "model": DEFAULT_COREF_MODEL,
 | 
			
		||||
        "span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
 | 
			
		||||
    },
 | 
			
		||||
    default_score_weights={"coref_f": 1.0, "coref_p": None, "coref_r": None},
 | 
			
		||||
| 
						 | 
				
			
			@ -375,260 +375,3 @@ class CoreferenceResolver(TrainablePipe):
 | 
			
		|||
        return score
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
default_span_predictor_config = """
 | 
			
		||||
[model]
 | 
			
		||||
@architectures = "spacy.SpanPredictor.v1"
 | 
			
		||||
hidden_size = 1024
 | 
			
		||||
dist_emb_size = 64
 | 
			
		||||
 | 
			
		||||
[model.tok2vec]
 | 
			
		||||
@architectures = "spacy.Tok2Vec.v2"
 | 
			
		||||
 | 
			
		||||
[model.tok2vec.embed]
 | 
			
		||||
@architectures = "spacy.MultiHashEmbed.v1"
 | 
			
		||||
width = 64
 | 
			
		||||
rows = [2000, 2000, 1000, 1000, 1000, 1000]
 | 
			
		||||
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
 | 
			
		||||
include_static_vectors = false
 | 
			
		||||
 | 
			
		||||
[model.tok2vec.encode]
 | 
			
		||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
 | 
			
		||||
width = ${model.tok2vec.embed.width}
 | 
			
		||||
window_size = 1
 | 
			
		||||
maxout_pieces = 3
 | 
			
		||||
depth = 2
 | 
			
		||||
"""
 | 
			
		||||
DEFAULT_SPAN_PREDICTOR_MODEL = Config().from_str(default_span_predictor_config)["model"]
 | 
			
		||||
 | 
			
		||||
@Language.factory(
 | 
			
		||||
        "span_predictor",
 | 
			
		||||
        assigns=["doc.spans"],
 | 
			
		||||
        requires=["doc.spans"],
 | 
			
		||||
        default_config={
 | 
			
		||||
            "model": DEFAULT_SPAN_PREDICTOR_MODEL,
 | 
			
		||||
            "input_prefix": "coref_head_clusters",
 | 
			
		||||
            "output_prefix": "coref_clusters",
 | 
			
		||||
            },
 | 
			
		||||
    default_score_weights={"span_accuracy": 1.0},
 | 
			
		||||
    )
 | 
			
		||||
def make_span_predictor(
 | 
			
		||||
        nlp: Language,
 | 
			
		||||
        name: str,
 | 
			
		||||
        model,
 | 
			
		||||
        input_prefix: str = "coref_head_clusters",
 | 
			
		||||
        output_prefix: str = "coref_clusters",
 | 
			
		||||
) -> "SpanPredictor":
 | 
			
		||||
    """Create a SpanPredictor component."""
 | 
			
		||||
    return SpanPredictor(nlp.vocab, model, name, input_prefix=input_prefix, output_prefix=output_prefix)
 | 
			
		||||
 | 
			
		||||
class SpanPredictor(TrainablePipe):
 | 
			
		||||
    """Pipeline component to resolve one-token spans to full spans.
 | 
			
		||||
 | 
			
		||||
    Used in coreference resolution.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        vocab: Vocab,
 | 
			
		||||
        model: Model,
 | 
			
		||||
        name: str = "span_predictor",
 | 
			
		||||
        *,
 | 
			
		||||
        input_prefix: str = "coref_head_clusters",
 | 
			
		||||
        output_prefix: str = "coref_clusters",
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        self.vocab = vocab
 | 
			
		||||
        self.model = model
 | 
			
		||||
        self.name = name
 | 
			
		||||
        self.input_prefix = input_prefix
 | 
			
		||||
        self.output_prefix = output_prefix
 | 
			
		||||
 | 
			
		||||
        self.cfg = {}
 | 
			
		||||
 | 
			
		||||
    def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
 | 
			
		||||
        # for now pretend there's just one doc
 | 
			
		||||
 | 
			
		||||
        out = []
 | 
			
		||||
        for doc in docs:
 | 
			
		||||
            # TODO check shape here
 | 
			
		||||
            span_scores = self.model.predict([doc])
 | 
			
		||||
            if span_scores.size:
 | 
			
		||||
                # the information about clustering has to come from the input docs
 | 
			
		||||
                # first let's convert the scores to a list of span idxs
 | 
			
		||||
                start_scores = span_scores[:, :, 0]
 | 
			
		||||
                end_scores = span_scores[:, :, 1]
 | 
			
		||||
                starts = start_scores.argmax(axis=1)
 | 
			
		||||
                ends = end_scores.argmax(axis=1)
 | 
			
		||||
 | 
			
		||||
                # TODO check start < end
 | 
			
		||||
 | 
			
		||||
                # get the old clusters (shape will be preserved)
 | 
			
		||||
                clusters = doc2clusters(doc, self.input_prefix)
 | 
			
		||||
                cidx = 0
 | 
			
		||||
                out_clusters = []
 | 
			
		||||
                for cluster in clusters:
 | 
			
		||||
                    ncluster = []
 | 
			
		||||
                    for mention in cluster:
 | 
			
		||||
                        ncluster.append((starts[cidx], ends[cidx]))
 | 
			
		||||
                        cidx += 1
 | 
			
		||||
                    out_clusters.append(ncluster)
 | 
			
		||||
            else:
 | 
			
		||||
                out_clusters = []
 | 
			
		||||
            out.append(out_clusters)
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
    def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
 | 
			
		||||
        for doc, clusters in zip(docs, clusters_by_doc):
 | 
			
		||||
            for ii, cluster in enumerate(clusters):
 | 
			
		||||
                spans = [doc[mm[0]:mm[1]] for mm in cluster]
 | 
			
		||||
                doc.spans[f"{self.output_prefix}_{ii}"] = spans
 | 
			
		||||
 | 
			
		||||
    def update(
 | 
			
		||||
        self,
 | 
			
		||||
        examples: Iterable[Example],
 | 
			
		||||
        *,
 | 
			
		||||
        drop: float = 0.0,
 | 
			
		||||
        sgd: Optional[Optimizer] = None,
 | 
			
		||||
        losses: Optional[Dict[str, float]] = None,
 | 
			
		||||
    ) -> Dict[str, float]:
 | 
			
		||||
        """Learn from a batch of documents and gold-standard information,
 | 
			
		||||
        updating the pipe's model. Delegates to predict and get_loss.
 | 
			
		||||
        """
 | 
			
		||||
        if losses is None:
 | 
			
		||||
            losses = {}
 | 
			
		||||
        losses.setdefault(self.name, 0.0)
 | 
			
		||||
        validate_examples(examples, "SpanPredictor.update")
 | 
			
		||||
        if not any(len(eg.reference) if eg.reference else 0 for eg in examples):
 | 
			
		||||
            # Handle cases where there are no tokens in any docs.
 | 
			
		||||
            return losses
 | 
			
		||||
        set_dropout_rate(self.model, drop)
 | 
			
		||||
 | 
			
		||||
        total_loss = 0
 | 
			
		||||
        for eg in examples:
 | 
			
		||||
            span_scores, backprop = self.model.begin_update([eg.predicted])
 | 
			
		||||
            # FIXME, this only happens once in the first 1000 docs of OntoNotes
 | 
			
		||||
            # and I'm not sure yet why.
 | 
			
		||||
            if span_scores.size:
 | 
			
		||||
                loss, d_scores = self.get_loss([eg], span_scores)
 | 
			
		||||
                total_loss += loss
 | 
			
		||||
                # TODO check shape here
 | 
			
		||||
                backprop((d_scores))
 | 
			
		||||
 | 
			
		||||
        if sgd is not None:
 | 
			
		||||
            self.finish_update(sgd)
 | 
			
		||||
        losses[self.name] += total_loss
 | 
			
		||||
        return losses
 | 
			
		||||
 | 
			
		||||
    def rehearse(
 | 
			
		||||
        self,
 | 
			
		||||
        examples: Iterable[Example],
 | 
			
		||||
        *,
 | 
			
		||||
        drop: float = 0.0,
 | 
			
		||||
        sgd: Optional[Optimizer] = None,
 | 
			
		||||
        losses: Optional[Dict[str, float]] = None,
 | 
			
		||||
    ) -> Dict[str, float]:
 | 
			
		||||
        # TODO this should be added later
 | 
			
		||||
        raise NotImplementedError(
 | 
			
		||||
            Errors.E931.format(
 | 
			
		||||
                parent="SpanPredictor", method="add_label", name=self.name
 | 
			
		||||
            )
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def add_label(self, label: str) -> int:
 | 
			
		||||
        """Technically this method should be implemented from TrainablePipe,
 | 
			
		||||
        but it is not relevant for this component.
 | 
			
		||||
        """
 | 
			
		||||
        raise NotImplementedError(
 | 
			
		||||
            Errors.E931.format(
 | 
			
		||||
                parent="SpanPredictor", method="add_label", name=self.name
 | 
			
		||||
            )
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def get_loss(
 | 
			
		||||
        self,
 | 
			
		||||
        examples: Iterable[Example],
 | 
			
		||||
        span_scores: Floats3d,
 | 
			
		||||
    ):
 | 
			
		||||
        ops = self.model.ops
 | 
			
		||||
 | 
			
		||||
        # NOTE This is doing fake batching, and should always get a list of one example
 | 
			
		||||
        assert len(examples) == 1, "Only fake batching is supported."
 | 
			
		||||
        # starts and ends are gold starts and ends (Ints1d)
 | 
			
		||||
        # span_scores is a Floats3d. What are the axes? mention x token x start/end
 | 
			
		||||
        for eg in examples:
 | 
			
		||||
            starts = []
 | 
			
		||||
            ends = []
 | 
			
		||||
            for key, sg in eg.reference.spans.items():
 | 
			
		||||
                if key.startswith(self.output_prefix):
 | 
			
		||||
                    for mention in sg:
 | 
			
		||||
                        starts.append(mention.start)
 | 
			
		||||
                        ends.append(mention.end)
 | 
			
		||||
 | 
			
		||||
            starts = self.model.ops.xp.asarray(starts)
 | 
			
		||||
            ends = self.model.ops.xp.asarray(ends)
 | 
			
		||||
            start_scores = span_scores[:, :, 0]
 | 
			
		||||
            end_scores = span_scores[:, :, 1]
 | 
			
		||||
            n_classes = start_scores.shape[1]
 | 
			
		||||
            start_probs = ops.softmax(start_scores, axis=1)
 | 
			
		||||
            end_probs = ops.softmax(end_scores, axis=1)
 | 
			
		||||
            start_targets = to_categorical(starts, n_classes)
 | 
			
		||||
            end_targets = to_categorical(ends, n_classes)
 | 
			
		||||
            start_grads = (start_probs - start_targets)
 | 
			
		||||
            end_grads = (end_probs - end_targets)
 | 
			
		||||
            grads = ops.xp.stack((start_grads, end_grads), axis=2)
 | 
			
		||||
            loss = float((grads ** 2).sum())
 | 
			
		||||
        return loss, grads
 | 
			
		||||
 | 
			
		||||
    def initialize(
 | 
			
		||||
        self,
 | 
			
		||||
        get_examples: Callable[[], Iterable[Example]],
 | 
			
		||||
        *,
 | 
			
		||||
        nlp: Optional[Language] = None,
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        validate_get_examples(get_examples, "SpanPredictor.initialize")
 | 
			
		||||
 | 
			
		||||
        X = []
 | 
			
		||||
        Y = []
 | 
			
		||||
        for ex in islice(get_examples(), 2):
 | 
			
		||||
 | 
			
		||||
            if not ex.predicted.spans:
 | 
			
		||||
                # set placeholder for shape inference
 | 
			
		||||
                doc = ex.predicted
 | 
			
		||||
                assert len(doc) > 2, "Coreference requires at least two tokens"
 | 
			
		||||
                doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
 | 
			
		||||
            X.append(ex.predicted)
 | 
			
		||||
            Y.append(ex.reference)
 | 
			
		||||
 | 
			
		||||
        assert len(X) > 0, Errors.E923.format(name=self.name)
 | 
			
		||||
        self.model.initialize(X=X, Y=Y)
 | 
			
		||||
 | 
			
		||||
    def score(self, examples, **kwargs):
 | 
			
		||||
        """
 | 
			
		||||
        Evaluate on reconstructing the correct spans around
 | 
			
		||||
        gold heads.
 | 
			
		||||
        """
 | 
			
		||||
        scores = []
 | 
			
		||||
        xp = self.model.ops.xp
 | 
			
		||||
        for eg in examples:
 | 
			
		||||
            starts = []
 | 
			
		||||
            ends = []
 | 
			
		||||
            pred_starts = []
 | 
			
		||||
            pred_ends = []
 | 
			
		||||
            ref = eg.reference
 | 
			
		||||
            pred = eg.predicted
 | 
			
		||||
            for key, gold_sg in ref.spans.items():
 | 
			
		||||
                if key.startswith(self.output_prefix):
 | 
			
		||||
                    pred_sg = pred.spans[key]
 | 
			
		||||
                    for gold_mention, pred_mention in zip(gold_sg, pred_sg):
 | 
			
		||||
                        starts.append(gold_mention.start)
 | 
			
		||||
                        ends.append(gold_mention.end)
 | 
			
		||||
                        pred_starts.append(pred_mention.start)
 | 
			
		||||
                        pred_ends.append(pred_mention.end)
 | 
			
		||||
 | 
			
		||||
            starts = xp.asarray(starts)
 | 
			
		||||
            ends = xp.asarray(ends)
 | 
			
		||||
            pred_starts = xp.asarray(pred_starts)
 | 
			
		||||
            pred_ends = xp.asarray(pred_ends)
 | 
			
		||||
            correct = (starts == pred_starts) * (ends == pred_ends)
 | 
			
		||||
            accuracy = correct.mean()
 | 
			
		||||
            scores.append(float(accuracy))
 | 
			
		||||
        return {"span_accuracy": mean(scores)}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										280
									
								
								spacy/pipeline/span_predictor.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										280
									
								
								spacy/pipeline/span_predictor.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,280 @@
 | 
			
		|||
from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
from thinc.types import Floats2d, Floats3d, Ints2d
 | 
			
		||||
from thinc.api import Model, Config, Optimizer, CategoricalCrossentropy
 | 
			
		||||
from thinc.api import set_dropout_rate, to_categorical
 | 
			
		||||
from itertools import islice
 | 
			
		||||
from statistics import mean
 | 
			
		||||
 | 
			
		||||
from .trainable_pipe import TrainablePipe
 | 
			
		||||
from ..language import Language
 | 
			
		||||
from ..training import Example, validate_examples, validate_get_examples
 | 
			
		||||
from ..errors import Errors
 | 
			
		||||
from ..scorer import Scorer
 | 
			
		||||
from ..tokens import Doc
 | 
			
		||||
from ..vocab import Vocab
 | 
			
		||||
 | 
			
		||||
from ..ml.models.coref_util import (
 | 
			
		||||
    MentionClusters,
 | 
			
		||||
    DEFAULT_CLUSTER_PREFIX,
 | 
			
		||||
    doc2clusters,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
default_span_predictor_config = """
 | 
			
		||||
[model]
 | 
			
		||||
@architectures = "spacy.SpanPredictor.v1"
 | 
			
		||||
hidden_size = 1024
 | 
			
		||||
dist_emb_size = 64
 | 
			
		||||
 | 
			
		||||
[model.tok2vec]
 | 
			
		||||
@architectures = "spacy.Tok2Vec.v2"
 | 
			
		||||
 | 
			
		||||
[model.tok2vec.embed]
 | 
			
		||||
@architectures = "spacy.MultiHashEmbed.v1"
 | 
			
		||||
width = 64
 | 
			
		||||
rows = [2000, 2000, 1000, 1000, 1000, 1000]
 | 
			
		||||
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
 | 
			
		||||
include_static_vectors = false
 | 
			
		||||
 | 
			
		||||
[model.tok2vec.encode]
 | 
			
		||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
 | 
			
		||||
width = ${model.tok2vec.embed.width}
 | 
			
		||||
window_size = 1
 | 
			
		||||
maxout_pieces = 3
 | 
			
		||||
depth = 2
 | 
			
		||||
"""
 | 
			
		||||
DEFAULT_SPAN_PREDICTOR_MODEL = Config().from_str(default_span_predictor_config)["model"]
 | 
			
		||||
 | 
			
		||||
@Language.factory(
 | 
			
		||||
        "span_predictor",
 | 
			
		||||
        assigns=["doc.spans"],
 | 
			
		||||
        requires=["doc.spans"],
 | 
			
		||||
        default_config={
 | 
			
		||||
            "model": DEFAULT_SPAN_PREDICTOR_MODEL,
 | 
			
		||||
            "input_prefix": "coref_head_clusters",
 | 
			
		||||
            "output_prefix": "coref_clusters",
 | 
			
		||||
            },
 | 
			
		||||
    default_score_weights={"span_accuracy": 1.0},
 | 
			
		||||
    )
 | 
			
		||||
def make_span_predictor(
 | 
			
		||||
        nlp: Language,
 | 
			
		||||
        name: str,
 | 
			
		||||
        model,
 | 
			
		||||
        input_prefix: str = "coref_head_clusters",
 | 
			
		||||
        output_prefix: str = "coref_clusters",
 | 
			
		||||
) -> "SpanPredictor":
 | 
			
		||||
    """Create a SpanPredictor component."""
 | 
			
		||||
    return SpanPredictor(nlp.vocab, model, name, input_prefix=input_prefix, output_prefix=output_prefix)
 | 
			
		||||
 | 
			
		||||
class SpanPredictor(TrainablePipe):
 | 
			
		||||
    """Pipeline component to resolve one-token spans to full spans.
 | 
			
		||||
 | 
			
		||||
    Used in coreference resolution.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        vocab: Vocab,
 | 
			
		||||
        model: Model,
 | 
			
		||||
        name: str = "span_predictor",
 | 
			
		||||
        *,
 | 
			
		||||
        input_prefix: str = "coref_head_clusters",
 | 
			
		||||
        output_prefix: str = "coref_clusters",
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        self.vocab = vocab
 | 
			
		||||
        self.model = model
 | 
			
		||||
        self.name = name
 | 
			
		||||
        self.input_prefix = input_prefix
 | 
			
		||||
        self.output_prefix = output_prefix
 | 
			
		||||
 | 
			
		||||
        self.cfg = {}
 | 
			
		||||
 | 
			
		||||
    def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
 | 
			
		||||
        # for now pretend there's just one doc
 | 
			
		||||
 | 
			
		||||
        out = []
 | 
			
		||||
        for doc in docs:
 | 
			
		||||
            # TODO check shape here
 | 
			
		||||
            span_scores = self.model.predict([doc])
 | 
			
		||||
            if span_scores.size:
 | 
			
		||||
                # the information about clustering has to come from the input docs
 | 
			
		||||
                # first let's convert the scores to a list of span idxs
 | 
			
		||||
                start_scores = span_scores[:, :, 0]
 | 
			
		||||
                end_scores = span_scores[:, :, 1]
 | 
			
		||||
                starts = start_scores.argmax(axis=1)
 | 
			
		||||
                ends = end_scores.argmax(axis=1)
 | 
			
		||||
 | 
			
		||||
                # TODO check start < end
 | 
			
		||||
 | 
			
		||||
                # get the old clusters (shape will be preserved)
 | 
			
		||||
                clusters = doc2clusters(doc, self.input_prefix)
 | 
			
		||||
                cidx = 0
 | 
			
		||||
                out_clusters = []
 | 
			
		||||
                for cluster in clusters:
 | 
			
		||||
                    ncluster = []
 | 
			
		||||
                    for mention in cluster:
 | 
			
		||||
                        ncluster.append((starts[cidx], ends[cidx]))
 | 
			
		||||
                        cidx += 1
 | 
			
		||||
                    out_clusters.append(ncluster)
 | 
			
		||||
            else:
 | 
			
		||||
                out_clusters = []
 | 
			
		||||
            out.append(out_clusters)
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
    def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
 | 
			
		||||
        for doc, clusters in zip(docs, clusters_by_doc):
 | 
			
		||||
            for ii, cluster in enumerate(clusters):
 | 
			
		||||
                spans = [doc[mm[0]:mm[1]] for mm in cluster]
 | 
			
		||||
                doc.spans[f"{self.output_prefix}_{ii}"] = spans
 | 
			
		||||
 | 
			
		||||
    def update(
 | 
			
		||||
        self,
 | 
			
		||||
        examples: Iterable[Example],
 | 
			
		||||
        *,
 | 
			
		||||
        drop: float = 0.0,
 | 
			
		||||
        sgd: Optional[Optimizer] = None,
 | 
			
		||||
        losses: Optional[Dict[str, float]] = None,
 | 
			
		||||
    ) -> Dict[str, float]:
 | 
			
		||||
        """Learn from a batch of documents and gold-standard information,
 | 
			
		||||
        updating the pipe's model. Delegates to predict and get_loss.
 | 
			
		||||
        """
 | 
			
		||||
        if losses is None:
 | 
			
		||||
            losses = {}
 | 
			
		||||
        losses.setdefault(self.name, 0.0)
 | 
			
		||||
        validate_examples(examples, "SpanPredictor.update")
 | 
			
		||||
        if not any(len(eg.reference) if eg.reference else 0 for eg in examples):
 | 
			
		||||
            # Handle cases where there are no tokens in any docs.
 | 
			
		||||
            return losses
 | 
			
		||||
        set_dropout_rate(self.model, drop)
 | 
			
		||||
 | 
			
		||||
        total_loss = 0
 | 
			
		||||
        for eg in examples:
 | 
			
		||||
            span_scores, backprop = self.model.begin_update([eg.predicted])
 | 
			
		||||
            # FIXME, this only happens once in the first 1000 docs of OntoNotes
 | 
			
		||||
            # and I'm not sure yet why.
 | 
			
		||||
            if span_scores.size:
 | 
			
		||||
                loss, d_scores = self.get_loss([eg], span_scores)
 | 
			
		||||
                total_loss += loss
 | 
			
		||||
                # TODO check shape here
 | 
			
		||||
                backprop((d_scores))
 | 
			
		||||
 | 
			
		||||
        if sgd is not None:
 | 
			
		||||
            self.finish_update(sgd)
 | 
			
		||||
        losses[self.name] += total_loss
 | 
			
		||||
        return losses
 | 
			
		||||
 | 
			
		||||
    def rehearse(
 | 
			
		||||
        self,
 | 
			
		||||
        examples: Iterable[Example],
 | 
			
		||||
        *,
 | 
			
		||||
        drop: float = 0.0,
 | 
			
		||||
        sgd: Optional[Optimizer] = None,
 | 
			
		||||
        losses: Optional[Dict[str, float]] = None,
 | 
			
		||||
    ) -> Dict[str, float]:
 | 
			
		||||
        # TODO this should be added later
 | 
			
		||||
        raise NotImplementedError(
 | 
			
		||||
            Errors.E931.format(
 | 
			
		||||
                parent="SpanPredictor", method="add_label", name=self.name
 | 
			
		||||
            )
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def add_label(self, label: str) -> int:
 | 
			
		||||
        """Technically this method should be implemented from TrainablePipe,
 | 
			
		||||
        but it is not relevant for this component.
 | 
			
		||||
        """
 | 
			
		||||
        raise NotImplementedError(
 | 
			
		||||
            Errors.E931.format(
 | 
			
		||||
                parent="SpanPredictor", method="add_label", name=self.name
 | 
			
		||||
            )
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def get_loss(
 | 
			
		||||
        self,
 | 
			
		||||
        examples: Iterable[Example],
 | 
			
		||||
        span_scores: Floats3d,
 | 
			
		||||
    ):
 | 
			
		||||
        ops = self.model.ops
 | 
			
		||||
 | 
			
		||||
        # NOTE This is doing fake batching, and should always get a list of one example
 | 
			
		||||
        assert len(examples) == 1, "Only fake batching is supported."
 | 
			
		||||
        # starts and ends are gold starts and ends (Ints1d)
 | 
			
		||||
        # span_scores is a Floats3d. What are the axes? mention x token x start/end
 | 
			
		||||
        for eg in examples:
 | 
			
		||||
            starts = []
 | 
			
		||||
            ends = []
 | 
			
		||||
            for key, sg in eg.reference.spans.items():
 | 
			
		||||
                if key.startswith(self.output_prefix):
 | 
			
		||||
                    for mention in sg:
 | 
			
		||||
                        starts.append(mention.start)
 | 
			
		||||
                        ends.append(mention.end)
 | 
			
		||||
 | 
			
		||||
            starts = self.model.ops.xp.asarray(starts)
 | 
			
		||||
            ends = self.model.ops.xp.asarray(ends)
 | 
			
		||||
            start_scores = span_scores[:, :, 0]
 | 
			
		||||
            end_scores = span_scores[:, :, 1]
 | 
			
		||||
            n_classes = start_scores.shape[1]
 | 
			
		||||
            start_probs = ops.softmax(start_scores, axis=1)
 | 
			
		||||
            end_probs = ops.softmax(end_scores, axis=1)
 | 
			
		||||
            start_targets = to_categorical(starts, n_classes)
 | 
			
		||||
            end_targets = to_categorical(ends, n_classes)
 | 
			
		||||
            start_grads = (start_probs - start_targets)
 | 
			
		||||
            end_grads = (end_probs - end_targets)
 | 
			
		||||
            grads = ops.xp.stack((start_grads, end_grads), axis=2)
 | 
			
		||||
            loss = float((grads ** 2).sum())
 | 
			
		||||
        return loss, grads
 | 
			
		||||
 | 
			
		||||
    def initialize(
 | 
			
		||||
        self,
 | 
			
		||||
        get_examples: Callable[[], Iterable[Example]],
 | 
			
		||||
        *,
 | 
			
		||||
        nlp: Optional[Language] = None,
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        validate_get_examples(get_examples, "SpanPredictor.initialize")
 | 
			
		||||
 | 
			
		||||
        X = []
 | 
			
		||||
        Y = []
 | 
			
		||||
        for ex in islice(get_examples(), 2):
 | 
			
		||||
 | 
			
		||||
            if not ex.predicted.spans:
 | 
			
		||||
                # set placeholder for shape inference
 | 
			
		||||
                doc = ex.predicted
 | 
			
		||||
                assert len(doc) > 2, "Coreference requires at least two tokens"
 | 
			
		||||
                doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
 | 
			
		||||
            X.append(ex.predicted)
 | 
			
		||||
            Y.append(ex.reference)
 | 
			
		||||
 | 
			
		||||
        assert len(X) > 0, Errors.E923.format(name=self.name)
 | 
			
		||||
        self.model.initialize(X=X, Y=Y)
 | 
			
		||||
 | 
			
		||||
    def score(self, examples, **kwargs):
 | 
			
		||||
        """
 | 
			
		||||
        Evaluate on reconstructing the correct spans around
 | 
			
		||||
        gold heads.
 | 
			
		||||
        """
 | 
			
		||||
        scores = []
 | 
			
		||||
        xp = self.model.ops.xp
 | 
			
		||||
        for eg in examples:
 | 
			
		||||
            starts = []
 | 
			
		||||
            ends = []
 | 
			
		||||
            pred_starts = []
 | 
			
		||||
            pred_ends = []
 | 
			
		||||
            ref = eg.reference
 | 
			
		||||
            pred = eg.predicted
 | 
			
		||||
            for key, gold_sg in ref.spans.items():
 | 
			
		||||
                if key.startswith(self.output_prefix):
 | 
			
		||||
                    pred_sg = pred.spans[key]
 | 
			
		||||
                    for gold_mention, pred_mention in zip(gold_sg, pred_sg):
 | 
			
		||||
                        starts.append(gold_mention.start)
 | 
			
		||||
                        ends.append(gold_mention.end)
 | 
			
		||||
                        pred_starts.append(pred_mention.start)
 | 
			
		||||
                        pred_ends.append(pred_mention.end)
 | 
			
		||||
 | 
			
		||||
            starts = xp.asarray(starts)
 | 
			
		||||
            ends = xp.asarray(ends)
 | 
			
		||||
            pred_starts = xp.asarray(pred_starts)
 | 
			
		||||
            pred_ends = xp.asarray(pred_ends)
 | 
			
		||||
            correct = (starts == pred_starts) * (ends == pred_ends)
 | 
			
		||||
            accuracy = correct.mean()
 | 
			
		||||
            scores.append(float(accuracy))
 | 
			
		||||
        return {"span_accuracy": mean(scores)}
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user