Split span predictor component into its own file

This runs. The imports in both of the split files could probably use a
close check to remove extras.
This commit is contained in:
Paul O'Leary McCann 2022-05-10 18:53:45 +09:00
parent 117a9ef2bf
commit f852c5cea4
3 changed files with 283 additions and 259 deletions

View File

@ -1,5 +1,6 @@
from .attributeruler import AttributeRuler
from .coref import CoreferenceResolver
from .span_predictor import SpanPredictor
from .dep_parser import DependencyParser
from .edit_tree_lemmatizer import EditTreeLemmatizer
from .entity_linker import EntityLinker

View File

@ -56,7 +56,7 @@ window_size = 1
maxout_pieces = 3
depth = 2
"""
DEFAULT_MODEL = Config().from_str(default_config)["model"]
DEFAULT_COREF_MODEL = Config().from_str(default_config)["model"]
DEFAULT_CLUSTERS_PREFIX = "coref_clusters"
@ -66,7 +66,7 @@ DEFAULT_CLUSTERS_PREFIX = "coref_clusters"
assigns=["doc.spans"],
requires=["doc.spans"],
default_config={
"model": DEFAULT_MODEL,
"model": DEFAULT_COREF_MODEL,
"span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
},
default_score_weights={"coref_f": 1.0, "coref_p": None, "coref_r": None},
@ -375,260 +375,3 @@ class CoreferenceResolver(TrainablePipe):
return score
default_span_predictor_config = """
[model]
@architectures = "spacy.SpanPredictor.v1"
hidden_size = 1024
dist_emb_size = 64
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 2
"""
DEFAULT_SPAN_PREDICTOR_MODEL = Config().from_str(default_span_predictor_config)["model"]
@Language.factory(
"span_predictor",
assigns=["doc.spans"],
requires=["doc.spans"],
default_config={
"model": DEFAULT_SPAN_PREDICTOR_MODEL,
"input_prefix": "coref_head_clusters",
"output_prefix": "coref_clusters",
},
default_score_weights={"span_accuracy": 1.0},
)
def make_span_predictor(
nlp: Language,
name: str,
model,
input_prefix: str = "coref_head_clusters",
output_prefix: str = "coref_clusters",
) -> "SpanPredictor":
"""Create a SpanPredictor component."""
return SpanPredictor(nlp.vocab, model, name, input_prefix=input_prefix, output_prefix=output_prefix)
class SpanPredictor(TrainablePipe):
"""Pipeline component to resolve one-token spans to full spans.
Used in coreference resolution.
"""
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "span_predictor",
*,
input_prefix: str = "coref_head_clusters",
output_prefix: str = "coref_clusters",
) -> None:
self.vocab = vocab
self.model = model
self.name = name
self.input_prefix = input_prefix
self.output_prefix = output_prefix
self.cfg = {}
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
# for now pretend there's just one doc
out = []
for doc in docs:
# TODO check shape here
span_scores = self.model.predict([doc])
if span_scores.size:
# the information about clustering has to come from the input docs
# first let's convert the scores to a list of span idxs
start_scores = span_scores[:, :, 0]
end_scores = span_scores[:, :, 1]
starts = start_scores.argmax(axis=1)
ends = end_scores.argmax(axis=1)
# TODO check start < end
# get the old clusters (shape will be preserved)
clusters = doc2clusters(doc, self.input_prefix)
cidx = 0
out_clusters = []
for cluster in clusters:
ncluster = []
for mention in cluster:
ncluster.append((starts[cidx], ends[cidx]))
cidx += 1
out_clusters.append(ncluster)
else:
out_clusters = []
out.append(out_clusters)
return out
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
for doc, clusters in zip(docs, clusters_by_doc):
for ii, cluster in enumerate(clusters):
spans = [doc[mm[0]:mm[1]] for mm in cluster]
doc.spans[f"{self.output_prefix}_{ii}"] = spans
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
validate_examples(examples, "SpanPredictor.update")
if not any(len(eg.reference) if eg.reference else 0 for eg in examples):
# Handle cases where there are no tokens in any docs.
return losses
set_dropout_rate(self.model, drop)
total_loss = 0
for eg in examples:
span_scores, backprop = self.model.begin_update([eg.predicted])
# FIXME, this only happens once in the first 1000 docs of OntoNotes
# and I'm not sure yet why.
if span_scores.size:
loss, d_scores = self.get_loss([eg], span_scores)
total_loss += loss
# TODO check shape here
backprop((d_scores))
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += total_loss
return losses
def rehearse(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
# TODO this should be added later
raise NotImplementedError(
Errors.E931.format(
parent="SpanPredictor", method="add_label", name=self.name
)
)
def add_label(self, label: str) -> int:
"""Technically this method should be implemented from TrainablePipe,
but it is not relevant for this component.
"""
raise NotImplementedError(
Errors.E931.format(
parent="SpanPredictor", method="add_label", name=self.name
)
)
def get_loss(
self,
examples: Iterable[Example],
span_scores: Floats3d,
):
ops = self.model.ops
# NOTE This is doing fake batching, and should always get a list of one example
assert len(examples) == 1, "Only fake batching is supported."
# starts and ends are gold starts and ends (Ints1d)
# span_scores is a Floats3d. What are the axes? mention x token x start/end
for eg in examples:
starts = []
ends = []
for key, sg in eg.reference.spans.items():
if key.startswith(self.output_prefix):
for mention in sg:
starts.append(mention.start)
ends.append(mention.end)
starts = self.model.ops.xp.asarray(starts)
ends = self.model.ops.xp.asarray(ends)
start_scores = span_scores[:, :, 0]
end_scores = span_scores[:, :, 1]
n_classes = start_scores.shape[1]
start_probs = ops.softmax(start_scores, axis=1)
end_probs = ops.softmax(end_scores, axis=1)
start_targets = to_categorical(starts, n_classes)
end_targets = to_categorical(ends, n_classes)
start_grads = (start_probs - start_targets)
end_grads = (end_probs - end_targets)
grads = ops.xp.stack((start_grads, end_grads), axis=2)
loss = float((grads ** 2).sum())
return loss, grads
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
) -> None:
validate_get_examples(get_examples, "SpanPredictor.initialize")
X = []
Y = []
for ex in islice(get_examples(), 2):
if not ex.predicted.spans:
# set placeholder for shape inference
doc = ex.predicted
assert len(doc) > 2, "Coreference requires at least two tokens"
doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
X.append(ex.predicted)
Y.append(ex.reference)
assert len(X) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=X, Y=Y)
def score(self, examples, **kwargs):
"""
Evaluate on reconstructing the correct spans around
gold heads.
"""
scores = []
xp = self.model.ops.xp
for eg in examples:
starts = []
ends = []
pred_starts = []
pred_ends = []
ref = eg.reference
pred = eg.predicted
for key, gold_sg in ref.spans.items():
if key.startswith(self.output_prefix):
pred_sg = pred.spans[key]
for gold_mention, pred_mention in zip(gold_sg, pred_sg):
starts.append(gold_mention.start)
ends.append(gold_mention.end)
pred_starts.append(pred_mention.start)
pred_ends.append(pred_mention.end)
starts = xp.asarray(starts)
ends = xp.asarray(ends)
pred_starts = xp.asarray(pred_starts)
pred_ends = xp.asarray(pred_ends)
correct = (starts == pred_starts) * (ends == pred_ends)
accuracy = correct.mean()
scores.append(float(accuracy))
return {"span_accuracy": mean(scores)}

View File

@ -0,0 +1,280 @@
from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
import warnings
from thinc.types import Floats2d, Floats3d, Ints2d
from thinc.api import Model, Config, Optimizer, CategoricalCrossentropy
from thinc.api import set_dropout_rate, to_categorical
from itertools import islice
from statistics import mean
from .trainable_pipe import TrainablePipe
from ..language import Language
from ..training import Example, validate_examples, validate_get_examples
from ..errors import Errors
from ..scorer import Scorer
from ..tokens import Doc
from ..vocab import Vocab
from ..ml.models.coref_util import (
MentionClusters,
DEFAULT_CLUSTER_PREFIX,
doc2clusters,
)
default_span_predictor_config = """
[model]
@architectures = "spacy.SpanPredictor.v1"
hidden_size = 1024
dist_emb_size = 64
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 2
"""
DEFAULT_SPAN_PREDICTOR_MODEL = Config().from_str(default_span_predictor_config)["model"]
@Language.factory(
"span_predictor",
assigns=["doc.spans"],
requires=["doc.spans"],
default_config={
"model": DEFAULT_SPAN_PREDICTOR_MODEL,
"input_prefix": "coref_head_clusters",
"output_prefix": "coref_clusters",
},
default_score_weights={"span_accuracy": 1.0},
)
def make_span_predictor(
nlp: Language,
name: str,
model,
input_prefix: str = "coref_head_clusters",
output_prefix: str = "coref_clusters",
) -> "SpanPredictor":
"""Create a SpanPredictor component."""
return SpanPredictor(nlp.vocab, model, name, input_prefix=input_prefix, output_prefix=output_prefix)
class SpanPredictor(TrainablePipe):
"""Pipeline component to resolve one-token spans to full spans.
Used in coreference resolution.
"""
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "span_predictor",
*,
input_prefix: str = "coref_head_clusters",
output_prefix: str = "coref_clusters",
) -> None:
self.vocab = vocab
self.model = model
self.name = name
self.input_prefix = input_prefix
self.output_prefix = output_prefix
self.cfg = {}
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
# for now pretend there's just one doc
out = []
for doc in docs:
# TODO check shape here
span_scores = self.model.predict([doc])
if span_scores.size:
# the information about clustering has to come from the input docs
# first let's convert the scores to a list of span idxs
start_scores = span_scores[:, :, 0]
end_scores = span_scores[:, :, 1]
starts = start_scores.argmax(axis=1)
ends = end_scores.argmax(axis=1)
# TODO check start < end
# get the old clusters (shape will be preserved)
clusters = doc2clusters(doc, self.input_prefix)
cidx = 0
out_clusters = []
for cluster in clusters:
ncluster = []
for mention in cluster:
ncluster.append((starts[cidx], ends[cidx]))
cidx += 1
out_clusters.append(ncluster)
else:
out_clusters = []
out.append(out_clusters)
return out
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
for doc, clusters in zip(docs, clusters_by_doc):
for ii, cluster in enumerate(clusters):
spans = [doc[mm[0]:mm[1]] for mm in cluster]
doc.spans[f"{self.output_prefix}_{ii}"] = spans
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
validate_examples(examples, "SpanPredictor.update")
if not any(len(eg.reference) if eg.reference else 0 for eg in examples):
# Handle cases where there are no tokens in any docs.
return losses
set_dropout_rate(self.model, drop)
total_loss = 0
for eg in examples:
span_scores, backprop = self.model.begin_update([eg.predicted])
# FIXME, this only happens once in the first 1000 docs of OntoNotes
# and I'm not sure yet why.
if span_scores.size:
loss, d_scores = self.get_loss([eg], span_scores)
total_loss += loss
# TODO check shape here
backprop((d_scores))
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += total_loss
return losses
def rehearse(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
# TODO this should be added later
raise NotImplementedError(
Errors.E931.format(
parent="SpanPredictor", method="add_label", name=self.name
)
)
def add_label(self, label: str) -> int:
"""Technically this method should be implemented from TrainablePipe,
but it is not relevant for this component.
"""
raise NotImplementedError(
Errors.E931.format(
parent="SpanPredictor", method="add_label", name=self.name
)
)
def get_loss(
self,
examples: Iterable[Example],
span_scores: Floats3d,
):
ops = self.model.ops
# NOTE This is doing fake batching, and should always get a list of one example
assert len(examples) == 1, "Only fake batching is supported."
# starts and ends are gold starts and ends (Ints1d)
# span_scores is a Floats3d. What are the axes? mention x token x start/end
for eg in examples:
starts = []
ends = []
for key, sg in eg.reference.spans.items():
if key.startswith(self.output_prefix):
for mention in sg:
starts.append(mention.start)
ends.append(mention.end)
starts = self.model.ops.xp.asarray(starts)
ends = self.model.ops.xp.asarray(ends)
start_scores = span_scores[:, :, 0]
end_scores = span_scores[:, :, 1]
n_classes = start_scores.shape[1]
start_probs = ops.softmax(start_scores, axis=1)
end_probs = ops.softmax(end_scores, axis=1)
start_targets = to_categorical(starts, n_classes)
end_targets = to_categorical(ends, n_classes)
start_grads = (start_probs - start_targets)
end_grads = (end_probs - end_targets)
grads = ops.xp.stack((start_grads, end_grads), axis=2)
loss = float((grads ** 2).sum())
return loss, grads
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
) -> None:
validate_get_examples(get_examples, "SpanPredictor.initialize")
X = []
Y = []
for ex in islice(get_examples(), 2):
if not ex.predicted.spans:
# set placeholder for shape inference
doc = ex.predicted
assert len(doc) > 2, "Coreference requires at least two tokens"
doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
X.append(ex.predicted)
Y.append(ex.reference)
assert len(X) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=X, Y=Y)
def score(self, examples, **kwargs):
"""
Evaluate on reconstructing the correct spans around
gold heads.
"""
scores = []
xp = self.model.ops.xp
for eg in examples:
starts = []
ends = []
pred_starts = []
pred_ends = []
ref = eg.reference
pred = eg.predicted
for key, gold_sg in ref.spans.items():
if key.startswith(self.output_prefix):
pred_sg = pred.spans[key]
for gold_mention, pred_mention in zip(gold_sg, pred_sg):
starts.append(gold_mention.start)
ends.append(gold_mention.end)
pred_starts.append(pred_mention.start)
pred_ends.append(pred_mention.end)
starts = xp.asarray(starts)
ends = xp.asarray(ends)
pred_starts = xp.asarray(pred_starts)
pred_ends = xp.asarray(pred_ends)
correct = (starts == pred_starts) * (ends == pred_ends)
accuracy = correct.mean()
scores.append(float(accuracy))
return {"span_accuracy": mean(scores)}