mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Tidy up and auto-format
This commit is contained in:
parent
313f55e560
commit
f90482d077
|
@ -5,7 +5,7 @@ import sys
|
|||
# set library-specific custom warning handling before doing anything else
|
||||
from .errors import setup_default_warnings
|
||||
|
||||
setup_default_warnings()
|
||||
setup_default_warnings() # noqa: E402
|
||||
|
||||
# These are imported as part of the API
|
||||
from thinc.api import prefer_gpu, require_gpu, require_cpu # noqa: F401
|
||||
|
|
|
@ -1447,7 +1447,7 @@ class Language:
|
|||
) -> Iterator[Tuple[Doc, _AnyContext]]:
|
||||
...
|
||||
|
||||
def pipe(
|
||||
def pipe( # noqa: F811
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
*,
|
||||
|
|
|
@ -69,4 +69,4 @@ def test_create_with_heads_and_no_deps(vocab):
|
|||
words = "I like ginger".split()
|
||||
heads = list(range(len(words)))
|
||||
with pytest.raises(ValueError):
|
||||
doc = Doc(vocab, words=words, heads=heads)
|
||||
Doc(vocab, words=words, heads=heads)
|
||||
|
|
|
@ -329,8 +329,8 @@ def test_ner_constructor(en_vocab):
|
|||
}
|
||||
cfg = {"model": DEFAULT_NER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
ner_1 = EntityRecognizer(en_vocab, model, **config)
|
||||
ner_2 = EntityRecognizer(en_vocab, model)
|
||||
EntityRecognizer(en_vocab, model, **config)
|
||||
EntityRecognizer(en_vocab, model)
|
||||
|
||||
|
||||
def test_ner_before_ruler():
|
||||
|
|
|
@ -224,8 +224,8 @@ def test_parser_constructor(en_vocab):
|
|||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser_1 = DependencyParser(en_vocab, model, **config)
|
||||
parser_2 = DependencyParser(en_vocab, model)
|
||||
DependencyParser(en_vocab, model, **config)
|
||||
DependencyParser(en_vocab, model)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"])
|
||||
|
|
|
@ -74,7 +74,7 @@ def test_annotates_on_update():
|
|||
nlp.add_pipe("assert_sents")
|
||||
|
||||
# When the pipeline runs, annotations are set
|
||||
doc = nlp("This is a sentence.")
|
||||
nlp("This is a sentence.")
|
||||
|
||||
examples = []
|
||||
for text in ["a a", "b b", "c c"]:
|
||||
|
|
|
@ -110,4 +110,4 @@ def test_lemmatizer_serialize(nlp):
|
|||
assert doc2[0].lemma_ == "cope"
|
||||
|
||||
# Make sure that lemmatizer cache can be pickled
|
||||
b = pickle.dumps(lemmatizer2)
|
||||
pickle.dumps(lemmatizer2)
|
||||
|
|
|
@ -52,7 +52,7 @@ def test_cant_add_pipe_first_and_last(nlp):
|
|||
nlp.add_pipe("new_pipe", first=True, last=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("name", ["my_component"])
|
||||
@pytest.mark.parametrize("name", ["test_get_pipe"])
|
||||
def test_get_pipe(nlp, name):
|
||||
with pytest.raises(KeyError):
|
||||
nlp.get_pipe(name)
|
||||
|
@ -62,7 +62,7 @@ def test_get_pipe(nlp, name):
|
|||
|
||||
@pytest.mark.parametrize(
|
||||
"name,replacement,invalid_replacement",
|
||||
[("my_component", "other_pipe", lambda doc: doc)],
|
||||
[("test_replace_pipe", "other_pipe", lambda doc: doc)],
|
||||
)
|
||||
def test_replace_pipe(nlp, name, replacement, invalid_replacement):
|
||||
with pytest.raises(ValueError):
|
||||
|
@ -435,8 +435,8 @@ def test_update_with_annotates():
|
|||
|
||||
return component
|
||||
|
||||
c1 = Language.component(f"{name}1", func=make_component(f"{name}1"))
|
||||
c2 = Language.component(f"{name}2", func=make_component(f"{name}2"))
|
||||
Language.component(f"{name}1", func=make_component(f"{name}1"))
|
||||
Language.component(f"{name}2", func=make_component(f"{name}2"))
|
||||
|
||||
components = set([f"{name}1", f"{name}2"])
|
||||
|
||||
|
|
|
@ -69,9 +69,12 @@ def test_issue5082():
|
|||
|
||||
|
||||
def test_issue5137():
|
||||
@Language.factory("my_component")
|
||||
factory_name = "test_issue5137"
|
||||
pipe_name = "my_component"
|
||||
|
||||
@Language.factory(factory_name)
|
||||
class MyComponent:
|
||||
def __init__(self, nlp, name="my_component", categories="all_categories"):
|
||||
def __init__(self, nlp, name=pipe_name, categories="all_categories"):
|
||||
self.nlp = nlp
|
||||
self.categories = categories
|
||||
self.name = name
|
||||
|
@ -86,13 +89,13 @@ def test_issue5137():
|
|||
pass
|
||||
|
||||
nlp = English()
|
||||
my_component = nlp.add_pipe("my_component")
|
||||
my_component = nlp.add_pipe(factory_name, name=pipe_name)
|
||||
assert my_component.categories == "all_categories"
|
||||
with make_tempdir() as tmpdir:
|
||||
nlp.to_disk(tmpdir)
|
||||
overrides = {"components": {"my_component": {"categories": "my_categories"}}}
|
||||
overrides = {"components": {pipe_name: {"categories": "my_categories"}}}
|
||||
nlp2 = spacy.load(tmpdir, config=overrides)
|
||||
assert nlp2.get_pipe("my_component").categories == "my_categories"
|
||||
assert nlp2.get_pipe(pipe_name).categories == "my_categories"
|
||||
|
||||
|
||||
def test_issue5141(en_vocab):
|
||||
|
|
281
spacy/tests/regression/test_issue7001-8000.py
Normal file
281
spacy/tests/regression/test_issue7001-8000.py
Normal file
|
@ -0,0 +1,281 @@
|
|||
from spacy.cli.evaluate import print_textcats_auc_per_cat, print_prf_per_type
|
||||
from spacy.lang.en import English
|
||||
from spacy.training import Example
|
||||
from spacy.tokens.doc import Doc
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.kb import KnowledgeBase
|
||||
from spacy.pipeline._parser_internals.arc_eager import ArcEager
|
||||
from spacy.util import load_config_from_str, load_config
|
||||
from spacy.cli.init_config import fill_config
|
||||
from thinc.api import Config
|
||||
from wasabi import msg
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
def test_issue7019():
|
||||
scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None}
|
||||
print_textcats_auc_per_cat(msg, scores)
|
||||
scores = {
|
||||
"LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932},
|
||||
"LABEL_B": {"p": None, "r": None, "f": None},
|
||||
}
|
||||
print_prf_per_type(msg, scores, name="foo", type="bar")
|
||||
|
||||
|
||||
CONFIG_7029 = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec", "tagger"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,2500,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
upstream = "*"
|
||||
"""
|
||||
|
||||
|
||||
def test_issue7029():
|
||||
"""Test that an empty document doesn't mess up an entire batch."""
|
||||
TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
]
|
||||
nlp = English.from_config(load_config_from_str(CONFIG_7029))
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
|
||||
docs1 = list(nlp.pipe(texts, batch_size=1))
|
||||
docs2 = list(nlp.pipe(texts, batch_size=4))
|
||||
assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
|
||||
|
||||
|
||||
def test_issue7055():
|
||||
"""Test that fill-config doesn't turn sourced components into factories."""
|
||||
source_cfg = {
|
||||
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger"]},
|
||||
"components": {
|
||||
"tok2vec": {"factory": "tok2vec"},
|
||||
"tagger": {"factory": "tagger"},
|
||||
},
|
||||
}
|
||||
source_nlp = English.from_config(source_cfg)
|
||||
with make_tempdir() as dir_path:
|
||||
# We need to create a loadable source pipeline
|
||||
source_path = dir_path / "test_model"
|
||||
source_nlp.to_disk(source_path)
|
||||
base_cfg = {
|
||||
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
|
||||
"components": {
|
||||
"tok2vec": {"source": str(source_path)},
|
||||
"tagger": {"source": str(source_path)},
|
||||
"ner": {"factory": "ner"},
|
||||
},
|
||||
}
|
||||
base_cfg = Config(base_cfg)
|
||||
base_path = dir_path / "base.cfg"
|
||||
base_cfg.to_disk(base_path)
|
||||
output_path = dir_path / "config.cfg"
|
||||
fill_config(output_path, base_path, silent=True)
|
||||
filled_cfg = load_config(output_path)
|
||||
assert filled_cfg["components"]["tok2vec"]["source"] == str(source_path)
|
||||
assert filled_cfg["components"]["tagger"]["source"] == str(source_path)
|
||||
assert filled_cfg["components"]["ner"]["factory"] == "ner"
|
||||
assert "model" in filled_cfg["components"]["ner"]
|
||||
|
||||
|
||||
def test_issue7056():
|
||||
"""Test that the Unshift transition works properly, and doesn't cause
|
||||
sentence segmentation errors."""
|
||||
vocab = Vocab()
|
||||
ae = ArcEager(
|
||||
vocab.strings, ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"])
|
||||
)
|
||||
doc = Doc(vocab, words="Severe pain , after trauma".split())
|
||||
state = ae.init_batch([doc])[0]
|
||||
ae.apply_transition(state, "S")
|
||||
ae.apply_transition(state, "L-amod")
|
||||
ae.apply_transition(state, "S")
|
||||
ae.apply_transition(state, "S")
|
||||
ae.apply_transition(state, "S")
|
||||
ae.apply_transition(state, "R-pobj")
|
||||
ae.apply_transition(state, "D")
|
||||
ae.apply_transition(state, "D")
|
||||
ae.apply_transition(state, "D")
|
||||
assert not state.eol()
|
||||
|
||||
|
||||
def test_partial_links():
|
||||
# Test that having some entities on the doc without gold links, doesn't crash
|
||||
TRAIN_DATA = [
|
||||
(
|
||||
"Russ Cochran his reprints include EC Comics.",
|
||||
{
|
||||
"links": {(0, 12): {"Q2146908": 1.0}},
|
||||
"entities": [(0, 12, "PERSON")],
|
||||
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0],
|
||||
},
|
||||
)
|
||||
]
|
||||
nlp = English()
|
||||
vector_length = 3
|
||||
train_examples = []
|
||||
for text, annotation in TRAIN_DATA:
|
||||
doc = nlp(text)
|
||||
train_examples.append(Example.from_dict(doc, annotation))
|
||||
|
||||
def create_kb(vocab):
|
||||
# create artificial KB
|
||||
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
|
||||
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
||||
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
|
||||
return mykb
|
||||
|
||||
# Create and train the Entity Linker
|
||||
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
||||
entity_linker.set_kb(create_kb)
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
for i in range(2):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
|
||||
# adding additional components that are required for the entity_linker
|
||||
nlp.add_pipe("sentencizer", first=True)
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
|
||||
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
# this will run the pipeline on the examples and shouldn't crash
|
||||
results = nlp.evaluate(train_examples)
|
||||
assert "PERSON" in results["ents_per_type"]
|
||||
assert "PERSON" in results["nel_f_per_type"]
|
||||
assert "ORG" in results["ents_per_type"]
|
||||
assert "ORG" not in results["nel_f_per_type"]
|
||||
|
||||
|
||||
def test_issue7065():
|
||||
text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival."
|
||||
nlp = English()
|
||||
nlp.add_pipe("sentencizer")
|
||||
ruler = nlp.add_pipe("entity_ruler")
|
||||
patterns = [
|
||||
{
|
||||
"label": "THING",
|
||||
"pattern": [
|
||||
{"LOWER": "symphony"},
|
||||
{"LOWER": "no"},
|
||||
{"LOWER": "."},
|
||||
{"LOWER": "8"},
|
||||
],
|
||||
}
|
||||
]
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
doc = nlp(text)
|
||||
sentences = [s for s in doc.sents]
|
||||
assert len(sentences) == 2
|
||||
sent0 = sentences[0]
|
||||
ent = doc.ents[0]
|
||||
assert ent.start < sent0.end < ent.end
|
||||
assert sentences.index(ent.sent) == 0
|
||||
|
||||
|
||||
def test_issue7065_b():
|
||||
# Test that the NEL doesn't crash when an entity crosses a sentence boundary
|
||||
nlp = English()
|
||||
vector_length = 3
|
||||
nlp.add_pipe("sentencizer")
|
||||
text = "Mahler 's Symphony No. 8 was beautiful."
|
||||
entities = [(0, 6, "PERSON"), (10, 24, "WORK")]
|
||||
links = {
|
||||
(0, 6): {"Q7304": 1.0, "Q270853": 0.0},
|
||||
(10, 24): {"Q7304": 0.0, "Q270853": 1.0},
|
||||
}
|
||||
sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0]
|
||||
doc = nlp(text)
|
||||
example = Example.from_dict(
|
||||
doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
|
||||
)
|
||||
train_examples = [example]
|
||||
|
||||
def create_kb(vocab):
|
||||
# create artificial KB
|
||||
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
|
||||
mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7])
|
||||
mykb.add_alias(
|
||||
alias="No. 8",
|
||||
entities=["Q270853"],
|
||||
probabilities=[1.0],
|
||||
)
|
||||
mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3])
|
||||
mykb.add_alias(
|
||||
alias="Mahler",
|
||||
entities=["Q7304"],
|
||||
probabilities=[1.0],
|
||||
)
|
||||
return mykb
|
||||
|
||||
# Create the Entity Linker component and add it to the pipeline
|
||||
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
||||
entity_linker.set_kb(create_kb)
|
||||
# train the NEL pipe
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
for i in range(2):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
|
||||
# Add a custom rule-based component to mimick NER
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]},
|
||||
{
|
||||
"label": "WORK",
|
||||
"pattern": [
|
||||
{"LOWER": "symphony"},
|
||||
{"LOWER": "no"},
|
||||
{"LOWER": "."},
|
||||
{"LOWER": "8"},
|
||||
],
|
||||
},
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
||||
ruler.add_patterns(patterns)
|
||||
# test the trained model - this should not throw E148
|
||||
doc = nlp(text)
|
||||
assert doc
|
|
@ -1,12 +0,0 @@
|
|||
from spacy.cli.evaluate import print_textcats_auc_per_cat, print_prf_per_type
|
||||
from wasabi import msg
|
||||
|
||||
|
||||
def test_issue7019():
|
||||
scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None}
|
||||
print_textcats_auc_per_cat(msg, scores)
|
||||
scores = {
|
||||
"LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932},
|
||||
"LABEL_B": {"p": None, "r": None, "f": None},
|
||||
}
|
||||
print_prf_per_type(msg, scores, name="foo", type="bar")
|
|
@ -1,66 +0,0 @@
|
|||
from spacy.lang.en import English
|
||||
from spacy.training import Example
|
||||
from spacy.util import load_config_from_str
|
||||
|
||||
|
||||
CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec", "tagger"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,2500,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
upstream = "*"
|
||||
"""
|
||||
|
||||
|
||||
TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
]
|
||||
|
||||
|
||||
def test_issue7029():
|
||||
"""Test that an empty document doesn't mess up an entire batch."""
|
||||
nlp = English.from_config(load_config_from_str(CONFIG))
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
|
||||
docs1 = list(nlp.pipe(texts, batch_size=1))
|
||||
docs2 = list(nlp.pipe(texts, batch_size=4))
|
||||
assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
|
|
@ -1,40 +0,0 @@
|
|||
from spacy.cli.init_config import fill_config
|
||||
from spacy.util import load_config
|
||||
from spacy.lang.en import English
|
||||
from thinc.api import Config
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
def test_issue7055():
|
||||
"""Test that fill-config doesn't turn sourced components into factories."""
|
||||
source_cfg = {
|
||||
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger"]},
|
||||
"components": {
|
||||
"tok2vec": {"factory": "tok2vec"},
|
||||
"tagger": {"factory": "tagger"},
|
||||
},
|
||||
}
|
||||
source_nlp = English.from_config(source_cfg)
|
||||
with make_tempdir() as dir_path:
|
||||
# We need to create a loadable source pipeline
|
||||
source_path = dir_path / "test_model"
|
||||
source_nlp.to_disk(source_path)
|
||||
base_cfg = {
|
||||
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
|
||||
"components": {
|
||||
"tok2vec": {"source": str(source_path)},
|
||||
"tagger": {"source": str(source_path)},
|
||||
"ner": {"factory": "ner"},
|
||||
},
|
||||
}
|
||||
base_cfg = Config(base_cfg)
|
||||
base_path = dir_path / "base.cfg"
|
||||
base_cfg.to_disk(base_path)
|
||||
output_path = dir_path / "config.cfg"
|
||||
fill_config(output_path, base_path, silent=True)
|
||||
filled_cfg = load_config(output_path)
|
||||
assert filled_cfg["components"]["tok2vec"]["source"] == str(source_path)
|
||||
assert filled_cfg["components"]["tagger"]["source"] == str(source_path)
|
||||
assert filled_cfg["components"]["ner"]["factory"] == "ner"
|
||||
assert "model" in filled_cfg["components"]["ner"]
|
|
@ -1,24 +0,0 @@
|
|||
from spacy.tokens.doc import Doc
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.pipeline._parser_internals.arc_eager import ArcEager
|
||||
|
||||
|
||||
def test_issue7056():
|
||||
"""Test that the Unshift transition works properly, and doesn't cause
|
||||
sentence segmentation errors."""
|
||||
vocab = Vocab()
|
||||
ae = ArcEager(
|
||||
vocab.strings, ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"])
|
||||
)
|
||||
doc = Doc(vocab, words="Severe pain , after trauma".split())
|
||||
state = ae.init_batch([doc])[0]
|
||||
ae.apply_transition(state, "S")
|
||||
ae.apply_transition(state, "L-amod")
|
||||
ae.apply_transition(state, "S")
|
||||
ae.apply_transition(state, "S")
|
||||
ae.apply_transition(state, "S")
|
||||
ae.apply_transition(state, "R-pobj")
|
||||
ae.apply_transition(state, "D")
|
||||
ae.apply_transition(state, "D")
|
||||
ae.apply_transition(state, "D")
|
||||
assert not state.eol()
|
|
@ -1,54 +0,0 @@
|
|||
from spacy.kb import KnowledgeBase
|
||||
from spacy.training import Example
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
# fmt: off
|
||||
TRAIN_DATA = [
|
||||
("Russ Cochran his reprints include EC Comics.",
|
||||
{"links": {(0, 12): {"Q2146908": 1.0}},
|
||||
"entities": [(0, 12, "PERSON")],
|
||||
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0]})
|
||||
]
|
||||
# fmt: on
|
||||
|
||||
|
||||
def test_partial_links():
|
||||
# Test that having some entities on the doc without gold links, doesn't crash
|
||||
nlp = English()
|
||||
vector_length = 3
|
||||
train_examples = []
|
||||
for text, annotation in TRAIN_DATA:
|
||||
doc = nlp(text)
|
||||
train_examples.append(Example.from_dict(doc, annotation))
|
||||
|
||||
def create_kb(vocab):
|
||||
# create artificial KB
|
||||
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
|
||||
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
||||
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
|
||||
return mykb
|
||||
|
||||
# Create and train the Entity Linker
|
||||
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
||||
entity_linker.set_kb(create_kb)
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
for i in range(2):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
|
||||
# adding additional components that are required for the entity_linker
|
||||
nlp.add_pipe("sentencizer", first=True)
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
|
||||
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
# this will run the pipeline on the examples and shouldn't crash
|
||||
results = nlp.evaluate(train_examples)
|
||||
assert "PERSON" in results["ents_per_type"]
|
||||
assert "PERSON" in results["nel_f_per_type"]
|
||||
assert "ORG" in results["ents_per_type"]
|
||||
assert "ORG" not in results["nel_f_per_type"]
|
|
@ -1,97 +0,0 @@
|
|||
from spacy.kb import KnowledgeBase
|
||||
from spacy.lang.en import English
|
||||
from spacy.training import Example
|
||||
|
||||
|
||||
def test_issue7065():
|
||||
text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival."
|
||||
nlp = English()
|
||||
nlp.add_pipe("sentencizer")
|
||||
ruler = nlp.add_pipe("entity_ruler")
|
||||
patterns = [
|
||||
{
|
||||
"label": "THING",
|
||||
"pattern": [
|
||||
{"LOWER": "symphony"},
|
||||
{"LOWER": "no"},
|
||||
{"LOWER": "."},
|
||||
{"LOWER": "8"},
|
||||
],
|
||||
}
|
||||
]
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
doc = nlp(text)
|
||||
sentences = [s for s in doc.sents]
|
||||
assert len(sentences) == 2
|
||||
sent0 = sentences[0]
|
||||
ent = doc.ents[0]
|
||||
assert ent.start < sent0.end < ent.end
|
||||
assert sentences.index(ent.sent) == 0
|
||||
|
||||
|
||||
def test_issue7065_b():
|
||||
# Test that the NEL doesn't crash when an entity crosses a sentence boundary
|
||||
nlp = English()
|
||||
vector_length = 3
|
||||
nlp.add_pipe("sentencizer")
|
||||
|
||||
text = "Mahler 's Symphony No. 8 was beautiful."
|
||||
entities = [(0, 6, "PERSON"), (10, 24, "WORK")]
|
||||
links = {
|
||||
(0, 6): {"Q7304": 1.0, "Q270853": 0.0},
|
||||
(10, 24): {"Q7304": 0.0, "Q270853": 1.0},
|
||||
}
|
||||
sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0]
|
||||
doc = nlp(text)
|
||||
example = Example.from_dict(
|
||||
doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
|
||||
)
|
||||
train_examples = [example]
|
||||
|
||||
def create_kb(vocab):
|
||||
# create artificial KB
|
||||
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
|
||||
mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7])
|
||||
mykb.add_alias(
|
||||
alias="No. 8",
|
||||
entities=["Q270853"],
|
||||
probabilities=[1.0],
|
||||
)
|
||||
mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3])
|
||||
mykb.add_alias(
|
||||
alias="Mahler",
|
||||
entities=["Q7304"],
|
||||
probabilities=[1.0],
|
||||
)
|
||||
return mykb
|
||||
|
||||
# Create the Entity Linker component and add it to the pipeline
|
||||
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
||||
entity_linker.set_kb(create_kb)
|
||||
|
||||
# train the NEL pipe
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
for i in range(2):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
|
||||
# Add a custom rule-based component to mimick NER
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]},
|
||||
{
|
||||
"label": "WORK",
|
||||
"pattern": [
|
||||
{"LOWER": "symphony"},
|
||||
{"LOWER": "no"},
|
||||
{"LOWER": "."},
|
||||
{"LOWER": "8"},
|
||||
],
|
||||
},
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
# test the trained model - this should not throw E148
|
||||
doc = nlp(text)
|
||||
assert doc
|
|
@ -60,12 +60,6 @@ def taggers(en_vocab):
|
|||
|
||||
@pytest.mark.parametrize("Parser", test_parsers)
|
||||
def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
|
||||
config = {
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"beam_width": 1,
|
||||
"beam_update_prob": 1.0,
|
||||
"beam_density": 0.0,
|
||||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser = Parser(en_vocab, model)
|
||||
|
|
|
@ -440,7 +440,7 @@ def test_init_config(lang, pipeline, optimize, pretraining):
|
|||
assert isinstance(config, Config)
|
||||
if pretraining:
|
||||
config["paths"]["raw_text"] = "my_data.jsonl"
|
||||
nlp = load_model_from_config(config, auto_fill=True)
|
||||
load_model_from_config(config, auto_fill=True)
|
||||
|
||||
|
||||
def test_model_recommendations():
|
||||
|
|
|
@ -211,7 +211,7 @@ def test_empty_docs(model_func, kwargs):
|
|||
|
||||
|
||||
def test_init_extract_spans():
|
||||
model = extract_spans().initialize()
|
||||
extract_spans().initialize()
|
||||
|
||||
|
||||
def test_extract_spans_span_indices():
|
||||
|
|
Loading…
Reference in New Issue
Block a user