mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Merge branch 'master' into develop
This commit is contained in:
commit
f9869e4dc5
106
.github/contributors/dvsrepo.md
vendored
Normal file
106
.github/contributors/dvsrepo.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Daniel Vila-Suero |
|
||||
| Company name (if applicable) | recogn.ai |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 07-04-2017 |
|
||||
| GitHub username | dvsrepo |
|
||||
| Website (optional) | recogn.ai |
|
|
@ -12,6 +12,7 @@ This is a list of everyone who has made significant contributions to spaCy, in a
|
|||
* Christoph Schwienheer, [@chssch](https://github.com/chssch)
|
||||
* Dafne van Kuppevelt, [@dafnevk](https://github.com/dafnevk)
|
||||
* Daniel Rapp, [@rappdw](https://github.com/rappdw)
|
||||
* Daniel Vila Suero, [@dvsrepo](https://github.com/dvsrepo)
|
||||
* Dmytro Sadovnychyi, [@sadovnychyi](https://github.com/sadovnychyi)
|
||||
* Eric Zhao, [@ericzhao28](https://github.com/ericzhao28)
|
||||
* Greg Baker, [@solresol](https://github.com/solresol)
|
||||
|
|
|
@ -78,7 +78,7 @@ You can run the `keras_parikh_entailment/` directory as a script, which executes
|
|||
[`keras_parikh_entailment/__main__.py`](__main__.py). The first thing you'll want to do is train the model:
|
||||
|
||||
```bash
|
||||
python keras_parikh_entailment/ train <your_model_dir> <train_directory> <dev_directory>
|
||||
python keras_parikh_entailment/ train <train_directory> <dev_directory>
|
||||
```
|
||||
|
||||
Training takes about 300 epochs for full accuracy, and I haven't rerun the full
|
||||
|
|
|
@ -52,7 +52,7 @@ def train(train_loc, dev_loc, shape, settings):
|
|||
file_.write(model.to_json())
|
||||
|
||||
|
||||
def evaluate(model_dir, dev_loc):
|
||||
def evaluate(dev_loc):
|
||||
dev_texts1, dev_texts2, dev_labels = read_snli(dev_loc)
|
||||
nlp = spacy.load('en',
|
||||
create_pipeline=create_similarity_pipeline)
|
||||
|
|
|
@ -80,10 +80,10 @@ def get_word_ids(docs, rnn_encode=False, tree_truncate=False, max_length=100, nr
|
|||
return Xs
|
||||
|
||||
|
||||
def create_similarity_pipeline(nlp):
|
||||
def create_similarity_pipeline(nlp, max_length=100):
|
||||
return [
|
||||
nlp.tagger,
|
||||
nlp.entity,
|
||||
nlp.parser,
|
||||
KerasSimilarityShim.load(nlp.path / 'similarity', nlp, max_length=10)
|
||||
KerasSimilarityShim.load(nlp.path / 'similarity', nlp, max_length)
|
||||
]
|
||||
|
|
|
@ -10,3 +10,4 @@ six
|
|||
ujson>=1.35
|
||||
dill>=0.2,<0.3
|
||||
requests>=2.13.0,<3.0.0
|
||||
regex>=2.4.120,<3.0.0
|
||||
|
|
3
setup.py
3
setup.py
|
@ -246,7 +246,8 @@ def setup_package():
|
|||
'pathlib',
|
||||
'ujson>=1.35',
|
||||
'dill>=0.2,<0.3',
|
||||
'requests>=2.13.0,<3.0.0'],
|
||||
'requests>=2.13.0,<3.0.0',
|
||||
'regex>=2.4.120,<3.0.0'],
|
||||
classifiers=[
|
||||
'Development Status :: 5 - Production/Stable',
|
||||
'Environment :: Console',
|
||||
|
|
|
@ -17,4 +17,5 @@ class Spanish(Language):
|
|||
lex_attr_getters[LANG] = lambda text: 'es'
|
||||
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
tag_map = TAG_MAP
|
||||
stop_words = STOP_WORDS
|
||||
|
|
|
@ -5,6 +5,7 @@ from .. import language_data as base
|
|||
from ..language_data import update_exc, strings_to_exc
|
||||
from ..symbols import ORTH, LEMMA
|
||||
|
||||
from .tag_map import TAG_MAP
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS, ORTH_ONLY
|
||||
|
||||
|
@ -39,7 +40,7 @@ def get_time_exc(hours):
|
|||
]
|
||||
return exc
|
||||
|
||||
|
||||
TAG_MAP = dict(TAG_MAP)
|
||||
STOP_WORDS = set(STOP_WORDS)
|
||||
|
||||
|
||||
|
@ -51,4 +52,4 @@ update_exc(TOKENIZER_EXCEPTIONS, strings_to_exc(base.EMOTICONS))
|
|||
update_exc(TOKENIZER_EXCEPTIONS, strings_to_exc(base.ABBREVIATIONS))
|
||||
|
||||
|
||||
__all__ = ["TOKENIZER_EXCEPTIONS", "STOP_WORDS"]
|
||||
__all__ = ["TOKENIZER_EXCEPTIONS", "TAG_MAP", "STOP_WORDS"]
|
||||
|
|
1045
spacy/es/tag_map.py
1045
spacy/es/tag_map.py
File diff suppressed because it is too large
Load Diff
|
@ -1,6 +1,8 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
import re
|
||||
# The use of this module turns out to be important, to avoid pathological
|
||||
# back-tracking. See Issue #957
|
||||
import regex
|
||||
|
||||
# URL validation regex courtesy of: https://mathiasbynens.be/demo/url-regex
|
||||
# A few minor mods to this regex to account for use cases represented in test_urls
|
||||
|
@ -23,6 +25,8 @@ _URL_PATTERN = (
|
|||
# excludes reserved space >= 224.0.0.0
|
||||
# excludes network & broadcast addresses
|
||||
# (first & last IP address of each class)
|
||||
# MH: Do we really need this? Seems excessive, and seems to have caused
|
||||
# Issue #957
|
||||
r"(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])"
|
||||
r"(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}"
|
||||
r"(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))"
|
||||
|
@ -45,6 +49,6 @@ _URL_PATTERN = (
|
|||
r"$"
|
||||
).strip()
|
||||
|
||||
TOKEN_MATCH = re.compile(_URL_PATTERN, re.UNICODE).match
|
||||
TOKEN_MATCH = regex.compile(_URL_PATTERN, regex.UNICODE).match
|
||||
|
||||
__all__ = ['TOKEN_MATCH']
|
||||
|
|
|
@ -49,6 +49,10 @@ def en_vocab():
|
|||
def en_parser():
|
||||
return English.Defaults.create_parser()
|
||||
|
||||
@pytest.fixture
|
||||
def es_tokenizer():
|
||||
return Spanish.Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def de_tokenizer():
|
||||
|
@ -79,8 +83,8 @@ def sv_tokenizer():
|
|||
def bn_tokenizer():
|
||||
return Bengali.Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
||||
@pytest.fixture
|
||||
def he_tokenizer():
|
||||
return Hebrew.Defaults.create_tokenizer()
|
||||
|
||||
|
|
0
spacy/tests/es/__init__.py
Normal file
0
spacy/tests/es/__init__.py
Normal file
24
spacy/tests/es/test_exception.py
Normal file
24
spacy/tests/es/test_exception.py
Normal file
|
@ -0,0 +1,24 @@
|
|||
# coding: utf-8
|
||||
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.parametrize('text,lemma', [("aprox.", "aproximadamente"),
|
||||
("esq.", "esquina"),
|
||||
("pág.", "página"),
|
||||
("p.ej.", "por ejemplo")
|
||||
])
|
||||
def test_tokenizer_handles_abbr(es_tokenizer, text, lemma):
|
||||
tokens = es_tokenizer(text)
|
||||
assert len(tokens) == 1
|
||||
assert tokens[0].lemma_ == lemma
|
||||
|
||||
|
||||
def test_tokenizer_handles_exc_in_text(es_tokenizer):
|
||||
text = "Mariano Rajoy ha corrido aprox. medio kilómetro"
|
||||
tokens = es_tokenizer(text)
|
||||
assert len(tokens) == 7
|
||||
assert tokens[4].text == "aprox."
|
||||
assert tokens[4].lemma_ == "aproximadamente"
|
35
spacy/tests/es/test_text.py
Normal file
35
spacy/tests/es/test_text.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
# coding: utf-8
|
||||
|
||||
"""Test that longer and mixed texts are tokenized correctly."""
|
||||
|
||||
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_tokenizer_handles_long_text(es_tokenizer):
|
||||
text = """Cuando a José Mujica lo invitaron a dar una conferencia
|
||||
|
||||
en Oxford este verano, su cabeza hizo "crac". La "más antigua" universidad de habla
|
||||
|
||||
inglesa, esa que cobra decenas de miles de euros de matrícula a sus alumnos
|
||||
|
||||
y en cuyos salones han disertado desde Margaret Thatcher hasta Stephen Hawking,
|
||||
|
||||
reclamaba los servicios de este viejo de 81 años, formado en un colegio público
|
||||
|
||||
en Montevideo y que pregona las bondades de la vida austera."""
|
||||
tokens = es_tokenizer(text)
|
||||
assert len(tokens) == 90
|
||||
|
||||
|
||||
@pytest.mark.parametrize('text,length', [
|
||||
("¿Por qué José Mujica?", 6),
|
||||
("“¿Oh no?”", 6),
|
||||
("""¡Sí! "Vámonos", contestó José Arcadio Buendía""", 11),
|
||||
("Corrieron aprox. 10km.", 5),
|
||||
("Y entonces por qué...", 5)])
|
||||
def test_tokenizer_handles_cnts(es_tokenizer, text, length):
|
||||
tokens = es_tokenizer(text)
|
||||
assert len(tokens) == length
|
16
spacy/tests/regression/test_issue957.py
Normal file
16
spacy/tests/regression/test_issue957.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
import pytest
|
||||
from ... import load as load_spacy
|
||||
|
||||
|
||||
def test_issue913(en_tokenizer):
|
||||
'''Test that spaCy doesn't hang on many periods.'''
|
||||
string = '0'
|
||||
for i in range(1, 100):
|
||||
string += '.%d' % i
|
||||
doc = en_tokenizer(string)
|
||||
|
||||
# Don't want tests to fail if they haven't installed pytest-timeout plugin
|
||||
try:
|
||||
test_issue913 = pytest.mark.timeout(5)(test_issue913)
|
||||
except NameError:
|
||||
pass
|
Loading…
Reference in New Issue
Block a user