mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Refactor CharacterTagger
This commit is contained in:
		
							parent
							
								
									92e9134603
								
							
						
					
					
						commit
						fab538672e
					
				
							
								
								
									
										127
									
								
								spacy/tagger.pyx
									
									
									
									
									
								
							
							
						
						
									
										127
									
								
								spacy/tagger.pyx
									
									
									
									
									
								
							| 
						 | 
					@ -1,4 +1,5 @@
 | 
				
			||||||
from __future__ import unicode_literals
 | 
					from __future__ import unicode_literals
 | 
				
			||||||
 | 
					cimport cython
 | 
				
			||||||
import json
 | 
					import json
 | 
				
			||||||
from os import path
 | 
					from os import path
 | 
				
			||||||
from collections import defaultdict
 | 
					from collections import defaultdict
 | 
				
			||||||
| 
						 | 
					@ -10,6 +11,7 @@ from thinc.extra.eg cimport Example
 | 
				
			||||||
from thinc.structs cimport ExampleC
 | 
					from thinc.structs cimport ExampleC
 | 
				
			||||||
from thinc.linear.avgtron cimport AveragedPerceptron
 | 
					from thinc.linear.avgtron cimport AveragedPerceptron
 | 
				
			||||||
from thinc.linalg cimport VecVec
 | 
					from thinc.linalg cimport VecVec
 | 
				
			||||||
 | 
					from thinc.structs cimport FeatureC
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from .typedefs cimport attr_t
 | 
					from .typedefs cimport attr_t
 | 
				
			||||||
from .tokens.doc cimport Doc
 | 
					from .tokens.doc cimport Doc
 | 
				
			||||||
| 
						 | 
					@ -125,14 +127,29 @@ cdef class TaggerNeuralNet(NeuralNet):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
cdef class CharacterTagger(NeuralNet):
 | 
					cdef class CharacterTagger(NeuralNet):
 | 
				
			||||||
    def __init__(self, n_classes,
 | 
					    def __init__(self, n_classes,
 | 
				
			||||||
            depth=4, hidden_width=50,
 | 
					            depth=3, hidden_width=100, chars_width=5, tags_width=10, learn_rate=0.1,
 | 
				
			||||||
            chars_width=10,
 | 
					            left_window=2, right_window=2, tags_window=10, chars_per_word=8):
 | 
				
			||||||
            words_width=20, shape_width=5, suffix_width=5, tags_width=20,
 | 
					        self.chars_per_word = chars_per_word
 | 
				
			||||||
            learn_rate=0.1):
 | 
					        self.chars_width = chars_width
 | 
				
			||||||
        input_length = 5 * chars_width * self.chars_per_word + 2 * tags_width
 | 
					        self.tags_width = tags_width
 | 
				
			||||||
        widths = [input_length] + [hidden_width] * depth + [n_classes]
 | 
					        self.left_window = left_window
 | 
				
			||||||
 | 
					        self.right_window = right_window
 | 
				
			||||||
 | 
					        self.tags_window = tags_window
 | 
				
			||||||
 | 
					        self.depth = depth
 | 
				
			||||||
 | 
					        self.hidden_width = hidden_width
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        input_length = self.left_window * self.chars_width * self.chars_per_word \
 | 
				
			||||||
 | 
					                     + self.right_window * self.chars_width * self.chars_per_word \
 | 
				
			||||||
 | 
					                     + 1 * self.chars_width * self.chars_per_word \
 | 
				
			||||||
 | 
					                     + self.tags_window * self.tags_width
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        widths = [input_length] + [self.hidden_width] * self.depth + [n_classes]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        vector_widths = [chars_width, tags_width]
 | 
					        vector_widths = [chars_width, tags_width]
 | 
				
			||||||
        slots = [0] * 5 * self.chars_per_word + [1] * 2
 | 
					        slots = [0] * self.left_window * self.chars_per_word \
 | 
				
			||||||
 | 
					              + [0] * self.right_window * self.chars_per_word \
 | 
				
			||||||
 | 
					              + [0] * 1 * self.chars_per_word \
 | 
				
			||||||
 | 
					              + [1] * self.tags_window
 | 
				
			||||||
        NeuralNet.__init__(
 | 
					        NeuralNet.__init__(
 | 
				
			||||||
            self,
 | 
					            self,
 | 
				
			||||||
            widths,
 | 
					            widths,
 | 
				
			||||||
| 
						 | 
					@ -141,35 +158,29 @@ cdef class CharacterTagger(NeuralNet):
 | 
				
			||||||
            rho=1e-6,
 | 
					            rho=1e-6,
 | 
				
			||||||
            update_step='sgd')
 | 
					            update_step='sgd')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, object strings, int i) except *:
 | 
					    cdef void set_featuresC(self, ExampleC* eg,
 | 
				
			||||||
        oov = '_' * self.chars_per_word
 | 
					            const TokenC* tokens, object strings, const int i) except *:
 | 
				
			||||||
 | 
					        cdef unicode oov = ''
 | 
				
			||||||
        p2 = strings[i-2] if i >= 2 else oov
 | 
					        p2 = strings[i-2] if i >= 2 else oov
 | 
				
			||||||
        p1 = strings[i-1] if i >= 1 else oov
 | 
					        p1 = strings[i-1] if i >= 1 else oov
 | 
				
			||||||
        w = strings[i]
 | 
					        w = strings[i]
 | 
				
			||||||
        n1 = strings[i+1] if (i+1) < len(strings) else oov
 | 
					        n1 = strings[i+1] if (i+1) < len(strings) else oov
 | 
				
			||||||
        n2 = strings[i+2] if (i+2) < len(strings) else oov
 | 
					        n2 = strings[i+2] if (i+2) < len(strings) else oov
 | 
				
			||||||
        cdef int p = 0
 | 
					 | 
				
			||||||
        cdef int c
 | 
					 | 
				
			||||||
        cdef int chars_per_word = self.chars_per_word
 | 
					        cdef int chars_per_word = self.chars_per_word
 | 
				
			||||||
        cdef unicode string
 | 
					        eg.nr_feat = 0
 | 
				
			||||||
        for string in (p2, p1, w, n1, n2):
 | 
					        for string in (p2, p1, w, n1, n2):
 | 
				
			||||||
            for c in range(chars_per_word / 2):
 | 
					            set_character_features(&eg.features[eg.nr_feat],
 | 
				
			||||||
                eg.features[p].i = p
 | 
					                string, chars_per_word)
 | 
				
			||||||
                eg.features[p].key = ord(string[c])
 | 
					            eg.nr_feat += chars_per_word
 | 
				
			||||||
                eg.features[p].value = 1.0 if string[c] != u'_' else 0.0
 | 
					        cdef int hist
 | 
				
			||||||
                p += 1
 | 
					        for hist in range(1, self.tags_window+1):
 | 
				
			||||||
                eg.features[p].i = p
 | 
					            tag = tokens[i-hist].tag if hist <= i else 0
 | 
				
			||||||
                eg.features[p].key = ord(string[-(c+1)])
 | 
					            eg.features[eg.nr_feat].key = tag
 | 
				
			||||||
                eg.features[p].value = 1.0 if string[-(c+1)] != u'_' else 0.0
 | 
					            eg.features[eg.nr_feat].value = 1.0
 | 
				
			||||||
                p += 1
 | 
					            eg.nr_feat += 1
 | 
				
			||||||
        eg.features[p].key = tokens[i-1].tag
 | 
					        cdef int p
 | 
				
			||||||
        eg.features[p].value = 1.0
 | 
					        for p in range(eg.nr_feat):
 | 
				
			||||||
        eg.features[p].i = p
 | 
					            eg.features[p].i = p
 | 
				
			||||||
        p += 1
 | 
					 | 
				
			||||||
        eg.features[p].key = tokens[i-2].tag
 | 
					 | 
				
			||||||
        eg.features[p].value = 1.0
 | 
					 | 
				
			||||||
        eg.features[p].i = p
 | 
					 | 
				
			||||||
        eg.nr_feat = p+1
 | 
					 | 
				
			||||||
   
 | 
					   
 | 
				
			||||||
    def end_training(self):
 | 
					    def end_training(self):
 | 
				
			||||||
        pass
 | 
					        pass
 | 
				
			||||||
| 
						 | 
					@ -179,23 +190,8 @@ cdef class CharacterTagger(NeuralNet):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    property nr_feat:
 | 
					    property nr_feat:
 | 
				
			||||||
        def __get__(self):
 | 
					        def __get__(self):
 | 
				
			||||||
            return self.chars_per_word * 5 + 2
 | 
					            nr_word = self.left_window + self.right_window + 1
 | 
				
			||||||
 | 
					            return self.chars_per_word * nr_word + self.tags_window
 | 
				
			||||||
    property chars_per_word:
 | 
					 | 
				
			||||||
        def __get__(self):
 | 
					 | 
				
			||||||
            return 16
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def _pad(word, nr_char):
 | 
					 | 
				
			||||||
    if len(word) == nr_char:
 | 
					 | 
				
			||||||
        pass
 | 
					 | 
				
			||||||
    elif len(word) > nr_char:
 | 
					 | 
				
			||||||
        split = nr_char / 2
 | 
					 | 
				
			||||||
        word = word[:split] + word[-split:]
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        word = word.ljust(nr_char, '_')
 | 
					 | 
				
			||||||
    assert len(word) == nr_char, repr(word)
 | 
					 | 
				
			||||||
    return word
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
 | 
					cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
 | 
				
			||||||
| 
						 | 
					@ -293,9 +289,6 @@ cdef class Tagger:
 | 
				
			||||||
    def tag_names(self):
 | 
					    def tag_names(self):
 | 
				
			||||||
        return self.vocab.morphology.tag_names
 | 
					        return self.vocab.morphology.tag_names
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __reduce__(self):
 | 
					 | 
				
			||||||
        return (self.__class__, (self.vocab, self.model), None, None)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def tag_from_strings(self, Doc tokens, object tag_strs):
 | 
					    def tag_from_strings(self, Doc tokens, object tag_strs):
 | 
				
			||||||
        cdef int i
 | 
					        cdef int i
 | 
				
			||||||
        for i in range(tokens.length):
 | 
					        for i in range(tokens.length):
 | 
				
			||||||
| 
						 | 
					@ -319,14 +312,13 @@ cdef class Tagger:
 | 
				
			||||||
                                  widths=self.model.widths,
 | 
					                                  widths=self.model.widths,
 | 
				
			||||||
                                  nr_class=self.vocab.morphology.n_tags,
 | 
					                                  nr_class=self.vocab.morphology.n_tags,
 | 
				
			||||||
                                  nr_feat=self.model.nr_feat)
 | 
					                                  nr_feat=self.model.nr_feat)
 | 
				
			||||||
        strings = [_pad(tok.text, self.model.chars_per_word) for tok in tokens]
 | 
					        strings = [tok.text for tok in tokens]
 | 
				
			||||||
        for i in range(tokens.length):
 | 
					        for i in range(tokens.length):
 | 
				
			||||||
            eg.reset()
 | 
					            eg.reset()
 | 
				
			||||||
            if tokens.c[i].pos == 0:
 | 
					            if tokens.c[i].pos == 0:
 | 
				
			||||||
                self.model.set_featuresC(&eg.c, tokens.c, strings, i)
 | 
					                self.model.set_featuresC(&eg.c, tokens.c, strings, i)
 | 
				
			||||||
                self.model.predict_example(eg)
 | 
					                self.model.predict_example(eg)
 | 
				
			||||||
                #self.model.set_scoresC(eg.c.scores,
 | 
					                
 | 
				
			||||||
                #    eg.c.features, eg.c.nr_feat)
 | 
					 | 
				
			||||||
                guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
 | 
					                guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
 | 
				
			||||||
                self.vocab.morphology.assign_tag(&tokens.c[i], guess)
 | 
					                self.vocab.morphology.assign_tag(&tokens.c[i], guess)
 | 
				
			||||||
        tokens.is_tagged = True
 | 
					        tokens.is_tagged = True
 | 
				
			||||||
| 
						 | 
					@ -345,7 +337,7 @@ cdef class Tagger:
 | 
				
			||||||
                       "gold tags, to maintain coarse-grained mapping.")
 | 
					                       "gold tags, to maintain coarse-grained mapping.")
 | 
				
			||||||
                raise ValueError(msg % tag)
 | 
					                raise ValueError(msg % tag)
 | 
				
			||||||
        golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
 | 
					        golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
 | 
				
			||||||
        strings = [_pad(tok.text, self.model.chars_per_word) for tok in tokens]
 | 
					        strings = [tok.text for tok in tokens]
 | 
				
			||||||
        cdef int correct = 0
 | 
					        cdef int correct = 0
 | 
				
			||||||
        cdef Pool mem = Pool()
 | 
					        cdef Pool mem = Pool()
 | 
				
			||||||
        cdef Example eg = Example(
 | 
					        cdef Example eg = Example(
 | 
				
			||||||
| 
						 | 
					@ -357,16 +349,35 @@ cdef class Tagger:
 | 
				
			||||||
            eg.reset()
 | 
					            eg.reset()
 | 
				
			||||||
            self.model.set_featuresC(&eg.c, tokens.c, strings, i)
 | 
					            self.model.set_featuresC(&eg.c, tokens.c, strings, i)
 | 
				
			||||||
            eg.costs = [golds[i] not in (j, -1) for j in range(eg.c.nr_class)]
 | 
					            eg.costs = [golds[i] not in (j, -1) for j in range(eg.c.nr_class)]
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
            self.model.train_example(eg)
 | 
					            self.model.train_example(eg)
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            #self.model.set_scoresC(eg.c.scores,
 | 
					 | 
				
			||||||
            #    eg.c.features, eg.c.nr_feat)
 | 
					 | 
				
			||||||
            #
 | 
					 | 
				
			||||||
            #self.model.updateC(&eg.c)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
 | 
					            self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
            correct += eg.cost == 0
 | 
					            correct += eg.cost == 0
 | 
				
			||||||
            self.freqs[TAG][tokens.c[i].tag] += 1
 | 
					            self.freqs[TAG][tokens.c[i].tag] += 1
 | 
				
			||||||
        tokens.is_tagged = True
 | 
					        tokens.is_tagged = True
 | 
				
			||||||
        tokens._py_tokens = [None] * tokens.length
 | 
					        tokens._py_tokens = [None] * tokens.length
 | 
				
			||||||
        return correct
 | 
					        return correct
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@cython.cdivision(True)
 | 
				
			||||||
 | 
					cdef int set_character_features(FeatureC* feat, unicode string, int chars_per_word) except -1:
 | 
				
			||||||
 | 
					    cdef unicode oov = ''
 | 
				
			||||||
 | 
					    cdef int chars_per_side = min(chars_per_word / 2, len(string))
 | 
				
			||||||
 | 
					    # Fill from start
 | 
				
			||||||
 | 
					    cdef int c
 | 
				
			||||||
 | 
					    for c in range(chars_per_side):
 | 
				
			||||||
 | 
					        feat.key = ord(string[c])
 | 
				
			||||||
 | 
					        feat.value = 1.0
 | 
				
			||||||
 | 
					        feat += 1
 | 
				
			||||||
 | 
					    # If word is too short, zero this part of the array
 | 
				
			||||||
 | 
					    for c in range(chars_per_side, chars_per_word - chars_per_side):
 | 
				
			||||||
 | 
					        feat.key = 0
 | 
				
			||||||
 | 
					        feat.value = 0
 | 
				
			||||||
 | 
					        feat += 1
 | 
				
			||||||
 | 
					    # Fill suffix
 | 
				
			||||||
 | 
					    for c in range(chars_per_side):
 | 
				
			||||||
 | 
					        feat.key = ord(string[-(c+1)])
 | 
				
			||||||
 | 
					        feat.value = 1.0
 | 
				
			||||||
 | 
					        feat += 1
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user