mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	Support custom token/lexeme attribute for vectors (#12625)
* Support custom token/lexeme attribute for vectors * Fix imports * Back off to ORTH without Vectors.attr * Fallback if vectors.attr doesn't exist * Update docs
This commit is contained in:
		
							parent
							
								
									337a360cc7
								
							
						
					
					
						commit
						fb0da3e097
					
				|  | @ -32,6 +32,7 @@ def init_vectors_cli( | |||
|     name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"), | ||||
|     verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), | ||||
|     jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True), | ||||
|     attr: str = Opt("ORTH", "--attr", "-a", help="Optional token attribute to use for vectors, e.g. LOWER or NORM"), | ||||
|     # fmt: on | ||||
| ): | ||||
|     """Convert word vectors for use with spaCy. Will export an nlp object that | ||||
|  | @ -50,6 +51,7 @@ def init_vectors_cli( | |||
|         prune=prune, | ||||
|         name=name, | ||||
|         mode=mode, | ||||
|         attr=attr, | ||||
|     ) | ||||
|     msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors") | ||||
|     nlp.to_disk(output_dir) | ||||
|  |  | |||
|  | @ -216,6 +216,9 @@ class Warnings(metaclass=ErrorsWithCodes): | |||
|     W123 = ("Argument `enable` with value {enable} does not contain all values specified in the config option " | ||||
|             "`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.") | ||||
|     W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.") | ||||
|     W125 = ("The StaticVectors key_attr is no longer used. To set a custom " | ||||
|             "key attribute for vectors, configure it through Vectors(attr=) or " | ||||
|             "'spacy init vectors --attr'") | ||||
| 
 | ||||
| 
 | ||||
| class Errors(metaclass=ErrorsWithCodes): | ||||
|  |  | |||
|  | @ -1,3 +1,4 @@ | |||
| import warnings | ||||
| from typing import Callable, List, Optional, Sequence, Tuple, cast | ||||
| 
 | ||||
| from thinc.api import Model, Ops, registry | ||||
|  | @ -5,7 +6,8 @@ from thinc.initializers import glorot_uniform_init | |||
| from thinc.types import Floats1d, Floats2d, Ints1d, Ragged | ||||
| from thinc.util import partial | ||||
| 
 | ||||
| from ..errors import Errors | ||||
| from ..attrs import ORTH | ||||
| from ..errors import Errors, Warnings | ||||
| from ..tokens import Doc | ||||
| from ..vectors import Mode | ||||
| from ..vocab import Vocab | ||||
|  | @ -24,6 +26,8 @@ def StaticVectors( | |||
|     linear projection to control the dimensionality. If a dropout rate is | ||||
|     specified, the dropout is applied per dimension over the whole batch. | ||||
|     """ | ||||
|     if key_attr != "ORTH": | ||||
|         warnings.warn(Warnings.W125, DeprecationWarning) | ||||
|     return Model( | ||||
|         "static_vectors", | ||||
|         forward, | ||||
|  | @ -40,9 +44,9 @@ def forward( | |||
|     token_count = sum(len(doc) for doc in docs) | ||||
|     if not token_count: | ||||
|         return _handle_empty(model.ops, model.get_dim("nO")) | ||||
|     key_attr: int = model.attrs["key_attr"] | ||||
|     keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs]) | ||||
|     vocab: Vocab = docs[0].vocab | ||||
|     key_attr: int = getattr(vocab.vectors, "attr", ORTH) | ||||
|     keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs]) | ||||
|     W = cast(Floats2d, model.ops.as_contig(model.get_param("W"))) | ||||
|     if vocab.vectors.mode == Mode.default: | ||||
|         V = model.ops.asarray(vocab.vectors.data) | ||||
|  |  | |||
|  | @ -402,6 +402,7 @@ def test_vectors_serialize(): | |||
|         row_r = v_r.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f")) | ||||
|         assert row == row_r | ||||
|         assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) | ||||
|         assert v.attr == v_r.attr | ||||
| 
 | ||||
| 
 | ||||
| def test_vector_is_oov(): | ||||
|  | @ -646,3 +647,32 @@ def test_equality(): | |||
|     vectors1.resize((5, 9)) | ||||
|     vectors2.resize((5, 9)) | ||||
|     assert vectors1 == vectors2 | ||||
| 
 | ||||
| 
 | ||||
| def test_vectors_attr(): | ||||
|     data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f") | ||||
|     # default ORTH | ||||
|     nlp = English() | ||||
|     nlp.vocab.vectors = Vectors(data=data, keys=["A", "B", "C"]) | ||||
|     assert nlp.vocab.strings["A"] in nlp.vocab.vectors.key2row | ||||
|     assert nlp.vocab.strings["a"] not in nlp.vocab.vectors.key2row | ||||
|     assert nlp.vocab["A"].has_vector is True | ||||
|     assert nlp.vocab["a"].has_vector is False | ||||
|     assert nlp("A")[0].has_vector is True | ||||
|     assert nlp("a")[0].has_vector is False | ||||
| 
 | ||||
|     # custom LOWER | ||||
|     nlp = English() | ||||
|     nlp.vocab.vectors = Vectors(data=data, keys=["a", "b", "c"], attr="LOWER") | ||||
|     assert nlp.vocab.strings["A"] not in nlp.vocab.vectors.key2row | ||||
|     assert nlp.vocab.strings["a"] in nlp.vocab.vectors.key2row | ||||
|     assert nlp.vocab["A"].has_vector is True | ||||
|     assert nlp.vocab["a"].has_vector is True | ||||
|     assert nlp("A")[0].has_vector is True | ||||
|     assert nlp("a")[0].has_vector is True | ||||
|     # add a new vectors entry | ||||
|     assert nlp.vocab["D"].has_vector is False | ||||
|     assert nlp.vocab["d"].has_vector is False | ||||
|     nlp.vocab.set_vector("D", numpy.asarray([4, 5, 6])) | ||||
|     assert nlp.vocab["D"].has_vector is True | ||||
|     assert nlp.vocab["d"].has_vector is True | ||||
|  |  | |||
|  | @ -35,6 +35,7 @@ from ..attrs cimport ( | |||
|     LENGTH, | ||||
|     MORPH, | ||||
|     NORM, | ||||
|     ORTH, | ||||
|     POS, | ||||
|     SENT_START, | ||||
|     SPACY, | ||||
|  | @ -613,13 +614,26 @@ cdef class Doc: | |||
|         """ | ||||
|         if "similarity" in self.user_hooks: | ||||
|             return self.user_hooks["similarity"](self, other) | ||||
|         if isinstance(other, (Lexeme, Token)) and self.length == 1: | ||||
|             if self.c[0].lex.orth == other.orth: | ||||
|         attr = getattr(self.vocab.vectors, "attr", ORTH) | ||||
|         cdef Token this_token | ||||
|         cdef Token other_token | ||||
|         cdef Lexeme other_lex | ||||
|         if len(self) == 1 and isinstance(other, Token): | ||||
|             this_token = self[0] | ||||
|             other_token = other | ||||
|             if Token.get_struct_attr(this_token.c, attr) == Token.get_struct_attr(other_token.c, attr): | ||||
|                 return 1.0 | ||||
|         elif isinstance(other, (Span, Doc)) and len(self) == len(other): | ||||
|         elif len(self) == 1 and isinstance(other, Lexeme): | ||||
|             this_token = self[0] | ||||
|             other_lex = other | ||||
|             if Token.get_struct_attr(this_token.c, attr) == Lexeme.get_struct_attr(other_lex.c, attr): | ||||
|                 return 1.0 | ||||
|         elif isinstance(other, (Doc, Span)) and len(self) == len(other): | ||||
|             similar = True | ||||
|             for i in range(self.length): | ||||
|                 if self[i].orth != other[i].orth: | ||||
|             for i in range(len(self)): | ||||
|                 this_token = self[i] | ||||
|                 other_token = other[i] | ||||
|                 if Token.get_struct_attr(this_token.c, attr) != Token.get_struct_attr(other_token.c, attr): | ||||
|                     similar = False | ||||
|                     break | ||||
|             if similar: | ||||
|  |  | |||
|  | @ -8,13 +8,14 @@ import numpy | |||
| from thinc.api import get_array_module | ||||
| 
 | ||||
| from ..attrs cimport * | ||||
| from ..attrs cimport attr_id_t | ||||
| from ..attrs cimport ORTH, attr_id_t | ||||
| from ..lexeme cimport Lexeme | ||||
| from ..parts_of_speech cimport univ_pos_t | ||||
| from ..structs cimport LexemeC, TokenC | ||||
| from ..symbols cimport dep | ||||
| from ..typedefs cimport attr_t, flags_t, hash_t | ||||
| from .doc cimport _get_lca_matrix, get_token_attr, token_by_end, token_by_start | ||||
| from .token cimport Token | ||||
| 
 | ||||
| from ..errors import Errors, Warnings | ||||
| from ..util import normalize_slice | ||||
|  | @ -341,13 +342,26 @@ cdef class Span: | |||
|         """ | ||||
|         if "similarity" in self.doc.user_span_hooks: | ||||
|             return self.doc.user_span_hooks["similarity"](self, other) | ||||
|         if len(self) == 1 and hasattr(other, "orth"): | ||||
|             if self[0].orth == other.orth: | ||||
|         attr = getattr(self.doc.vocab.vectors, "attr", ORTH) | ||||
|         cdef Token this_token | ||||
|         cdef Token other_token | ||||
|         cdef Lexeme other_lex | ||||
|         if len(self) == 1 and isinstance(other, Token): | ||||
|             this_token = self[0] | ||||
|             other_token = other | ||||
|             if Token.get_struct_attr(this_token.c, attr) == Token.get_struct_attr(other_token.c, attr): | ||||
|                 return 1.0 | ||||
|         elif len(self) == 1 and isinstance(other, Lexeme): | ||||
|             this_token = self[0] | ||||
|             other_lex = other | ||||
|             if Token.get_struct_attr(this_token.c, attr) == Lexeme.get_struct_attr(other_lex.c, attr): | ||||
|                 return 1.0 | ||||
|         elif isinstance(other, (Doc, Span)) and len(self) == len(other): | ||||
|             similar = True | ||||
|             for i in range(len(self)): | ||||
|                 if self[i].orth != getattr(other[i], "orth", None): | ||||
|                 this_token = self[i] | ||||
|                 other_token = other[i] | ||||
|                 if Token.get_struct_attr(this_token.c, attr) != Token.get_struct_attr(other_token.c, attr): | ||||
|                     similar = False | ||||
|                     break | ||||
|             if similar: | ||||
|  |  | |||
|  | @ -28,6 +28,7 @@ from ..attrs cimport ( | |||
|     LIKE_EMAIL, | ||||
|     LIKE_NUM, | ||||
|     LIKE_URL, | ||||
|     ORTH, | ||||
| ) | ||||
| from ..lexeme cimport Lexeme | ||||
| from ..symbols cimport conj | ||||
|  | @ -214,11 +215,17 @@ cdef class Token: | |||
|         """ | ||||
|         if "similarity" in self.doc.user_token_hooks: | ||||
|             return self.doc.user_token_hooks["similarity"](self, other) | ||||
|         if hasattr(other, "__len__") and len(other) == 1 and hasattr(other, "__getitem__"): | ||||
|             if self.c.lex.orth == getattr(other[0], "orth", None): | ||||
|         attr = getattr(self.doc.vocab.vectors, "attr", ORTH) | ||||
|         cdef Token this_token = self | ||||
|         cdef Token other_token | ||||
|         cdef Lexeme other_lex | ||||
|         if isinstance(other, Token): | ||||
|             other_token = other | ||||
|             if Token.get_struct_attr(this_token.c, attr) == Token.get_struct_attr(other_token.c, attr): | ||||
|                 return 1.0 | ||||
|         elif hasattr(other, "orth"): | ||||
|             if self.c.lex.orth == other.orth: | ||||
|         elif isinstance(other, Lexeme): | ||||
|             other_lex = other | ||||
|             if Token.get_struct_attr(this_token.c, attr) == Lexeme.get_struct_attr(other_lex.c, attr): | ||||
|                 return 1.0 | ||||
|         if self.vocab.vectors.n_keys == 0: | ||||
|             warnings.warn(Warnings.W007.format(obj="Token")) | ||||
|  | @ -415,7 +422,7 @@ cdef class Token: | |||
|             return self.doc.user_token_hooks["has_vector"](self) | ||||
|         if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0: | ||||
|             return True | ||||
|         return self.vocab.has_vector(self.c.lex.orth) | ||||
|         return self.vocab.has_vector(Token.get_struct_attr(self.c, self.vocab.vectors.attr)) | ||||
| 
 | ||||
|     @property | ||||
|     def vector(self): | ||||
|  | @ -431,7 +438,7 @@ cdef class Token: | |||
|         if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0: | ||||
|             return self.doc.tensor[self.i] | ||||
|         else: | ||||
|             return self.vocab.get_vector(self.c.lex.orth) | ||||
|             return self.vocab.get_vector(Token.get_struct_attr(self.c, self.vocab.vectors.attr)) | ||||
| 
 | ||||
|     @property | ||||
|     def vector_norm(self): | ||||
|  |  | |||
|  | @ -216,9 +216,14 @@ def convert_vectors( | |||
|     prune: int, | ||||
|     name: Optional[str] = None, | ||||
|     mode: str = VectorsMode.default, | ||||
|     attr: str = "ORTH", | ||||
| ) -> None: | ||||
|     vectors_loc = ensure_path(vectors_loc) | ||||
|     if vectors_loc and vectors_loc.parts[-1].endswith(".npz"): | ||||
|         if attr != "ORTH": | ||||
|             raise ValueError( | ||||
|                 "ORTH is the only attribute supported for vectors in .npz format." | ||||
|             ) | ||||
|         nlp.vocab.vectors = Vectors( | ||||
|             strings=nlp.vocab.strings, data=numpy.load(vectors_loc.open("rb")) | ||||
|         ) | ||||
|  | @ -246,11 +251,15 @@ def convert_vectors( | |||
|                 nlp.vocab.vectors = Vectors( | ||||
|                     strings=nlp.vocab.strings, | ||||
|                     data=vectors_data, | ||||
|                     attr=attr, | ||||
|                     **floret_settings, | ||||
|                 ) | ||||
|             else: | ||||
|                 nlp.vocab.vectors = Vectors( | ||||
|                     strings=nlp.vocab.strings, data=vectors_data, keys=vector_keys | ||||
|                     strings=nlp.vocab.strings, | ||||
|                     data=vectors_data, | ||||
|                     keys=vector_keys, | ||||
|                     attr=attr, | ||||
|                 ) | ||||
|                 nlp.vocab.deduplicate_vectors() | ||||
|     if name is None: | ||||
|  |  | |||
|  | @ -15,9 +15,11 @@ from thinc.api import Ops, get_array_module, get_current_ops | |||
| from thinc.backends import get_array_ops | ||||
| from thinc.types import Floats2d | ||||
| 
 | ||||
| from .attrs cimport ORTH, attr_id_t | ||||
| from .strings cimport StringStore | ||||
| 
 | ||||
| from . import util | ||||
| from .attrs import IDS | ||||
| from .errors import Errors, Warnings | ||||
| from .strings import get_string_id | ||||
| 
 | ||||
|  | @ -64,8 +66,9 @@ cdef class Vectors: | |||
|     cdef readonly uint32_t hash_seed | ||||
|     cdef readonly unicode bow | ||||
|     cdef readonly unicode eow | ||||
|     cdef readonly attr_id_t attr | ||||
| 
 | ||||
|     def __init__(self, *, strings=None, shape=None, data=None, keys=None, name=None, mode=Mode.default, minn=0, maxn=0, hash_count=1, hash_seed=0, bow="<", eow=">"): | ||||
|     def __init__(self, *, strings=None, shape=None, data=None, keys=None, name=None, mode=Mode.default, minn=0, maxn=0, hash_count=1, hash_seed=0, bow="<", eow=">", attr="ORTH"): | ||||
|         """Create a new vector store. | ||||
| 
 | ||||
|         strings (StringStore): The string store. | ||||
|  | @ -80,6 +83,8 @@ cdef class Vectors: | |||
|         hash_seed (int): The floret hash seed (default: 0). | ||||
|         bow (str): The floret BOW string (default: "<"). | ||||
|         eow (str): The floret EOW string (default: ">"). | ||||
|         attr (Union[int, str]): The token attribute for the vector keys | ||||
|             (default: "ORTH"). | ||||
| 
 | ||||
|         DOCS: https://spacy.io/api/vectors#init | ||||
|         """ | ||||
|  | @ -103,6 +108,14 @@ cdef class Vectors: | |||
|         self.hash_seed = hash_seed | ||||
|         self.bow = bow | ||||
|         self.eow = eow | ||||
|         if isinstance(attr, (int, long)): | ||||
|             self.attr = attr | ||||
|         else: | ||||
|             attr = attr.upper() | ||||
|             if attr == "TEXT": | ||||
|                 attr = "ORTH" | ||||
|             self.attr = IDS.get(attr, ORTH) | ||||
| 
 | ||||
|         if self.mode == Mode.default: | ||||
|             if data is None: | ||||
|                 if shape is None: | ||||
|  | @ -546,6 +559,7 @@ cdef class Vectors: | |||
|                 "hash_seed": self.hash_seed, | ||||
|                 "bow": self.bow, | ||||
|                 "eow": self.eow, | ||||
|                 "attr": self.attr, | ||||
|             } | ||||
| 
 | ||||
|     def _set_cfg(self, cfg): | ||||
|  | @ -556,6 +570,7 @@ cdef class Vectors: | |||
|         self.hash_seed = cfg.get("hash_seed", 0) | ||||
|         self.bow = cfg.get("bow", "<") | ||||
|         self.eow = cfg.get("eow", ">") | ||||
|         self.attr = cfg.get("attr", ORTH) | ||||
| 
 | ||||
|     def to_disk(self, path, *, exclude=tuple()): | ||||
|         """Save the current state to a directory. | ||||
|  |  | |||
|  | @ -365,8 +365,13 @@ cdef class Vocab: | |||
|             self[orth] | ||||
|         # Make prob negative so it sorts by rank ascending | ||||
|         # (key2row contains the rank) | ||||
|         priority = [(-lex.prob, self.vectors.key2row[lex.orth], lex.orth) | ||||
|                     for lex in self if lex.orth in self.vectors.key2row] | ||||
|         priority = [] | ||||
|         cdef Lexeme lex | ||||
|         cdef attr_t value | ||||
|         for lex in self: | ||||
|             value = Lexeme.get_struct_attr(lex.c, self.vectors.attr) | ||||
|             if value in self.vectors.key2row: | ||||
|                 priority.append((-lex.prob, self.vectors.key2row[value], value)) | ||||
|         priority.sort() | ||||
|         indices = xp.asarray([i for (prob, i, key) in priority], dtype="uint64") | ||||
|         keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64") | ||||
|  | @ -399,8 +404,10 @@ cdef class Vocab: | |||
|         """ | ||||
|         if isinstance(orth, str): | ||||
|             orth = self.strings.add(orth) | ||||
|         if self.has_vector(orth): | ||||
|             return self.vectors[orth] | ||||
|         cdef Lexeme lex = self[orth] | ||||
|         key = Lexeme.get_struct_attr(lex.c, self.vectors.attr) | ||||
|         if self.has_vector(key): | ||||
|             return self.vectors[key] | ||||
|         xp = get_array_module(self.vectors.data) | ||||
|         vectors = xp.zeros((self.vectors_length,), dtype="f") | ||||
|         return vectors | ||||
|  | @ -416,15 +423,16 @@ cdef class Vocab: | |||
|         """ | ||||
|         if isinstance(orth, str): | ||||
|             orth = self.strings.add(orth) | ||||
|         if self.vectors.is_full and orth not in self.vectors: | ||||
|         cdef Lexeme lex = self[orth] | ||||
|         key = Lexeme.get_struct_attr(lex.c, self.vectors.attr) | ||||
|         if self.vectors.is_full and key not in self.vectors: | ||||
|             new_rows = max(100, int(self.vectors.shape[0]*1.3)) | ||||
|             if self.vectors.shape[1] == 0: | ||||
|                 width = vector.size | ||||
|             else: | ||||
|                 width = self.vectors.shape[1] | ||||
|             self.vectors.resize((new_rows, width)) | ||||
|         lex = self[orth]  # Add word to vocab if necessary | ||||
|         row = self.vectors.add(orth, vector=vector) | ||||
|         row = self.vectors.add(key, vector=vector) | ||||
|         if row >= 0: | ||||
|             lex.rank = row | ||||
| 
 | ||||
|  | @ -439,7 +447,9 @@ cdef class Vocab: | |||
|         """ | ||||
|         if isinstance(orth, str): | ||||
|             orth = self.strings.add(orth) | ||||
|         return orth in self.vectors | ||||
|         cdef Lexeme lex = self[orth] | ||||
|         key = Lexeme.get_struct_attr(lex.c, self.vectors.attr) | ||||
|         return key in self.vectors | ||||
| 
 | ||||
|     property lookups: | ||||
|         def __get__(self): | ||||
|  |  | |||
|  | @ -303,7 +303,7 @@ mapped to a zero vector. See the documentation on | |||
| | `nM`        | The width of the static vectors. ~~Optional[int]~~                                                                                                                                                                      | | ||||
| | `dropout`   | Optional dropout rate. If set, it's applied per dimension over the whole batch. Defaults to `None`. ~~Optional[float]~~                                                                                                 | | ||||
| | `init_W`    | The [initialization function](https://thinc.ai/docs/api-initializers). Defaults to [`glorot_uniform_init`](https://thinc.ai/docs/api-initializers#glorot_uniform_init). ~~Callable[[Ops, Tuple[int, ...]]], FloatsXd]~~ | | ||||
| | `key_attr`  | Defaults to `"ORTH"`. ~~str~~                                                                                                                                                                                           | | ||||
| | `key_attr`  | This setting is ignored in spaCy v3.6+. To set a custom key attribute for vectors, configure it through [`Vectors`](/api/vectors) or [`spacy init vectors`](/api/cli#init-vectors). Defaults to `"ORTH"`. ~~str~~       | | ||||
| | **CREATES** | The model using the architecture. ~~Model[List[Doc], Ragged]~~                                                                                                                                                          | | ||||
| 
 | ||||
| ### spacy.FeatureExtractor.v1 {id="FeatureExtractor"} | ||||
|  |  | |||
|  | @ -211,7 +211,8 @@ $ python -m spacy init vectors [lang] [vectors_loc] [output_dir] [--prune] [--tr | |||
| | `output_dir`       | Pipeline output directory. Will be created if it doesn't exist. ~~Path (positional)~~                                                                                                                                                                               | | ||||
| | `--truncate`, `-t` | Number of vectors to truncate to when reading in vectors file. Defaults to `0` for no truncation. ~~int (option)~~                                                                                                                                                  | | ||||
| | `--prune`, `-p`    | Number of vectors to prune the vocabulary to. Defaults to `-1` for no pruning. ~~int (option)~~                                                                                                                                                                     | | ||||
| | `--mode`, `-m`     | Vectors mode: `default` or [`floret`](https://github.com/explosion/floret). Defaults to `default`. ~~Optional[str] \(option)~~                                                                                                                                      | | ||||
| | `--mode`, `-m`     | Vectors mode: `default` or [`floret`](https://github.com/explosion/floret). Defaults to `default`. ~~str \(option)~~                                                                                                                                                | | ||||
| | `--attr`, `-a`     | Token attribute to use for vectors, e.g. `LOWER` or `NORM`) Defaults to `ORTH`. ~~str \(option)~~                                                                                                                                                                   | | ||||
| | `--name`, `-n`     | Name to assign to the word vectors in the `meta.json`, e.g. `en_core_web_md.vectors`. ~~Optional[str] \(option)~~                                                                                                                                                   | | ||||
| | `--verbose`, `-V`  | Print additional information and explanations. ~~bool (flag)~~                                                                                                                                                                                                      | | ||||
| | `--help`, `-h`     | Show help message and available arguments. ~~bool (flag)~~                                                                                                                                                                                                          | | ||||
|  |  | |||
|  | @ -60,6 +60,7 @@ modified later. | |||
| | `hash_seed` <Tag variant="new">3.2</Tag>  | The floret hash seed (default: `0`). ~~int~~                                                                                                                                           | | ||||
| | `bow` <Tag variant="new">3.2</Tag>        | The floret BOW string (default: `"<"`). ~~str~~                                                                                                                                        | | ||||
| | `eow` <Tag variant="new">3.2</Tag>        | The floret EOW string (default: `">"`). ~~str~~                                                                                                                                        | | ||||
| | `attr` <Tag variant="new">3.6</Tag>       | The token attribute for the vector keys (default: `"ORTH"`). ~~Union[int, str]~~                                                                                                       | | ||||
| 
 | ||||
| ## Vectors.\_\_getitem\_\_ {id="getitem",tag="method"} | ||||
| 
 | ||||
|  | @ -453,8 +454,9 @@ Load state from a binary string. | |||
| 
 | ||||
| ## Attributes {id="attributes"} | ||||
| 
 | ||||
| | Name      | Description                                                                                                                                                          | | ||||
| | --------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||||
| | `data`    | Stored vectors data. `numpy` is used for CPU vectors, `cupy` for GPU vectors. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~   | | ||||
| | `key2row` | Dictionary mapping word hashes to rows in the `Vectors.data` table. ~~Dict[int, int]~~                                                                               | | ||||
| | `keys`    | Array keeping the keys in order, such that `keys[vectors.key2row[key]] == key`. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ | | ||||
| | Name                                | Description                                                                                                                                                          | | ||||
| | ----------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||||
| | `data`                              | Stored vectors data. `numpy` is used for CPU vectors, `cupy` for GPU vectors. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~   | | ||||
| | `key2row`                           | Dictionary mapping word hashes to rows in the `Vectors.data` table. ~~Dict[int, int]~~                                                                               | | ||||
| | `keys`                              | Array keeping the keys in order, such that `keys[vectors.key2row[key]] == key`. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ | | ||||
| | `attr` <Tag variant="new">3.6</Tag> | The token attribute for the vector keys. ~~int~~                                                                                                                     | | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user