Merge branch 'master' of ssh://github.com/explosion/spaCy

This commit is contained in:
Matthew Honnibal 2016-11-25 11:35:44 +01:00
commit fb69aa648f
9 changed files with 361 additions and 6 deletions

3
.gitignore vendored
View File

@ -93,6 +93,9 @@ coverage.xml
# Mac OS X # Mac OS X
*.DS_Store *.DS_Store
# Temporary files / Dropbox hack
*.~*
# Komodo project files # Komodo project files
*.komodoproject *.komodoproject

View File

@ -14,9 +14,11 @@ This is a list of everyone who has made significant contributions to spaCy, in a
* Kendrick Tan, [@kendricktan](https://github.com/kendricktan) * Kendrick Tan, [@kendricktan](https://github.com/kendricktan)
* Kyle P. Johnson, [@kylepjohnson](https://github.com/kylepjohnson) * Kyle P. Johnson, [@kylepjohnson](https://github.com/kylepjohnson)
* Liling Tan, [@alvations](https://github.com/alvations) * Liling Tan, [@alvations](https://github.com/alvations)
* Mark Amery, [@ExplodingCabbage](https://github.com/ExplodingCabbage)
* Matthew Honnibal, [@honnibal](https://github.com/honnibal) * Matthew Honnibal, [@honnibal](https://github.com/honnibal)
* Maxim Samsonov, [@maxirmx](https://github.com/maxirmx) * Maxim Samsonov, [@maxirmx](https://github.com/maxirmx)
* Oleg Zd, [@olegzd](https://github.com/olegzd) * Oleg Zd, [@olegzd](https://github.com/olegzd)
* Pokey Rule, [@pokey](https://github.com/pokey)
* Sam Bozek, [@sambozek](https://github.com/sambozek) * Sam Bozek, [@sambozek](https://github.com/sambozek)
* Sasho Savkov [@savkov](https://github.com/savkov) * Sasho Savkov [@savkov](https://github.com/savkov)
* Tiago Rodrigues, [@TiagoMRodrigues](https://github.com/TiagoMRodrigues) * Tiago Rodrigues, [@TiagoMRodrigues](https://github.com/TiagoMRodrigues)

View File

@ -1,13 +1,16 @@
from spacy.parts_of_speech cimport NOUN, PROPN, PRON from spacy.parts_of_speech cimport NOUN, PROPN, PRON
def english_noun_chunks(doc): def english_noun_chunks(obj):
'''Detect base noun phrases from a dependency parse.
Works on both Doc and Span.'''
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj', labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj',
'attr', 'ROOT', 'root'] 'attr', 'ROOT', 'root']
doc = obj.doc # Ensure works on both Doc and Span.
np_deps = [doc.vocab.strings[label] for label in labels] np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings['conj'] conj = doc.vocab.strings['conj']
np_label = doc.vocab.strings['NP'] np_label = doc.vocab.strings['NP']
for i, word in enumerate(doc): for i, word in enumerate(obj):
if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps: if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps:
yield word.left_edge.i, word.i+1, np_label yield word.left_edge.i, word.i+1, np_label
elif word.pos == NOUN and word.dep == conj: elif word.pos == NOUN and word.dep == conj:
@ -25,14 +28,15 @@ def english_noun_chunks(doc):
# extended to the right of the NOUN # extended to the right of the NOUN
# example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" and not # example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" and not
# just "eine Tasse", same for "das Thema Familie" # just "eine Tasse", same for "das Thema Familie"
def german_noun_chunks(doc): def german_noun_chunks(obj):
labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'ROOT', 'root', 'cj', 'pd', 'og', 'app'] labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'ROOT', 'root', 'cj', 'pd', 'og', 'app']
doc = obj.doc # Ensure works on both Doc and Span.
np_label = doc.vocab.strings['NP'] np_label = doc.vocab.strings['NP']
np_deps = set(doc.vocab.strings[label] for label in labels) np_deps = set(doc.vocab.strings[label] for label in labels)
close_app = doc.vocab.strings['nk'] close_app = doc.vocab.strings['nk']
rbracket = 0 rbracket = 0
for i, word in enumerate(doc): for i, word in enumerate(obj):
if i < rbracket: if i < rbracket:
continue continue
if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps: if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps:

View File

@ -223,6 +223,10 @@ cdef class Doc:
def __repr__(self): def __repr__(self):
return self.__str__() return self.__str__()
@property
def doc(self):
return self
def similarity(self, other): def similarity(self, other):
'''Make a semantic similarity estimate. The default estimate is cosine '''Make a semantic similarity estimate. The default estimate is cosine
similarity using an average of word vectors. similarity using an average of word vectors.

View File

@ -190,6 +190,31 @@ cdef class Span:
def __get__(self): def __get__(self):
return u''.join([t.text_with_ws for t in self]) return u''.join([t.text_with_ws for t in self])
property noun_chunks:
'''
Yields base noun-phrase #[code Span] objects, if the document
has been syntactically parsed. A base noun phrase, or
'NP chunk', is a noun phrase that does not permit other NPs to
be nested within it so no NP-level coordination, no prepositional
phrases, and no relative clauses. For example:
'''
def __get__(self):
if not self.doc.is_parsed:
raise ValueError(
"noun_chunks requires the dependency parse, which "
"requires data to be installed. If you haven't done so, run: "
"\npython -m spacy.%s.download all\n"
"to install the data" % self.vocab.lang)
# Accumulate the result before beginning to iterate over it. This prevents
# the tokenisation from being changed out from under us during the iteration.
# The tricky thing here is that Span accepts its tokenisation changing,
# so it's okay once we have the Span objects. See Issue #375
spans = []
for start, end, label in self.doc.noun_chunks_iterator(self):
spans.append(Span(self, start, end, label=label))
for span in spans:
yield span
property root: property root:
"""The token within the span that's highest in the parse tree. If there's a tie, the earlist is prefered. """The token within the span that's highest in the parse tree. If there's a tie, the earlist is prefered.

View File

@ -21,7 +21,8 @@
"SOCIAL": { "SOCIAL": {
"twitter": "spacy_io", "twitter": "spacy_io",
"github": "explosion", "github": "explosion",
"reddit": "spacynlp" "reddit": "spacynlp",
"codepen": "explosion"
}, },
"NAVIGATION": { "NAVIGATION": {

View File

@ -90,6 +90,19 @@ mixin code(label, language)
block block
//- CodePen embed
slug - [string] ID of CodePen demo (taken from URL)
height - [integer] height of demo embed iframe
default_tab - [string] code tab(s) visible on load (default: "result")
mixin codepen(slug, height, default_tab)
figure.o-block(style="min-height: #{height}px")&attributes(attributes)
.codepen(data-height=height data-theme-id="26467" data-slug-hash=slug data-default-tab=(default_tab || "result") data-embed-version="2" data-user=SOCIAL.codepen)
+a("https://codepen.io/" + SOCIAL.codepen + "/" + slug) View on CodePen
script(async src="https://assets.codepen.io/assets/embed/ei.js")
//- Images / figures //- Images / figures
url - [string] url or path to image url - [string] url or path to image
width - [integer] image width in px, for better rendering (default: 500) width - [integer] image width in px, for better rendering (default: 500)

View File

@ -9,6 +9,7 @@
"Processing text": "processing-text", "Processing text": "processing-text",
"spaCy's data model": "data-model", "spaCy's data model": "data-model",
"Using the parse": "dependency-parse", "Using the parse": "dependency-parse",
"Entity recognition": "entity-recognition",
"Custom pipelines": "customizing-pipeline", "Custom pipelines": "customizing-pipeline",
"Rule-based matching": "rule-based-matching", "Rule-based matching": "rule-based-matching",
"Word vectors": "word-vectors-similarities", "Word vectors": "word-vectors-similarities",
@ -51,7 +52,13 @@
}, },
"dependency-parse": { "dependency-parse": {
"title": "Using the dependency parse" "title": "Using the dependency parse",
"next": "entity-recognition"
},
"entity-recognition": {
"title": "Entity recognition",
"next": "rule-based-matching"
}, },
"rule-based-matching": { "rule-based-matching": {
@ -232,6 +239,12 @@
}, },
"deep_dives": { "deep_dives": {
"Modern NLP in Python What you can learn about food by analyzing a million Yelp reviews": {
"url": "http://nbviewer.jupyter.org/github/skipgram/modern-nlp-in-python/blob/master/executable/Modern_NLP_in_Python.ipynb",
"author": "Patrick Harrison (S&P Global)",
"tags": [ "jupyter", "gensim" ]
},
"Deep Learning with custom pipelines and Keras": { "Deep Learning with custom pipelines and Keras": {
"url": "https://explosion.ai/blog/spacy-deep-learning-keras", "url": "https://explosion.ai/blog/spacy-deep-learning-keras",
"author": "Matthew Honnibal", "author": "Matthew Honnibal",

View File

@ -0,0 +1,290 @@
//- 💫 DOCS > USAGE > NAMED ENTITY RECOGNITION
include ../../_includes/_mixins
p
| spaCy features an extremely fast statistical entity recognition system,
| that assigns labels to contiguous spans of tokens. The default model
| identifies a variety of named and numeric entities, including companies,
| locations, organizations and products. You can add arbitrary classes to
| the entity recognition system, and update the model with new examples.
+aside-code("Example").
import spacy
nlp = spacy.load('en')
doc = nlp(u'London is a big city in the United Kingdom.')
for ent in doc.ents:
print(ent.label_, ent.text)
# GPE London
# GPE United Kingdom
p
| The standard way to access entity annotations is the
| #[+api("doc#ents") #[code doc.ents]] property, which produces a sequence
| of #[+api("span") #[code Span]] objects. The entity type is accessible
| either as an integer ID or as a string, using the attributes
| #[code ent.label] and #[code ent.label_]. The #[code Span] object acts
| as a sequence of tokens, so you can iterate over the entity or index into
| it. You can also get the text form of the whole entity, as though it were
| a single token. See the #[+api("span") API reference] for more details.
p
| You can access token entity annotations using the #[code token.ent_iob]
| and #[code token.ent_type] attributes. The #[code token.ent_iob]
| attribute indicates whether an entity starts, continues or ends on the
| tag (In, Begin, Out).
+code("Example").
doc = nlp(u'London is a big city in the United Kingdom.')
print(doc[0].text, doc[0].ent_iob, doc[0].ent_type_))
# (u'London', 2, u'GPE')
print(doc[1].text, doc[1].ent_iob, doc[1].ent_type_))
(u'is', 3, u'')]
+h(2, "setting") Setting entity annotations
p
| To ensure that the sequence of token annotations remains consistent, you
| have to set entity annotations at the document level — you can't write
| directly to the #[code token.ent_iob] or #[code token.ent_type]
| attributes. The easiest way to set entities is to assign to the
| #[code doc.ents] attribute.
+code("Example").
doc = nlp(u'London is a big city in the United Kingdom.')
doc.ents = []
assert doc[0].ent_type_ == ''
doc.ents = [Span(0, 1, label='GPE')]
assert doc[0].ent_type_ == 'GPE'
doc.ents = []
doc.ents = [(u'LondonCity', 0, 1, u'GPE')]
p
| The value you assign should be a sequence, the values of which
| can either be #[code Span] objects, or #[code (ent_id, ent_type, start, end)]
| tuples, where #[code start] and #[code end] are token offsets that
| describe the slice of the document that should be annotated.
p
| You can also assign entity annotations using the #[code doc.from_array()]
| method. To do this, you should include both the #[code ENT_TYPE] and the
| #[code ENT_IOB] attributes in the array you're importing from.
+code("Example").
from spacy.attrs import ENT_IOB, ENT_TYPE
import numpy
doc = nlp.make_doc(u'London is a big city in the United Kingdom.')
assert list(doc.ents) == []
header = [ENT_IOB, ENT_TYPE]
attr_array = numpy.zeros((len(doc), len(header)))
attr_array[0, 0] = 2 # B
attr_array[0, 1] = doc.vocab.strings[u'GPE']
doc.from_array(header, attr_array)
assert list(doc.ents)[0].text == u'London'
p
| Finally, you can always write to the underlying struct, if you compile
| a Cython function. This is easy to do, and allows you to write efficient
| native code.
+code("Example").
# cython: infer_types=True
from spacy.tokens.doc cimport Doc
cpdef set_entity(Doc doc, int start, int end, int ent_type):
for i in range(start, end):
doc.c[i].ent_type = ent_type
doc.c[start].ent_iob = 3
for i in range(start+1, end):
doc.c[i].ent_iob = 2
p
| Obviously, if you write directly to the array of #[code TokenC*] structs,
| you'll have responsibility for ensuring that the data is left in a
| consistent state.
+h(2, "displacy") The displaCy #[sup ENT] visualizer
p
| The #[+a(DEMOS_URL + "/displacy-ent/") displaCy #[sup ENT] visualizer]
| lets you explore an entity recognition model's behaviour interactively.
| If you're training a model, it's very useful to run the visualization
| server yourself. To help you do that, we've open-sourced both the
| #[+a(gh("spacy-services")) back-end service] and the
| #[+a(gh("displacy-ent")) front-end client].
+codepen("ALxpQO", 450)
+h(2, "entity-types") Built-in entity types
+h(3, "entity-types-named") Named types
+table([ "Type", "Description" ])
+row
+cell #[code PERSON]
+cell People, including fictional
+row
+cell #[code NORP]
+cell Nationalities or religious or political groups
+row
+cell #[code FACILITY]
+cell Buildings, airports, highways, bridges, etc.
+row
+cell #[code ORG]
+cell Companies, agencies, institutions, etc.
+row
+cell #[code GPE]
+cell Countries, cities, states
+row
+cell #[code LOC]
+cell Non-GPE locations, mountain ranges, bodies of water
+row
+cell #[code PRODUCT]
+cell Objects, vehicles, foods, etc. (not services)
+row
+cell #[code EVENT]
+cell Named hurricanes, battles, wars, sports events, etc.
+row
+cell #[code WORK_OF_ART]
+cell Titles of books, songs, etc.
+row
+cell #[code LANGUAGE]
+cell Any named language
+h(3, "entity-types-numeric") Numeric types
+table([ "Type", "Description" ])
+row
+cell #[code DATE]
+cell Absolute or relative dates or periods
+row
+cell #[code TIME]
+cell Times smaller than a day
+row
+cell #[code PERCENT]
+cell Percentage, including "%"
+row
+cell #[code MONEY]
+cell Monetary values, including unit
+row
+cell #[code QUANTITY]
+cell Measurements, as of weight or distance
+row
+cell #[code ORDINAL]
+cell "first", "second", etc.
+row
+cell #[code CARDINAL]
+cell Numerals that do not fall under another type
+aside("Install")
| The #[+api("load") spacy.load()] function configures a pipeline that
| includes all of the available annotators for the given ID. In the example
| above, the #[code 'en'] ID tells spaCy to load the default English
| pipeline. If you have installed the data with
| #[code python -m spacy.en.download] this will include the entity
| recognition model.
+h(2, "updating") Training and updating
p
| To provide training examples to the entity recogniser, you'll first need
| to create an instance of the #[code GoldParse] class. You can specify
| your annotations in a stand-off format or as token tags.
+code.
import spacy
from spacy.gold import GoldParse
train_data = [
('Who is Chaka Khan?', [(7, 17, 'PERSON')]),
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])
]
nlp = spacy.load(entity=False, parser=False)
ner = EntityRecognizer(nlp.vocab, entity_types=['PERSON', 'LOC'])
for itn in range(5):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.tagger(doc)
ner.update(doc, gold)
ner.model.end_training()
p
| If a character offset in your entity annotations don't fall on a token
| boundary, the #[code GoldParse] class will treat that annotation as a
| missing value. This allows for more realistic training, because the
| entity recogniser is allowed to learn from examples that may feature
| tokenizer errors.
+aside-code("Example").
doc = Doc(nlp.vocab, [u'rats', u'make', u'good', u'pets'])
gold = GoldParse(doc, [u'U-ANIMAL', u'O', u'O', u'O'])
ner = EntityRecognizer(nlp.vocab, entity_types=['ANIMAL'])
ner.update(doc, gold)
p
| You can also provide token-level entity annotation, using the
| following tagging scheme to describe the entity boundaries:
+table([ "Tag", "Description" ])
+row
+cell #[code #[span.u-color-theme B] EGIN]
+cell The first token of a multi-token entity
+row
+cell #[code #[span.u-color-theme I] N]
+cell An inner token of a multi-token entity
+row
+cell #[code #[span.u-color-theme L] AST]
+cell The final token of a multi-token entity
+row
+cell #[code #[span.u-color-theme U] NIT]
+cell A single-token entity
+row
+cell #[code #[span.u-color-theme O] UT]
+cell A non-entity token.
+aside("Why BILUO, not IOB?")
| There are several coding schemes for encoding entity annotations as
| token tags. These coding schemes are equally expressive, but not
| necessarily equally learnable.
| #[+a("http://www.aclweb.org/anthology/W09-1119") Ratinov and Roth]
| showed that the minimal #[strong Begin], #[strong In], #[strong Out]
| scheme was more difficult to learn than the #[strong BILUO] scheme that
| we use, which explicitly marks boundary tokens.
p
| spaCy translates the character offsets into this scheme, in order to
| decide the cost of each action given the current state of the entity
| recogniser. The costs are then used to calculate the gradient of the
| loss, to train the model. The exact algorithm is a pastiche of
| well-known methods, and is not currently described in any single
| publication. The model is a greedy transition-based parser guided by a
| linear model whose weights are learned using the averaged perceptron
| loss, via the #[+a("http://www.aclweb.org/anthology/C12-1059") dynamic oracle]
| imitation learning strategy. The transition system is equivalent to the
| BILOU tagging scheme.