mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-25 19:33:42 +03:00
* Move Theano functions into nn_train.py script
This commit is contained in:
parent
8e7ffd2cdd
commit
fc34e1b6e4
|
@ -23,81 +23,163 @@ from spacy.gold import GoldParse
|
||||||
|
|
||||||
from spacy.scorer import Scorer
|
from spacy.scorer import Scorer
|
||||||
|
|
||||||
from thinc.theano_nn import compile_theano_model
|
|
||||||
|
|
||||||
from spacy.syntax.parser import Parser
|
from spacy.syntax.parser import Parser
|
||||||
from spacy._theano import TheanoModel
|
from spacy._theano import TheanoModel
|
||||||
|
|
||||||
|
import theano
|
||||||
|
import theano.tensor as T
|
||||||
|
|
||||||
def _corrupt(c, noise_level):
|
from theano.printing import Print
|
||||||
if random.random() >= noise_level:
|
|
||||||
return c
|
import numpy
|
||||||
elif c == ' ':
|
from collections import OrderedDict, defaultdict
|
||||||
return '\n'
|
|
||||||
elif c == '\n':
|
|
||||||
return ' '
|
|
||||||
elif c in ['.', "'", "!", "?"]:
|
|
||||||
return ''
|
|
||||||
else:
|
|
||||||
return c.lower()
|
|
||||||
|
|
||||||
|
|
||||||
def add_noise(orig, noise_level):
|
theano.config.floatX = 'float32'
|
||||||
if random.random() >= noise_level:
|
floatX = theano.config.floatX
|
||||||
return orig
|
|
||||||
elif type(orig) == list:
|
|
||||||
corrupted = [_corrupt(word, noise_level) for word in orig]
|
|
||||||
corrupted = [w for w in corrupted if w]
|
|
||||||
return corrupted
|
|
||||||
else:
|
|
||||||
return ''.join(_corrupt(c, noise_level) for c in orig)
|
|
||||||
|
|
||||||
|
|
||||||
def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False):
|
def th_share(w, name=''):
|
||||||
if raw_text is None:
|
return theano.shared(value=w, borrow=True, name=name)
|
||||||
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
|
||||||
else:
|
|
||||||
tokens = nlp.tokenizer(raw_text)
|
class AvgParam(object):
|
||||||
|
def __init__(self, numpy_data, name='?', wrapper=th_share):
|
||||||
|
self.curr = wrapper(numpy_data, name=name+'_curr')
|
||||||
|
self.avg = self.curr
|
||||||
|
self.avg = wrapper(numpy_data.copy(), name=name+'_avg')
|
||||||
|
self.step = wrapper(numpy.zeros(numpy_data.shape, numpy_data.dtype),
|
||||||
|
name=name+'_step')
|
||||||
|
|
||||||
|
def updates(self, cost, timestep, eta=0.001, mu=0.9):
|
||||||
|
step = (mu * self.step) - T.grad(cost, self.curr)
|
||||||
|
curr = self.curr + (eta * step)
|
||||||
|
alpha = (1 / timestep).clip(0.001, 0.9).astype(floatX)
|
||||||
|
avg = ((1 - alpha) * self.avg) + (alpha * curr)
|
||||||
|
return [(self.curr, curr), (self.step, step), (self.avg, avg)]
|
||||||
|
|
||||||
|
|
||||||
|
def feed_layer(activation, weights, bias, input_):
|
||||||
|
return activation(T.dot(input_, weights) + bias)
|
||||||
|
|
||||||
|
|
||||||
|
def L2(L2_reg, *weights):
|
||||||
|
return L2_reg * sum((w ** 2).sum() for w in weights)
|
||||||
|
|
||||||
|
|
||||||
|
def L1(L1_reg, *weights):
|
||||||
|
return L1_reg * sum(abs(w).sum() for w in weights)
|
||||||
|
|
||||||
|
|
||||||
|
def relu(x):
|
||||||
|
return x * (x > 0)
|
||||||
|
|
||||||
|
|
||||||
|
def _init_weights(n_in, n_out):
|
||||||
|
rng = numpy.random.RandomState(1234)
|
||||||
|
weights = numpy.asarray(
|
||||||
|
numpy.random.normal(
|
||||||
|
loc=0.0,
|
||||||
|
scale=0.0001,
|
||||||
|
size=(n_in, n_out)),
|
||||||
|
dtype=theano.config.floatX
|
||||||
|
)
|
||||||
|
bias = 0.2 * numpy.ones((n_out,), dtype=theano.config.floatX)
|
||||||
|
return [AvgParam(weights, name='W'), AvgParam(bias, name='b')]
|
||||||
|
|
||||||
|
|
||||||
|
def compile_theano_model(n_classes, n_hidden, n_in, L1_reg, L2_reg):
|
||||||
|
costs = T.ivector('costs')
|
||||||
|
is_gold = T.ivector('is_gold')
|
||||||
|
x = T.vector('x')
|
||||||
|
y = T.scalar('y')
|
||||||
|
timestep = theano.shared(1)
|
||||||
|
eta = T.scalar('eta').astype(floatX)
|
||||||
|
mu = T.scalar('mu').astype(floatX)
|
||||||
|
|
||||||
|
maxent_W, maxent_b = _init_weights(n_hidden, n_classes)
|
||||||
|
hidden_W, hidden_b = _init_weights(n_in, n_hidden)
|
||||||
|
|
||||||
|
# Feed the inputs forward through the network
|
||||||
|
p_y_given_x = feed_layer(
|
||||||
|
T.nnet.softmax,
|
||||||
|
maxent_W.curr,
|
||||||
|
maxent_b.curr,
|
||||||
|
feed_layer(
|
||||||
|
relu,
|
||||||
|
hidden_W.curr,
|
||||||
|
hidden_b.curr,
|
||||||
|
x))
|
||||||
|
stabilizer = 1e-8
|
||||||
|
|
||||||
|
cost = (
|
||||||
|
-T.log(T.sum((p_y_given_x[0] + stabilizer) * T.eq(costs, 0)))
|
||||||
|
+ L1(L1_reg, hidden_W.curr, hidden_b.curr)
|
||||||
|
+ L2(L2_reg, hidden_W.curr, hidden_b.curr)
|
||||||
|
)
|
||||||
|
|
||||||
|
debug = theano.function(
|
||||||
|
name='debug',
|
||||||
|
inputs=[x, costs],
|
||||||
|
outputs=[p_y_given_x, T.eq(costs, 0), p_y_given_x[0] * T.eq(costs, 0)],
|
||||||
|
)
|
||||||
|
|
||||||
|
train_model = theano.function(
|
||||||
|
name='train_model',
|
||||||
|
inputs=[x, costs, eta, mu],
|
||||||
|
outputs=[p_y_given_x[0], T.grad(cost, x), T.argmax(p_y_given_x, axis=1),
|
||||||
|
cost],
|
||||||
|
updates=(
|
||||||
|
[(timestep, timestep + 1)] +
|
||||||
|
maxent_W.updates(cost, timestep, eta=eta, mu=mu) +
|
||||||
|
maxent_b.updates(cost, timestep, eta=eta, mu=mu) +
|
||||||
|
hidden_W.updates(cost, timestep, eta=eta, mu=mu) +
|
||||||
|
hidden_b.updates(cost, timestep, eta=eta, mu=mu)
|
||||||
|
),
|
||||||
|
on_unused_input='warn'
|
||||||
|
)
|
||||||
|
|
||||||
|
evaluate_model = theano.function(
|
||||||
|
name='evaluate_model',
|
||||||
|
inputs=[x],
|
||||||
|
outputs=[
|
||||||
|
feed_layer(
|
||||||
|
T.nnet.softmax,
|
||||||
|
maxent_W.curr,
|
||||||
|
maxent_b.curr,
|
||||||
|
feed_layer(
|
||||||
|
relu,
|
||||||
|
hidden_W.curr,
|
||||||
|
hidden_b.curr,
|
||||||
|
x
|
||||||
|
)
|
||||||
|
)[0]
|
||||||
|
]
|
||||||
|
)
|
||||||
|
return debug, train_model, evaluate_model
|
||||||
|
|
||||||
|
|
||||||
|
def score_model(scorer, nlp, annot_tuples, verbose=False):
|
||||||
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
||||||
nlp.tagger(tokens)
|
nlp.tagger(tokens)
|
||||||
nlp.entity(tokens)
|
|
||||||
nlp.parser(tokens)
|
nlp.parser(tokens)
|
||||||
gold = GoldParse(tokens, annot_tuples)
|
gold = GoldParse(tokens, annot_tuples)
|
||||||
scorer.score(tokens, gold, verbose=verbose)
|
scorer.score(tokens, gold, verbose=verbose)
|
||||||
|
|
||||||
|
|
||||||
def _merge_sents(sents):
|
|
||||||
m_deps = [[], [], [], [], [], []]
|
|
||||||
m_brackets = []
|
|
||||||
i = 0
|
|
||||||
for (ids, words, tags, heads, labels, ner), brackets in sents:
|
|
||||||
m_deps[0].extend(id_ + i for id_ in ids)
|
|
||||||
m_deps[1].extend(words)
|
|
||||||
m_deps[2].extend(tags)
|
|
||||||
m_deps[3].extend(head + i for head in heads)
|
|
||||||
m_deps[4].extend(labels)
|
|
||||||
m_deps[5].extend(ner)
|
|
||||||
m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets)
|
|
||||||
i += len(ids)
|
|
||||||
return [(m_deps, m_brackets)]
|
|
||||||
|
|
||||||
|
|
||||||
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
|
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
|
||||||
seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
|
seed=0, n_sents=0,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
eta=0.01, mu=0.9, nv_hidden=100,
|
eta=0.01, mu=0.9, nv_hidden=100,
|
||||||
nv_word=10, nv_tag=10, nv_label=10):
|
nv_word=10, nv_tag=10, nv_label=10):
|
||||||
dep_model_dir = path.join(model_dir, 'deps')
|
dep_model_dir = path.join(model_dir, 'deps')
|
||||||
pos_model_dir = path.join(model_dir, 'pos')
|
pos_model_dir = path.join(model_dir, 'pos')
|
||||||
ner_model_dir = path.join(model_dir, 'ner')
|
|
||||||
if path.exists(dep_model_dir):
|
if path.exists(dep_model_dir):
|
||||||
shutil.rmtree(dep_model_dir)
|
shutil.rmtree(dep_model_dir)
|
||||||
if path.exists(pos_model_dir):
|
if path.exists(pos_model_dir):
|
||||||
shutil.rmtree(pos_model_dir)
|
shutil.rmtree(pos_model_dir)
|
||||||
if path.exists(ner_model_dir):
|
|
||||||
shutil.rmtree(ner_model_dir)
|
|
||||||
os.mkdir(dep_model_dir)
|
os.mkdir(dep_model_dir)
|
||||||
os.mkdir(pos_model_dir)
|
os.mkdir(pos_model_dir)
|
||||||
os.mkdir(ner_model_dir)
|
|
||||||
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
|
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
|
||||||
|
|
||||||
Config.write(dep_model_dir, 'config',
|
Config.write(dep_model_dir, 'config',
|
||||||
|
@ -109,9 +191,6 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
|
||||||
eta=eta,
|
eta=eta,
|
||||||
mu=mu
|
mu=mu
|
||||||
)
|
)
|
||||||
Config.write(ner_model_dir, 'config', features='ner', seed=seed,
|
|
||||||
labels=Language.EntityTransitionSystem.get_labels(gold_tuples),
|
|
||||||
beam_width=0)
|
|
||||||
|
|
||||||
if n_sents > 0:
|
if n_sents > 0:
|
||||||
gold_tuples = gold_tuples[:n_sents]
|
gold_tuples = gold_tuples[:n_sents]
|
||||||
|
@ -122,57 +201,44 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
|
||||||
n_in = (nv_word * len(words)) + \
|
n_in = (nv_word * len(words)) + \
|
||||||
(nv_tag * len(tags)) + \
|
(nv_tag * len(tags)) + \
|
||||||
(nv_label * len(labels))
|
(nv_label * len(labels))
|
||||||
print 'Compiling'
|
|
||||||
debug, train_func, predict_func = compile_theano_model(n_classes, nv_hidden,
|
debug, train_func, predict_func = compile_theano_model(n_classes, nv_hidden,
|
||||||
n_in, 0.0, 0.0)
|
n_in, 0.0, 0.0001)
|
||||||
print 'Done'
|
|
||||||
return TheanoModel(
|
return TheanoModel(
|
||||||
n_classes,
|
n_classes,
|
||||||
((nv_word, words), (nv_tag, tags), (nv_label, labels)),
|
((nv_word, words), (nv_tag, tags), (nv_label, labels)),
|
||||||
train_func,
|
train_func,
|
||||||
predict_func,
|
predict_func,
|
||||||
model_loc=model_dir,
|
model_loc=model_dir,
|
||||||
|
eta=eta, mu=mu,
|
||||||
debug=debug)
|
debug=debug)
|
||||||
|
|
||||||
nlp._parser = Parser(nlp.vocab.strings, dep_model_dir, nlp.ParserTransitionSystem,
|
nlp._parser = Parser(nlp.vocab.strings, dep_model_dir, nlp.ParserTransitionSystem,
|
||||||
make_model)
|
make_model)
|
||||||
|
|
||||||
print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %"
|
print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %"
|
||||||
|
log_loc = path.join(model_dir, 'job.log')
|
||||||
for itn in range(n_iter):
|
for itn in range(n_iter):
|
||||||
scorer = Scorer()
|
scorer = Scorer()
|
||||||
loss = 0
|
loss = 0
|
||||||
for raw_text, sents in gold_tuples:
|
for _, sents in gold_tuples:
|
||||||
if gold_preproc:
|
|
||||||
raw_text = None
|
|
||||||
else:
|
|
||||||
sents = _merge_sents(sents)
|
|
||||||
for annot_tuples, ctnt in sents:
|
for annot_tuples, ctnt in sents:
|
||||||
if len(annot_tuples[1]) == 1:
|
if len(annot_tuples[1]) == 1:
|
||||||
continue
|
continue
|
||||||
score_model(scorer, nlp, raw_text, annot_tuples,
|
score_model(scorer, nlp, annot_tuples)
|
||||||
verbose=verbose if itn >= 2 else False)
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
||||||
if raw_text is None:
|
|
||||||
words = add_noise(annot_tuples[1], corruption_level)
|
|
||||||
tokens = nlp.tokenizer.tokens_from_list(words)
|
|
||||||
else:
|
|
||||||
raw_text = add_noise(raw_text, corruption_level)
|
|
||||||
tokens = nlp.tokenizer(raw_text)
|
|
||||||
nlp.tagger(tokens)
|
nlp.tagger(tokens)
|
||||||
gold = GoldParse(tokens, annot_tuples, make_projective=True)
|
gold = GoldParse(tokens, annot_tuples, make_projective=True)
|
||||||
if not gold.is_projective:
|
assert gold.is_projective
|
||||||
raise Exception(
|
|
||||||
"Non-projective sentence in training, after we should "
|
|
||||||
"have enforced projectivity: %s" % annot_tuples
|
|
||||||
)
|
|
||||||
loss += nlp.parser.train(tokens, gold)
|
loss += nlp.parser.train(tokens, gold)
|
||||||
nlp.entity.train(tokens, gold)
|
|
||||||
nlp.tagger.train(tokens, gold.tags)
|
nlp.tagger.train(tokens, gold.tags)
|
||||||
random.shuffle(gold_tuples)
|
random.shuffle(gold_tuples)
|
||||||
print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
|
logline = '%d:\t%d\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas,
|
||||||
scorer.tags_acc,
|
scorer.tags_acc,
|
||||||
scorer.token_acc)
|
scorer.token_acc)
|
||||||
|
print logline
|
||||||
|
with open(log_loc, 'aw') as file_:
|
||||||
|
file_.write(logline + '\n')
|
||||||
nlp.parser.model.end_training()
|
nlp.parser.model.end_training()
|
||||||
nlp.entity.model.end_training()
|
|
||||||
nlp.tagger.model.end_training()
|
nlp.tagger.model.end_training()
|
||||||
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
|
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
|
||||||
return nlp
|
return nlp
|
||||||
|
@ -181,57 +247,20 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
|
||||||
def evaluate(nlp, gold_tuples, gold_preproc=True):
|
def evaluate(nlp, gold_tuples, gold_preproc=True):
|
||||||
scorer = Scorer()
|
scorer = Scorer()
|
||||||
for raw_text, sents in gold_tuples:
|
for raw_text, sents in gold_tuples:
|
||||||
if gold_preproc:
|
|
||||||
raw_text = None
|
|
||||||
else:
|
|
||||||
sents = _merge_sents(sents)
|
|
||||||
for annot_tuples, brackets in sents:
|
for annot_tuples, brackets in sents:
|
||||||
if raw_text is None:
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
||||||
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
nlp.tagger(tokens)
|
||||||
nlp.tagger(tokens)
|
nlp.parser(tokens)
|
||||||
nlp.entity(tokens)
|
|
||||||
nlp.parser(tokens)
|
|
||||||
else:
|
|
||||||
tokens = nlp(raw_text, merge_mwes=False)
|
|
||||||
gold = GoldParse(tokens, annot_tuples)
|
gold = GoldParse(tokens, annot_tuples)
|
||||||
scorer.score(tokens, gold)
|
scorer.score(tokens, gold)
|
||||||
return scorer
|
return scorer
|
||||||
|
|
||||||
|
|
||||||
def write_parses(Language, dev_loc, model_dir, out_loc, beam_width=None):
|
|
||||||
nlp = Language(data_dir=model_dir)
|
|
||||||
if beam_width is not None:
|
|
||||||
nlp.parser.cfg.beam_width = beam_width
|
|
||||||
gold_tuples = read_json_file(dev_loc)
|
|
||||||
scorer = Scorer()
|
|
||||||
out_file = codecs.open(out_loc, 'w', 'utf8')
|
|
||||||
for raw_text, sents in gold_tuples:
|
|
||||||
sents = _merge_sents(sents)
|
|
||||||
for annot_tuples, brackets in sents:
|
|
||||||
if raw_text is None:
|
|
||||||
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
|
||||||
nlp.tagger(tokens)
|
|
||||||
nlp.entity(tokens)
|
|
||||||
nlp.parser(tokens)
|
|
||||||
else:
|
|
||||||
tokens = nlp(raw_text, merge_mwes=False)
|
|
||||||
gold = GoldParse(tokens, annot_tuples)
|
|
||||||
scorer.score(tokens, gold, verbose=False)
|
|
||||||
for t in tokens:
|
|
||||||
out_file.write(
|
|
||||||
'%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_)
|
|
||||||
)
|
|
||||||
return scorer
|
|
||||||
|
|
||||||
|
|
||||||
@plac.annotations(
|
@plac.annotations(
|
||||||
train_loc=("Location of training file or directory"),
|
train_loc=("Location of training file or directory"),
|
||||||
dev_loc=("Location of development file or directory"),
|
dev_loc=("Location of development file or directory"),
|
||||||
model_dir=("Location of output model directory",),
|
model_dir=("Location of output model directory",),
|
||||||
eval_only=("Skip training, and only evaluate", "flag", "e", bool),
|
eval_only=("Skip training, and only evaluate", "flag", "e", bool),
|
||||||
corruption_level=("Amount of noise to add to training data", "option", "c", float),
|
|
||||||
gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool),
|
|
||||||
out_loc=("Out location", "option", "o", str),
|
|
||||||
n_sents=("Number of training sentences", "option", "n", int),
|
n_sents=("Number of training sentences", "option", "n", int),
|
||||||
n_iter=("Number of training iterations", "option", "i", int),
|
n_iter=("Number of training iterations", "option", "i", int),
|
||||||
verbose=("Verbose error reporting", "flag", "v", bool),
|
verbose=("Verbose error reporting", "flag", "v", bool),
|
||||||
|
@ -243,21 +272,20 @@ def write_parses(Language, dev_loc, model_dir, out_loc, beam_width=None):
|
||||||
eta=("Learning rate", "option", "E", float),
|
eta=("Learning rate", "option", "E", float),
|
||||||
mu=("Momentum", "option", "M", float),
|
mu=("Momentum", "option", "M", float),
|
||||||
)
|
)
|
||||||
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
|
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, verbose=False,
|
||||||
corruption_level=0.0, gold_preproc=False,
|
|
||||||
nv_word=10, nv_tag=10, nv_label=10, nv_hidden=10,
|
nv_word=10, nv_tag=10, nv_label=10, nv_hidden=10,
|
||||||
eta=0.1, mu=0.9,
|
eta=0.1, mu=0.9, eval_only=False):
|
||||||
eval_only=False):
|
|
||||||
gold_train = list(read_json_file(train_loc))
|
gold_train = list(read_json_file(train_loc, lambda doc: 'wsj' in doc['id']))
|
||||||
|
|
||||||
nlp = train(English, gold_train, model_dir,
|
nlp = train(English, gold_train, model_dir,
|
||||||
feat_set='embed',
|
feat_set='embed',
|
||||||
|
eta=eta, mu=mu,
|
||||||
nv_word=nv_word, nv_tag=nv_tag, nv_label=nv_label, nv_hidden=nv_hidden,
|
nv_word=nv_word, nv_tag=nv_tag, nv_label=nv_label, nv_hidden=nv_hidden,
|
||||||
gold_preproc=gold_preproc, n_sents=n_sents,
|
n_sents=n_sents, n_iter=n_iter,
|
||||||
corruption_level=corruption_level, n_iter=n_iter,
|
|
||||||
verbose=verbose)
|
verbose=verbose)
|
||||||
#if out_loc:
|
|
||||||
# write_parses(English, dev_loc, model_dir, out_loc, beam_width=beam_width)
|
scorer = evaluate(nlp, list(read_json_file(dev_loc)))
|
||||||
scorer = evaluate(nlp, list(read_json_file(dev_loc)), gold_preproc=gold_preproc)
|
|
||||||
|
|
||||||
print 'TOK', 100-scorer.token_acc
|
print 'TOK', 100-scorer.token_acc
|
||||||
print 'POS', scorer.tags_acc
|
print 'POS', scorer.tags_acc
|
||||||
|
|
Loading…
Reference in New Issue
Block a user