diff --git a/bin/wiki_entity_linking/wikidata_train_entity_linker.py b/bin/wiki_entity_linking/wikidata_train_entity_linker.py index 386af7d4d..af0e68768 100644 --- a/bin/wiki_entity_linking/wikidata_train_entity_linker.py +++ b/bin/wiki_entity_linking/wikidata_train_entity_linker.py @@ -175,12 +175,10 @@ def main( kb=kb, labels_discard=labels_discard, ) - docs, golds = zip(*train_batch) try: with nlp.disable_pipes(*other_pipes): nlp.update( - docs=docs, - golds=golds, + examples=train_batch, sgd=optimizer, drop=dropout, losses=losses, diff --git a/spacy/cli/train.py b/spacy/cli/train.py index d8514095b..92f94b53d 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -28,13 +28,6 @@ def train( pipeline: ("Comma-separated names of pipeline components", "option", "p", str) = "tagger,parser,ner", vectors: ("Model to load vectors from", "option", "v", str) = None, replace_components: ("Replace components from base model", "flag", "R", bool) = False, - width: ("Width of CNN layers of Tok2Vec component", "option", "cw", int) = 96, - conv_depth: ("Depth of CNN layers of Tok2Vec component", "option", "cd", int) = 4, - cnn_window: ("Window size for CNN layers of Tok2Vec component", "option", "cW", int) = 1, - cnn_pieces: ("Maxout size for CNN layers of Tok2Vec component. 1 for Mish", "option", "cP", int) = 3, - use_chars: ("Whether to use character-based embedding of Tok2Vec component", "flag", "chr", bool) = False, - bilstm_depth: ("Depth of BiLSTM layers of Tok2Vec component (requires PyTorch)", "option", "lstm", int) = 0, - embed_rows: ("Number of embedding rows of Tok2Vec component", "option", "er", int) = 2000, n_iter: ("Number of iterations", "option", "n", int) = 30, n_early_stopping: ("Maximum number of training epochs without dev accuracy improvement", "option", "ne", int) = None, n_examples: ("Number of examples", "option", "ns", int) = 0, @@ -232,14 +225,7 @@ def train( else: # Start with a blank model, call begin_training cfg = {"device": use_gpu} - cfg["conv_depth"] = conv_depth - cfg["token_vector_width"] = width - cfg["bilstm_depth"] = bilstm_depth - cfg["cnn_maxout_pieces"] = cnn_pieces - cfg["embed_size"] = embed_rows - cfg["conv_window"] = cnn_window - cfg["subword_features"] = not use_chars - optimizer = nlp.begin_training(lambda: corpus.train_tuples, **cfg) + optimizer = nlp.begin_training(lambda: corpus.train_examples, **cfg) nlp._optimizer = None # Load in pretrained weights @@ -362,11 +348,9 @@ def train( for batch in util.minibatch_by_words(train_data, size=batch_sizes): if not batch: continue - docs, golds = zip(*batch) try: nlp.update( - docs, - golds, + batch, sgd=optimizer, drop=next(dropout_rates), losses=losses, @@ -609,7 +593,7 @@ def _get_metrics(component): elif component == "tagger": return ("tags_acc",) elif component == "ner": - return ("ents_f", "ents_p", "ents_r", "enty_per_type") + return ("ents_f", "ents_p", "ents_r", "ents_per_type") elif component == "sentrec": return ("sent_f", "sent_p", "sent_r") elif component == "textcat":