From fd4baff475e9cb5ce24b380ec8d75ab28b48962f Mon Sep 17 00:00:00 2001 From: Matthew Honnibal Date: Thu, 5 Oct 2017 08:12:27 -0500 Subject: [PATCH] Update tests --- spacy/tests/lang/en/test_lemmatizer.py | 1 - spacy/tests/lang/en/test_models.py | 13 +++++++------ spacy/tests/regression/test_issue429.py | 1 - 3 files changed, 7 insertions(+), 8 deletions(-) diff --git a/spacy/tests/lang/en/test_lemmatizer.py b/spacy/tests/lang/en/test_lemmatizer.py index 00f02ccb4..ecde87bed 100644 --- a/spacy/tests/lang/en/test_lemmatizer.py +++ b/spacy/tests/lang/en/test_lemmatizer.py @@ -57,7 +57,6 @@ def test_en_lemmatizer_punct(en_lemmatizer): def test_en_lemmatizer_lemma_assignment(EN): text = "Bananas in pyjamas are geese." doc = EN.make_doc(text) - EN.tensorizer(doc) assert all(t.lemma_ == '' for t in doc) EN.tagger(doc) assert all(t.lemma_ != '' for t in doc) diff --git a/spacy/tests/lang/en/test_models.py b/spacy/tests/lang/en/test_models.py index 4b1cf1f91..ab318213c 100644 --- a/spacy/tests/lang/en/test_models.py +++ b/spacy/tests/lang/en/test_models.py @@ -52,12 +52,13 @@ def test_en_models_vectors(example): # this isn't a perfect test since this could in principle fail # in a sane model as well, # but that's very unlikely and a good indicator if something is wrong - vector0 = example[0].vector - vector1 = example[1].vector - vector2 = example[2].vector - assert not numpy.array_equal(vector0,vector1) - assert not numpy.array_equal(vector0,vector2) - assert not numpy.array_equal(vector1,vector2) + if example.vocab.vectors_length: + vector0 = example[0].vector + vector1 = example[1].vector + vector2 = example[2].vector + assert not numpy.array_equal(vector0,vector1) + assert not numpy.array_equal(vector0,vector2) + assert not numpy.array_equal(vector1,vector2) @pytest.mark.xfail diff --git a/spacy/tests/regression/test_issue429.py b/spacy/tests/regression/test_issue429.py index 1baa9a1db..df8d6d3fc 100644 --- a/spacy/tests/regression/test_issue429.py +++ b/spacy/tests/regression/test_issue429.py @@ -19,7 +19,6 @@ def test_issue429(EN): matcher = Matcher(EN.vocab) matcher.add('TEST', merge_phrases, [{'ORTH': 'a'}]) doc = EN.make_doc('a b c') - EN.tensorizer(doc) EN.tagger(doc) matcher(doc) EN.entity(doc)