mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
fdb4b8e456
|
@ -1,7 +1,6 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# coding: utf8
|
# coding: utf8
|
||||||
"""
|
"""A simple example of extracting relations between phrases and entities using
|
||||||
A simple example of extracting relations between phrases and entities using
|
|
||||||
spaCy's named entity recognizer and the dependency parse. Here, we extract
|
spaCy's named entity recognizer and the dependency parse. Here, we extract
|
||||||
money and currency values (entities labelled as MONEY) and then check the
|
money and currency values (entities labelled as MONEY) and then check the
|
||||||
dependency tree to find the noun phrase they are referring to – for example:
|
dependency tree to find the noun phrase they are referring to – for example:
|
||||||
|
|
|
@ -1,8 +1,7 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# coding: utf8
|
# coding: utf8
|
||||||
"""
|
"""This example shows how to navigate the parse tree including subtrees
|
||||||
This example shows how to navigate the parse tree including subtrees attached
|
attached to a word.
|
||||||
to a word.
|
|
||||||
|
|
||||||
Based on issue #252:
|
Based on issue #252:
|
||||||
"In the documents and tutorials the main thing I haven't found is
|
"In the documents and tutorials the main thing I haven't found is
|
||||||
|
|
|
@ -1,9 +1,10 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# coding: utf8
|
||||||
"""Match a large set of multi-word expressions in O(1) time.
|
"""Match a large set of multi-word expressions in O(1) time.
|
||||||
|
|
||||||
The idea is to associate each word in the vocabulary with a tag, noting whether
|
The idea is to associate each word in the vocabulary with a tag, noting whether
|
||||||
they begin, end, or are inside at least one pattern. An additional tag is used
|
they begin, end, or are inside at least one pattern. An additional tag is used
|
||||||
for single-word patterns. Complete patterns are also stored in a hash set.
|
for single-word patterns. Complete patterns are also stored in a hash set.
|
||||||
|
|
||||||
When we process a document, we look up the words in the vocabulary, to
|
When we process a document, we look up the words in the vocabulary, to
|
||||||
associate the words with the tags. We then search for tag-sequences that
|
associate the words with the tags. We then search for tag-sequences that
|
||||||
correspond to valid candidates. Finally, we look up the candidates in the hash
|
correspond to valid candidates. Finally, we look up the candidates in the hash
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
"""
|
#!/usr/bin/env python
|
||||||
Example of multi-processing with Joblib. Here, we're exporting
|
# coding: utf8
|
||||||
|
"""Example of multi-processing with Joblib. Here, we're exporting
|
||||||
part-of-speech-tagged, true-cased, (very roughly) sentence-separated text, with
|
part-of-speech-tagged, true-cased, (very roughly) sentence-separated text, with
|
||||||
each "sentence" on a newline, and spaces between tokens. Data is loaded from
|
each "sentence" on a newline, and spaces between tokens. Data is loaded from
|
||||||
the IMDB movie reviews dataset and will be loaded automatically via Thinc's
|
the IMDB movie reviews dataset and will be loaded automatically via Thinc's
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# coding: utf8
|
# coding: utf8
|
||||||
"""
|
"""Example of training spaCy's named entity recognizer, starting off with an
|
||||||
Example of training spaCy's named entity recognizer, starting off with an
|
|
||||||
existing model or a blank model.
|
existing model or a blank model.
|
||||||
|
|
||||||
For more details, see the documentation:
|
For more details, see the documentation:
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# coding: utf8
|
# coding: utf8
|
||||||
"""
|
"""Example of training an additional entity type
|
||||||
Example of training an additional entity type
|
|
||||||
|
|
||||||
This script shows how to add a new entity type to an existing pre-trained NER
|
This script shows how to add a new entity type to an existing pre-trained NER
|
||||||
model. To keep the example short and simple, only four sentences are provided
|
model. To keep the example short and simple, only four sentences are provided
|
||||||
|
|
|
@ -1,10 +1,7 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# coding: utf8
|
# coding: utf8
|
||||||
"""
|
"""Example of training spaCy dependency parser, starting off with an existing
|
||||||
Example of training spaCy dependency parser, starting off with an existing model
|
model or a blank model. For more details, see the documentation:
|
||||||
or a blank model.
|
|
||||||
|
|
||||||
For more details, see the documentation:
|
|
||||||
* Training: https://alpha.spacy.io/usage/training
|
* Training: https://alpha.spacy.io/usage/training
|
||||||
* Dependency Parse: https://alpha.spacy.io/usage/linguistic-features#dependency-parse
|
* Dependency Parse: https://alpha.spacy.io/usage/linguistic-features#dependency-parse
|
||||||
|
|
||||||
|
|
|
@ -3,9 +3,8 @@
|
||||||
"""
|
"""
|
||||||
A simple example for training a part-of-speech tagger with a custom tag map.
|
A simple example for training a part-of-speech tagger with a custom tag map.
|
||||||
To allow us to update the tag map with our custom one, this example starts off
|
To allow us to update the tag map with our custom one, this example starts off
|
||||||
with a blank Language class and modifies its defaults.
|
with a blank Language class and modifies its defaults. For more details, see
|
||||||
|
the documentation:
|
||||||
For more details, see the documentation:
|
|
||||||
* Training: https://alpha.spacy.io/usage/training
|
* Training: https://alpha.spacy.io/usage/training
|
||||||
* POS Tagging: https://alpha.spacy.io/usage/linguistic-features#pos-tagging
|
* POS Tagging: https://alpha.spacy.io/usage/linguistic-features#pos-tagging
|
||||||
|
|
||||||
|
|
|
@ -3,9 +3,8 @@
|
||||||
"""Train a multi-label convolutional neural network text classifier on the
|
"""Train a multi-label convolutional neural network text classifier on the
|
||||||
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
|
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
|
||||||
automatically via Thinc's built-in dataset loader. The model is added to
|
automatically via Thinc's built-in dataset loader. The model is added to
|
||||||
spacy.pipeline, and predictions are available via `doc.cats`.
|
spacy.pipeline, and predictions are available via `doc.cats`. For more details,
|
||||||
|
see the documentation:
|
||||||
For more details, see the documentation:
|
|
||||||
* Training: https://alpha.spacy.io/usage/training
|
* Training: https://alpha.spacy.io/usage/training
|
||||||
* Text classification: https://alpha.spacy.io/usage/text-classification
|
* Text classification: https://alpha.spacy.io/usage/text-classification
|
||||||
|
|
||||||
|
|
|
@ -7,14 +7,13 @@ from __future__ import unicode_literals
|
||||||
import plac
|
import plac
|
||||||
import numpy
|
import numpy
|
||||||
|
|
||||||
import from spacy.language import Language
|
from spacy.language import Language
|
||||||
|
|
||||||
|
|
||||||
@plac.annotations(
|
@plac.annotations(
|
||||||
vectors_loc=("Path to vectors", "positional", None, str))
|
vectors_loc=("Path to vectors", "positional", None, str))
|
||||||
def main(vectors_loc):
|
def main(vectors_loc):
|
||||||
nlp = Language()
|
nlp = Language() # start off with a blank Language class
|
||||||
|
|
||||||
with open(vectors_loc, 'rb') as file_:
|
with open(vectors_loc, 'rb') as file_:
|
||||||
header = file_.readline()
|
header = file_.readline()
|
||||||
nr_row, nr_dim = header.split()
|
nr_row, nr_dim = header.split()
|
||||||
|
@ -24,9 +23,11 @@ def main(vectors_loc):
|
||||||
pieces = line.split()
|
pieces = line.split()
|
||||||
word = pieces[0]
|
word = pieces[0]
|
||||||
vector = numpy.asarray([float(v) for v in pieces[1:]], dtype='f')
|
vector = numpy.asarray([float(v) for v in pieces[1:]], dtype='f')
|
||||||
nlp.vocab.set_vector(word, vector)
|
nlp.vocab.set_vector(word, vector) # add the vectors to the vocab
|
||||||
doc = nlp(u'class colspan')
|
# test the vectors and similarity
|
||||||
print(doc[0].similarity(doc[1]))
|
text = 'class colspan'
|
||||||
|
doc = nlp(text)
|
||||||
|
print(text, doc[0].similarity(doc[1]))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -99,7 +99,8 @@ def generate_meta(model_path, existing_meta):
|
||||||
nlp = util.load_model_from_path(Path(model_path))
|
nlp = util.load_model_from_path(Path(model_path))
|
||||||
meta['pipeline'] = nlp.pipe_names
|
meta['pipeline'] = nlp.pipe_names
|
||||||
meta['vectors'] = {'width': nlp.vocab.vectors_length,
|
meta['vectors'] = {'width': nlp.vocab.vectors_length,
|
||||||
'entries': len(nlp.vocab.vectors)}
|
'vectors': len(nlp.vocab.vectors),
|
||||||
|
'keys': nlp.vocab.vectors.n_keys}
|
||||||
prints("Enter the package settings for your model. The following "
|
prints("Enter the package settings for your model. The following "
|
||||||
"information will be read from your model data: pipeline, vectors.",
|
"information will be read from your model data: pipeline, vectors.",
|
||||||
title="Generating meta.json")
|
title="Generating meta.json")
|
||||||
|
|
|
@ -146,7 +146,8 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
|
||||||
meta['speed'] = {'nwords': nwords, 'cpu': cpu_wps,
|
meta['speed'] = {'nwords': nwords, 'cpu': cpu_wps,
|
||||||
'gpu': gpu_wps}
|
'gpu': gpu_wps}
|
||||||
meta['vectors'] = {'width': nlp.vocab.vectors_length,
|
meta['vectors'] = {'width': nlp.vocab.vectors_length,
|
||||||
'entries': len(nlp.vocab.vectors)}
|
'vectors': len(nlp.vocab.vectors),
|
||||||
|
'keys': nlp.vocab.vectors.n_keys}
|
||||||
meta['lang'] = nlp.lang
|
meta['lang'] = nlp.lang
|
||||||
meta['pipeline'] = pipeline
|
meta['pipeline'] = pipeline
|
||||||
meta['spacy_version'] = '>=%s' % about.__version__
|
meta['spacy_version'] = '>=%s' % about.__version__
|
||||||
|
|
|
@ -155,7 +155,8 @@ class Language(object):
|
||||||
self._meta.setdefault('url', '')
|
self._meta.setdefault('url', '')
|
||||||
self._meta.setdefault('license', '')
|
self._meta.setdefault('license', '')
|
||||||
self._meta['vectors'] = {'width': self.vocab.vectors_length,
|
self._meta['vectors'] = {'width': self.vocab.vectors_length,
|
||||||
'entries': len(self.vocab.vectors)}
|
'vectors': len(self.vocab.vectors),
|
||||||
|
'keys': self.vocab.vectors.n_keys}
|
||||||
self._meta['pipeline'] = self.pipe_names
|
self._meta['pipeline'] = self.pipe_names
|
||||||
return self._meta
|
return self._meta
|
||||||
|
|
||||||
|
|
|
@ -184,17 +184,18 @@ cdef class Vectors:
|
||||||
yield key, self.data[row]
|
yield key, self.data[row]
|
||||||
|
|
||||||
def find(self, *, key=None, keys=None, row=None, rows=None):
|
def find(self, *, key=None, keys=None, row=None, rows=None):
|
||||||
'''Lookup one or more keys by row, or vice versa.
|
"""Look up one or more keys by row, or vice versa.
|
||||||
|
|
||||||
key (unicode / int): Find the row that the given key points to.
|
key (unicode / int): Find the row that the given key points to.
|
||||||
Returns int, -1 if missing.
|
Returns int, -1 if missing.
|
||||||
keys (sequence): Find rows that the keys point to.
|
keys (iterable): Find rows that the keys point to.
|
||||||
Returns ndarray.
|
Returns ndarray.
|
||||||
row (int): Find the first key that point to the row.
|
row (int): Find the first key that point to the row.
|
||||||
Returns int.
|
Returns int.
|
||||||
rows (sequence): Find the first keys that points to the rows.
|
rows (iterable): Find the keys that point to the rows.
|
||||||
Returns ndarray.
|
Returns ndarray.
|
||||||
'''
|
RETURNS: The requested key, keys, row or rows.
|
||||||
|
"""
|
||||||
if sum(arg is None for arg in (key, keys, row, rows)) != 3:
|
if sum(arg is None for arg in (key, keys, row, rows)) != 3:
|
||||||
raise ValueError("One (and only one) keyword arg must be set.")
|
raise ValueError("One (and only one) keyword arg must be set.")
|
||||||
xp = get_array_module(self.data)
|
xp = get_array_module(self.data)
|
||||||
|
|
|
@ -5,46 +5,47 @@ include ../_includes/_mixins
|
||||||
p
|
p
|
||||||
| Vectors data is kept in the #[code Vectors.data] attribute, which should
|
| Vectors data is kept in the #[code Vectors.data] attribute, which should
|
||||||
| be an instance of #[code numpy.ndarray] (for CPU vectors) or
|
| be an instance of #[code numpy.ndarray] (for CPU vectors) or
|
||||||
| #[code cupy.ndarray] (for GPU vectors).
|
| #[code cupy.ndarray] (for GPU vectors). Multiple keys can be mapped to
|
||||||
|
| the same vector, and not all of the rows in the table need to be
|
||||||
|
| assigned – so #[code vectors.n_keys] may be greater or smaller than
|
||||||
|
| #[code vectors.shape[0]].
|
||||||
|
|
||||||
+h(2, "init") Vectors.__init__
|
+h(2, "init") Vectors.__init__
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
p
|
p
|
||||||
| Create a new vector store. To keep the vector table empty, pass
|
| Create a new vector store. You can set the vector values and keys
|
||||||
| #[code width=0]. You can also create the vector table and add
|
| directly on initialisation, or supply a #[code shape] keyword argument
|
||||||
| vectors one by one, or set the vector values directly on initialisation.
|
| to create an empty table you can add vectors to later.
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
from spacy.vectors import Vectors
|
from spacy.vectors import Vectors
|
||||||
from spacy.strings import StringStore
|
|
||||||
|
|
||||||
empty_vectors = Vectors(StringStore())
|
empty_vectors = Vectors(shape=(10000, 300))
|
||||||
|
|
||||||
vectors = Vectors([u'cat'], width=300)
|
data = numpy.zeros((3, 300), dtype='f')
|
||||||
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
|
keys = [u'cat', u'dog', u'rat']
|
||||||
|
vectors = Vectors(data=data, keys=keys)
|
||||||
vector_table = numpy.zeros((3, 300), dtype='f')
|
|
||||||
vectors = Vectors(StringStore(), data=vector_table)
|
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row
|
|
||||||
+cell #[code strings]
|
|
||||||
+cell #[code StringStore] or list
|
|
||||||
+cell
|
|
||||||
| List of strings, or a #[+api("stringstore") #[code StringStore]]
|
|
||||||
| that maps strings to hash values, and vice versa.
|
|
||||||
|
|
||||||
+row
|
|
||||||
+cell #[code width]
|
|
||||||
+cell int
|
|
||||||
+cell Number of dimensions.
|
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[code data]
|
+cell #[code data]
|
||||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||||
+cell The vector data.
|
+cell The vector data.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell #[code keys]
|
||||||
|
+cell iterable
|
||||||
|
+cell A sequence of keys aligned with the data.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell #[code shape]
|
||||||
|
+cell tuple
|
||||||
|
+cell
|
||||||
|
| Size of the table as #[code (n_entries, n_columns)], the number
|
||||||
|
| of entries and number of columns. Not required if you're
|
||||||
|
| initialising the object with #[code data] and #[code keys].
|
||||||
|
|
||||||
+row("foot")
|
+row("foot")
|
||||||
+cell returns
|
+cell returns
|
||||||
+cell #[code Vectors]
|
+cell #[code Vectors]
|
||||||
|
@ -54,97 +55,92 @@ p
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
p
|
p
|
||||||
| Get a vector by key. If key is a string, it is hashed to an integer ID
|
| Get a vector by key. If the key is not found in the table, a
|
||||||
| using the #[code Vectors.strings] table. If the integer key is not found
|
| #[code KeyError] is raised.
|
||||||
| in the table, a #[code KeyError] is raised.
|
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
vectors = Vectors(StringStore(), 300)
|
cat_id = nlp.vocab.strings[u'cat']
|
||||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
cat_vector = nlp.vocab.vectors[cat_id]
|
||||||
cat_vector = vectors[u'cat']
|
assert cat_vector == nlp.vocab[u'cat'].vector
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row
|
+row
|
||||||
+cell #[code key]
|
+cell #[code key]
|
||||||
+cell unicode / int
|
+cell int
|
||||||
+cell The key to get the vector for.
|
+cell The key to get the vector for.
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell returns
|
+cell returns
|
||||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||||
+cell The vector for the key.
|
+cell The vector for the key.
|
||||||
|
|
||||||
+h(2, "setitem") Vectors.__setitem__
|
+h(2, "setitem") Vectors.__setitem__
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
p
|
p
|
||||||
| Set a vector for the given key. If key is a string, it is hashed to an
|
| Set a vector for the given key.
|
||||||
| integer ID using the #[code Vectors.strings] table.
|
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
vectors = Vectors(StringStore(), 300)
|
cat_id = nlp.vocab.strings[u'cat']
|
||||||
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
|
vector = numpy.random.uniform(-1, 1, (300,))
|
||||||
|
nlp.vocab.vectors[cat_id] = vector
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row
|
+row
|
||||||
+cell #[code key]
|
+cell #[code key]
|
||||||
+cell unicode / int
|
+cell int
|
||||||
+cell The key to set the vector for.
|
+cell The key to set the vector for.
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[code vector]
|
+cell #[code vector]
|
||||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||||
+cell The vector to set.
|
+cell The vector to set.
|
||||||
|
|
||||||
+h(2, "iter") Vectors.__iter__
|
+h(2, "iter") Vectors.__iter__
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
p Yield vectors from the table.
|
p Iterate over the keys in the table.
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
vector_table = numpy.zeros((3, 300), dtype='f')
|
for key in nlp.vocab.vectors:
|
||||||
vectors = Vectors(StringStore(), vector_table)
|
print(key, nlp.vocab.strings[key])
|
||||||
for vector in vectors:
|
|
||||||
print(vector)
|
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row("foot")
|
+row("foot")
|
||||||
+cell yields
|
+cell yields
|
||||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
+cell int
|
||||||
+cell A vector from the table.
|
+cell A key in the table.
|
||||||
|
|
||||||
+h(2, "len") Vectors.__len__
|
+h(2, "len") Vectors.__len__
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
p Return the number of vectors that have been assigned.
|
p Return the number of vectors in the table.
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
vector_table = numpy.zeros((3, 300), dtype='f')
|
vectors = Vectors(shape=(3, 300))
|
||||||
vectors = Vectors(StringStore(), vector_table)
|
|
||||||
assert len(vectors) == 3
|
assert len(vectors) == 3
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row("foot")
|
+row("foot")
|
||||||
+cell returns
|
+cell returns
|
||||||
+cell int
|
+cell int
|
||||||
+cell The number of vectors in the data.
|
+cell The number of vectors in the table.
|
||||||
|
|
||||||
+h(2, "contains") Vectors.__contains__
|
+h(2, "contains") Vectors.__contains__
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
p
|
p
|
||||||
| Check whether a key has a vector entry in the table. If key is a string,
|
| Check whether a key has been mapped to a vector entry in the table.
|
||||||
| it is hashed to an integer ID using the #[code Vectors.strings] table.
|
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
vectors = Vectors(StringStore(), 300)
|
cat_id = nlp.vocab.strings[u'cat']
|
||||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
nlp.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
|
||||||
assert u'cat' in vectors
|
assert cat_id in vectors
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row
|
+row
|
||||||
+cell #[code key]
|
+cell #[code key]
|
||||||
+cell unicode / int
|
+cell int
|
||||||
+cell The key to check.
|
+cell The key to check.
|
||||||
|
|
||||||
+row("foot")
|
+row("foot")
|
||||||
|
@ -156,13 +152,20 @@ p
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
p
|
p
|
||||||
| Add a key to the table, optionally setting a vector value as well. If
|
| Add a key to the table, optionally setting a vector value as well. Keys
|
||||||
| key is a string, it is hashed to an integer ID using the
|
| can be mapped to an existing vector by setting #[code row], or a new
|
||||||
| #[code Vectors.strings] table.
|
| vector can be added. When adding unicode keys, keep in mind that the
|
||||||
|
| #[code Vectors] class itself has no
|
||||||
|
| #[+api("stringstore") #[code StringStore]], so you have to store the
|
||||||
|
| hash-to-string mapping separately. If you need to manage the strings,
|
||||||
|
| you should use the #[code Vectors] via the
|
||||||
|
| #[+api("vocab") #[code Vocab]] class, e.g. #[code vocab.vectors].
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
vectors = Vectors(StringStore(), 300)
|
vector = numpy.random.uniform(-1, 1, (300,))
|
||||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
cat_id = nlp.vocab.strings[u'cat']
|
||||||
|
nlp.vocab.vectors.add(cat_id, vector=vector)
|
||||||
|
nlp.vocab.vectors.add(u'dog', row=0)
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row
|
+row
|
||||||
|
@ -172,25 +175,66 @@ p
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[code vector]
|
+cell #[code vector]
|
||||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||||
+cell An optional vector to add.
|
+cell An optional vector to add for the key.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell #[code row]
|
||||||
|
+cell int
|
||||||
|
+cell An optional row number of a vector to map the key to.
|
||||||
|
|
||||||
|
+row("foot")
|
||||||
|
+cell returns
|
||||||
|
+cell int
|
||||||
|
+cell The row the vector was added to.
|
||||||
|
|
||||||
|
+h(2, "keys") Vectors.keys
|
||||||
|
+tag method
|
||||||
|
|
||||||
|
p A sequence of the keys in the table.
|
||||||
|
|
||||||
|
+aside-code("Example").
|
||||||
|
for key in nlp.vocab.vectors.keys():
|
||||||
|
print(key, nlp.vocab.strings[key])
|
||||||
|
|
||||||
|
+table(["Name", "Type", "Description"])
|
||||||
|
+row("foot")
|
||||||
|
+cell returns
|
||||||
|
+cell iterable
|
||||||
|
+cell The keys.
|
||||||
|
|
||||||
|
+h(2, "values") Vectors.values
|
||||||
|
+tag method
|
||||||
|
|
||||||
|
p
|
||||||
|
| Iterate over vectors that have been assigned to at least one key. Note
|
||||||
|
| that some vectors may be unassigned, so the number of vectors returned
|
||||||
|
| may be less than the length of the vectors table.
|
||||||
|
|
||||||
|
+aside-code("Example").
|
||||||
|
for vector in nlp.vocab.vectors.values():
|
||||||
|
print(vector)
|
||||||
|
|
||||||
|
+table(["Name", "Type", "Description"])
|
||||||
|
+row("foot")
|
||||||
|
+cell yields
|
||||||
|
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||||
|
+cell A vector in the table.
|
||||||
|
|
||||||
+h(2, "items") Vectors.items
|
+h(2, "items") Vectors.items
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
p Iterate over #[code (string key, vector)] pairs, in order.
|
p Iterate over #[code (key, vector)] pairs, in order.
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
vectors = Vectors(StringStore(), 300)
|
for key, vector in nlp.vocab.vectors.items():
|
||||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
print(key, nlp.vocab.strings[key], vector)
|
||||||
for key, vector in vectors.items():
|
|
||||||
print(key, vector)
|
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row("foot")
|
+row("foot")
|
||||||
+cell yields
|
+cell yields
|
||||||
+cell tuple
|
+cell tuple
|
||||||
+cell #[code (string key, vector)] pairs, in order.
|
+cell #[code (key, vector)] pairs, in order.
|
||||||
|
|
||||||
+h(2, "shape") Vectors.shape
|
+h(2, "shape") Vectors.shape
|
||||||
+tag property
|
+tag property
|
||||||
|
@ -200,7 +244,7 @@ p
|
||||||
| dimensions in the vector table.
|
| dimensions in the vector table.
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
vectors = Vectors(StringStore(), 300)
|
vectors = Vectors(shape(1, 300))
|
||||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||||||
rows, dims = vectors.shape
|
rows, dims = vectors.shape
|
||||||
assert rows == 1
|
assert rows == 1
|
||||||
|
@ -212,6 +256,59 @@ p
|
||||||
+cell tuple
|
+cell tuple
|
||||||
+cell A #[code (rows, dims)] pair.
|
+cell A #[code (rows, dims)] pair.
|
||||||
|
|
||||||
|
+h(2, "size") Vectors.size
|
||||||
|
+tag property
|
||||||
|
|
||||||
|
p The vector size, i.e. #[code rows * dims].
|
||||||
|
|
||||||
|
+aside-code("Example").
|
||||||
|
vectors = Vectors(shape=(500, 300))
|
||||||
|
assert vectors.size == 150000
|
||||||
|
|
||||||
|
+table(["Name", "Type", "Description"])
|
||||||
|
+row("foot")
|
||||||
|
+cell returns
|
||||||
|
+cell int
|
||||||
|
+cell The vector size.
|
||||||
|
|
||||||
|
+h(2, "is_full") Vectors.is_full
|
||||||
|
+tag property
|
||||||
|
|
||||||
|
p
|
||||||
|
| Whether the vectors table is full and has no slots are available for new
|
||||||
|
| keys. If a table is full, it can be resized using
|
||||||
|
| #[+api("vectors#resize") #[code Vectors.resize]].
|
||||||
|
|
||||||
|
+aside-code("Example").
|
||||||
|
vectors = Vectors(shape=(1, 300))
|
||||||
|
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||||||
|
assert vectors.is_full
|
||||||
|
|
||||||
|
+table(["Name", "Type", "Description"])
|
||||||
|
+row("foot")
|
||||||
|
+cell returns
|
||||||
|
+cell bool
|
||||||
|
+cell Whether the vectors table is full.
|
||||||
|
|
||||||
|
+h(2, "n_keys") Vectors.n_keys
|
||||||
|
+tag property
|
||||||
|
|
||||||
|
p
|
||||||
|
| Get the number of keys in the table. Note that this is the number of
|
||||||
|
| #[em all] keys, not just unique vectors. If several keys are mapped
|
||||||
|
| are mapped to the same vectors, they will be counted individually.
|
||||||
|
|
||||||
|
+aside-code("Example").
|
||||||
|
vectors = Vectors(shape=(10, 300))
|
||||||
|
assert len(vectors) == 10
|
||||||
|
assert vectors.n_keys == 0
|
||||||
|
|
||||||
|
+table(["Name", "Type", "Description"])
|
||||||
|
+row("foot")
|
||||||
|
+cell returns
|
||||||
|
+cell int
|
||||||
|
+cell The number of all keys in the table.
|
||||||
|
|
||||||
+h(2, "from_glove") Vectors.from_glove
|
+h(2, "from_glove") Vectors.from_glove
|
||||||
+tag method
|
+tag method
|
||||||
|
|
||||||
|
@ -223,6 +320,10 @@ p
|
||||||
| float32 vectors, #[code vectors.300.d.bin] for 300d float64 (double)
|
| float32 vectors, #[code vectors.300.d.bin] for 300d float64 (double)
|
||||||
| vectors, etc. By default GloVe outputs 64-bit vectors.
|
| vectors, etc. By default GloVe outputs 64-bit vectors.
|
||||||
|
|
||||||
|
+aside-code("Example").
|
||||||
|
vectors = Vectors()
|
||||||
|
vectors.from_glove('/path/to/glove_vectors')
|
||||||
|
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row
|
+row
|
||||||
+cell #[code path]
|
+cell #[code path]
|
||||||
|
@ -323,7 +424,7 @@ p Load state from a binary string.
|
||||||
+table(["Name", "Type", "Description"])
|
+table(["Name", "Type", "Description"])
|
||||||
+row
|
+row
|
||||||
+cell #[code data]
|
+cell #[code data]
|
||||||
+cell #[code numpy.ndarray] / #[code cupy.ndarray]
|
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||||
+cell
|
+cell
|
||||||
| Stored vectors data. #[code numpy] is used for CPU vectors,
|
| Stored vectors data. #[code numpy] is used for CPU vectors,
|
||||||
| #[code cupy] for GPU vectors.
|
| #[code cupy] for GPU vectors.
|
||||||
|
@ -337,7 +438,7 @@ p Load state from a binary string.
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[code keys]
|
+cell #[code keys]
|
||||||
+cell #[code numpy.ndarray]
|
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||||
+cell
|
+cell
|
||||||
| Array keeping the keys in order, such that
|
| Array keeping the keys in order, such that
|
||||||
| #[code keys[vectors.key2row[key]] == key]
|
| #[code keys[vectors.key2row[key]] == key]
|
||||||
|
|
|
@ -47,7 +47,7 @@
|
||||||
font: 600 1.1rem/#{1} $font-secondary
|
font: 600 1.1rem/#{1} $font-secondary
|
||||||
background: $color-theme
|
background: $color-theme
|
||||||
color: $color-back
|
color: $color-back
|
||||||
padding: 0.15em 0.5em 0.35em
|
padding: 2px 6px 4px
|
||||||
border-radius: 1em
|
border-radius: 1em
|
||||||
text-transform: uppercase
|
text-transform: uppercase
|
||||||
vertical-align: middle
|
vertical-align: middle
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
'use strict';
|
'use strict';
|
||||||
|
|
||||||
import { Templater, handleResponse, convertNumber } from './util.js';
|
import { Templater, handleResponse, convertNumber, abbrNumber } from './util.js';
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Chart.js defaults
|
* Chart.js defaults
|
||||||
|
@ -25,7 +25,7 @@ export const formats = {
|
||||||
license: (license, url) => url ? `<a href="${url}" target="_blank">${license}</a>` : license,
|
license: (license, url) => url ? `<a href="${url}" target="_blank">${license}</a>` : license,
|
||||||
sources: sources => (sources instanceof Array) ? sources.join(', ') : sources,
|
sources: sources => (sources instanceof Array) ? sources.join(', ') : sources,
|
||||||
pipeline: pipes => (pipes && pipes.length) ? pipes.map(p => `<code>${p}</code>`).join(', ') : '-',
|
pipeline: pipes => (pipes && pipes.length) ? pipes.map(p => `<code>${p}</code>`).join(', ') : '-',
|
||||||
vectors: vec => vec ? `${convertNumber(vec.entries)} (${vec.width} dimensions)` : 'n/a',
|
vectors: vec => vec ? `${abbrNumber(vec.keys)} keys, ${abbrNumber(vec.vectors)} unique vectors (${vec.width} dimensions)` : 'n/a',
|
||||||
version: version => `<code>v${version}</code>`
|
version: version => `<code>v${version}</code>`
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -240,7 +240,8 @@ export class ModelComparer {
|
||||||
return data;
|
return data;
|
||||||
}
|
}
|
||||||
|
|
||||||
showError() {
|
showError(err) {
|
||||||
|
console.error(err);
|
||||||
this.tpl.get('result').style.display = 'none';
|
this.tpl.get('result').style.display = 'none';
|
||||||
this.tpl.get('error').style.display = 'block';
|
this.tpl.get('error').style.display = 'block';
|
||||||
}
|
}
|
||||||
|
|
|
@ -46,11 +46,24 @@ export const handleResponse = res => {
|
||||||
else return ({ ok: res.ok })
|
else return ({ ok: res.ok })
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Convert a number to a string and add thousand separator.
|
* Convert a number to a string and add thousand separator.
|
||||||
* @param {number|string} num - The number to convert.
|
* @param {number|string} num - The number to convert.
|
||||||
* @param {string} separator – Thousand separator.
|
* @param {string} separator – Thousand separator.
|
||||||
*/
|
*/
|
||||||
export const convertNumber = (num, separator = ',') =>
|
export const convertNumber = (num = 0, separator = ',') =>
|
||||||
num.toString().replace(/\B(?=(\d{3})+(?!\d))/g, separator);
|
num.toString().replace(/\B(?=(\d{3})+(?!\d))/g, separator);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Abbreviate a number, e.g. 14249930 --> 14.25m.
|
||||||
|
* @param {number|string} num - The number to convert.
|
||||||
|
* @param {number} fixed - Number of decimals.
|
||||||
|
*/
|
||||||
|
export const abbrNumber = (num = 0, fixed = 2) => {
|
||||||
|
const suffixes = ['', 'k', 'm', 'b', 't'];
|
||||||
|
if (num === null || num === 0) return 0;
|
||||||
|
const b = num.toPrecision(2).split('e');
|
||||||
|
const k = (b.length === 1) ? 0 : Math.floor(Math.min(b[1].slice(1), 14) / 3);
|
||||||
|
const c = (k < 1) ? num.toFixed(fixed) : (num / Math.pow(10, k * 3)).toFixed(fixed + 1);
|
||||||
|
return (c < 0 ? c : Math.abs(c)) + suffixes[k];
|
||||||
|
}
|
||||||
|
|
|
@ -100,6 +100,7 @@
|
||||||
"hu": "Hungarian",
|
"hu": "Hungarian",
|
||||||
"pl": "Polish",
|
"pl": "Polish",
|
||||||
"he": "Hebrew",
|
"he": "Hebrew",
|
||||||
|
"ga": "Irish",
|
||||||
"bn": "Bengali",
|
"bn": "Bengali",
|
||||||
"hi": "Hindi",
|
"hi": "Hindi",
|
||||||
"id": "Indonesian",
|
"id": "Indonesian",
|
||||||
|
@ -114,6 +115,8 @@
|
||||||
"de": "Dies ist ein Satz.",
|
"de": "Dies ist ein Satz.",
|
||||||
"fr": "C'est une phrase.",
|
"fr": "C'est une phrase.",
|
||||||
"es": "Esto es una frase.",
|
"es": "Esto es una frase.",
|
||||||
|
"pt": "Esta é uma frase.",
|
||||||
|
"it": "Questa è una frase.",
|
||||||
"xx": "This is a sentence about Facebook."
|
"xx": "This is a sentence about Facebook."
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -116,7 +116,6 @@
|
||||||
"next": "text-classification",
|
"next": "text-classification",
|
||||||
"menu": {
|
"menu": {
|
||||||
"Basics": "basics",
|
"Basics": "basics",
|
||||||
"Similarity in Context": "in-context",
|
|
||||||
"Custom Vectors": "custom",
|
"Custom Vectors": "custom",
|
||||||
"GPU Usage": "gpu"
|
"GPU Usage": "gpu"
|
||||||
}
|
}
|
||||||
|
|
|
@ -19,6 +19,7 @@
|
||||||
|
|
||||||
+qs({package: 'source'}) git clone https://github.com/explosion/spaCy
|
+qs({package: 'source'}) git clone https://github.com/explosion/spaCy
|
||||||
+qs({package: 'source'}) cd spaCy
|
+qs({package: 'source'}) cd spaCy
|
||||||
|
+qs({package: 'source'}) export PYTHONPATH=`pwd`
|
||||||
+qs({package: 'source'}) pip install -r requirements.txt
|
+qs({package: 'source'}) pip install -r requirements.txt
|
||||||
+qs({package: 'source'}) pip install -e .
|
+qs({package: 'source'}) pip install -e .
|
||||||
|
|
||||||
|
|
|
@ -46,7 +46,6 @@ p
|
||||||
+item #[strong Chinese]: #[+a("https://github.com/fxsjy/jieba") Jieba]
|
+item #[strong Chinese]: #[+a("https://github.com/fxsjy/jieba") Jieba]
|
||||||
+item #[strong Japanese]: #[+a("https://github.com/mocobeta/janome") Janome]
|
+item #[strong Japanese]: #[+a("https://github.com/mocobeta/janome") Janome]
|
||||||
+item #[strong Thai]: #[+a("https://github.com/wannaphongcom/pythainlp") pythainlp]
|
+item #[strong Thai]: #[+a("https://github.com/wannaphongcom/pythainlp") pythainlp]
|
||||||
+item #[strong Russian]: #[+a("https://github.com/kmike/pymorphy2") pymorphy2]
|
|
||||||
|
|
||||||
+h(3, "multi-language") Multi-language support
|
+h(3, "multi-language") Multi-language support
|
||||||
+tag-new(2)
|
+tag-new(2)
|
||||||
|
|
|
@ -13,3 +13,127 @@
|
||||||
|
|
||||||
include ../_spacy-101/_similarity
|
include ../_spacy-101/_similarity
|
||||||
include ../_spacy-101/_word-vectors
|
include ../_spacy-101/_word-vectors
|
||||||
|
|
||||||
|
+h(3, "in-context") Similarities in context
|
||||||
|
|
||||||
|
p
|
||||||
|
| Aside from spaCy's built-in word vectors, which were trained on a lot of
|
||||||
|
| text with a wide vocabulary, the parsing, tagging and NER models also
|
||||||
|
| rely on vector representations of the #[strong meanings of words in context].
|
||||||
|
| As the first component of the
|
||||||
|
| #[+a("/usage/processing-pipelines") processing pipeline], the
|
||||||
|
| tensorizer encodes a document's internal meaning representations as an
|
||||||
|
| array of floats, also called a tensor. This allows spaCy to make a
|
||||||
|
| reasonable guess at a word's meaning, based on its surrounding words.
|
||||||
|
| Even if a word hasn't been seen before, spaCy will know #[em something]
|
||||||
|
| about it. Because spaCy uses a 4-layer convolutional network, the
|
||||||
|
| tensors are sensitive to up to #[strong four words on either side] of a
|
||||||
|
| word.
|
||||||
|
|
||||||
|
p
|
||||||
|
| For example, here are three sentences containing the out-of-vocabulary
|
||||||
|
| word "labrador" in different contexts.
|
||||||
|
|
||||||
|
+code.
|
||||||
|
doc1 = nlp(u"The labrador barked.")
|
||||||
|
doc2 = nlp(u"The labrador swam.")
|
||||||
|
doc3 = nlp(u"the labrador people live in canada.")
|
||||||
|
|
||||||
|
for doc in [doc1, doc2, doc3]:
|
||||||
|
labrador = doc[1]
|
||||||
|
dog = nlp(u"dog")
|
||||||
|
print(labrador.similarity(dog))
|
||||||
|
|
||||||
|
p
|
||||||
|
| Even though the model has never seen the word "labrador", it can make a
|
||||||
|
| fairly accurate prediction of its similarity to "dog" in different
|
||||||
|
| contexts.
|
||||||
|
|
||||||
|
+table(["Context", "labrador.similarity(dog)"])
|
||||||
|
+row
|
||||||
|
+cell The #[strong labrador] barked.
|
||||||
|
+cell #[code 0.56] #[+procon("yes", "similar")]
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell The #[strong labrador] swam.
|
||||||
|
+cell #[code 0.48] #[+procon("no", "dissimilar")]
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell the #[strong labrador] people live in canada.
|
||||||
|
+cell #[code 0.39] #[+procon("no", "dissimilar")]
|
||||||
|
|
||||||
|
p
|
||||||
|
| The same also works for whole documents. Here, the variance of the
|
||||||
|
| similarities is lower, as all words and their order are taken into
|
||||||
|
| account. However, the context-specific similarity is often still
|
||||||
|
| reflected pretty accurately.
|
||||||
|
|
||||||
|
+code.
|
||||||
|
doc1 = nlp(u"Paris is the largest city in France.")
|
||||||
|
doc2 = nlp(u"Vilnius is the capital of Lithuania.")
|
||||||
|
doc3 = nlp(u"An emu is a large bird.")
|
||||||
|
|
||||||
|
for doc in [doc1, doc2, doc3]:
|
||||||
|
for other_doc in [doc1, doc2, doc3]:
|
||||||
|
print(doc.similarity(other_doc))
|
||||||
|
|
||||||
|
p
|
||||||
|
| Even though the sentences about Paris and Vilnius consist of different
|
||||||
|
| words and entities, they both describe the same concept and are seen as
|
||||||
|
| more similar than the sentence about emus. In this case, even a misspelled
|
||||||
|
| version of "Vilnius" would still produce very similar results.
|
||||||
|
|
||||||
|
+table
|
||||||
|
- var examples = {"Paris is the largest city in France.": [1, 0.85, 0.65], "Vilnius is the capital of Lithuania.": [0.85, 1, 0.55], "An emu is a large bird.": [0.65, 0.55, 1]}
|
||||||
|
- var counter = 0
|
||||||
|
|
||||||
|
+row
|
||||||
|
+row
|
||||||
|
+cell
|
||||||
|
for _, label in examples
|
||||||
|
+cell=label
|
||||||
|
|
||||||
|
each cells, label in examples
|
||||||
|
+row(counter ? null : "divider")
|
||||||
|
+cell=label
|
||||||
|
for cell in cells
|
||||||
|
+cell.u-text-center
|
||||||
|
- var result = cell < 0.7 ? ["no", "dissimilar"] : cell != 1 ? ["yes", "similar"] : ["neutral", "identical"]
|
||||||
|
| #[code=cell.toFixed(2)] #[+procon(...result)]
|
||||||
|
- counter++
|
||||||
|
|
||||||
|
p
|
||||||
|
| Sentences that consist of the same words in different order will likely
|
||||||
|
| be seen as very similar – but never identical.
|
||||||
|
|
||||||
|
+code.
|
||||||
|
docs = [nlp(u"dog bites man"), nlp(u"man bites dog"),
|
||||||
|
nlp(u"man dog bites"), nlp(u"dog man bites")]
|
||||||
|
|
||||||
|
for doc in docs:
|
||||||
|
for other_doc in docs:
|
||||||
|
print(doc.similarity(other_doc))
|
||||||
|
|
||||||
|
p
|
||||||
|
| Interestingly, "man bites dog" and "man dog bites" are seen as slightly
|
||||||
|
| more similar than "man bites dog" and "dog bites man". This may be a
|
||||||
|
| conincidence – or the result of "man" being interpreted as both sentence's
|
||||||
|
| subject.
|
||||||
|
|
||||||
|
+table
|
||||||
|
- var examples = {"dog bites man": [1, 0.9, 0.89, 0.92], "man bites dog": [0.9, 1, 0.93, 0.9], "man dog bites": [0.89, 0.93, 1, 0.92], "dog man bites": [0.92, 0.9, 0.92, 1]}
|
||||||
|
- var counter = 0
|
||||||
|
|
||||||
|
+row("head")
|
||||||
|
+cell
|
||||||
|
for _, label in examples
|
||||||
|
+cell.u-text-center=label
|
||||||
|
|
||||||
|
each cells, label in examples
|
||||||
|
+row(counter ? null : "divider")
|
||||||
|
+cell=label
|
||||||
|
for cell in cells
|
||||||
|
+cell.u-text-center
|
||||||
|
- var result = cell < 0.7 ? ["no", "dissimilar"] : cell != 1 ? ["yes", "similar"] : ["neutral", "identical"]
|
||||||
|
| #[code=cell.toFixed(2)] #[+procon(...result)]
|
||||||
|
- counter++
|
||||||
|
|
|
@ -1,49 +1,137 @@
|
||||||
//- 💫 DOCS > USAGE > VECTORS & SIMILARITY > CUSTOM VECTORS
|
//- 💫 DOCS > USAGE > VECTORS & SIMILARITY > CUSTOM VECTORS
|
||||||
|
|
||||||
p
|
p
|
||||||
| By default, #[+api("token#vector") #[code Token.vector]] returns the
|
| Word vectors let you import knowledge from raw text into your model. The
|
||||||
| vector for its underlying #[+api("lexeme") #[code Lexeme]], while
|
| knowledge is represented as a table of numbers, with one row per term in
|
||||||
| #[+api("doc#vector") #[code Doc.vector]] and
|
| your vocabulary. If two terms are used in similar contexts, the algorithm
|
||||||
| #[+api("span#vector") #[code Span.vector]] return an average of the
|
| that learns the vectors should assign them
|
||||||
| vectors of their tokens. You can customize these
|
| #[strong rows that are quite similar], while words that are used in
|
||||||
| behaviours by modifying the #[code doc.user_hooks],
|
| different contexts will have quite different values. This lets you use
|
||||||
| #[code doc.user_span_hooks] and #[code doc.user_token_hooks]
|
| the row-values assigned to the words as a kind of dictionary, to tell you
|
||||||
| dictionaries.
|
| some things about what the words in your text mean.
|
||||||
|
|
||||||
+infobox
|
p
|
||||||
| For more details on #[strong adding hooks] and #[strong overwriting] the
|
| Word vectors are particularly useful for terms which
|
||||||
| built-in #[code Doc], #[code Span] and #[code Token] methods, see the
|
| #[strong aren't well represented in your labelled training data].
|
||||||
| usage guide on #[+a("/usage/processing-pipelines#user-hooks") user hooks].
|
| For instance, if you're doing named entity recognition, there will always
|
||||||
|
| be lots of names that you don't have examples of. For instance, imagine
|
||||||
|
| your training data happens to contain some examples of the term
|
||||||
|
| "Microsoft", but it doesn't contain any examples of the term "Symantec".
|
||||||
|
| In your raw text sample, there are plenty of examples of both terms, and
|
||||||
|
| they're used in similar contexts. The word vectors make that fact
|
||||||
|
| available to the entity recognition model. It still won't see examples of
|
||||||
|
| "Symantec" labelled as a company. However, it'll see that "Symantec" has
|
||||||
|
| a word vector that usually corresponds to company terms, so it can
|
||||||
|
| #[strong make the inference].
|
||||||
|
|
||||||
|
p
|
||||||
|
| In order to make best use of the word vectors, you want the word vectors
|
||||||
|
| table to cover a #[strong very large vocabulary]. However, most words are
|
||||||
|
| rare, so most of the rows in a large word vectors table will be accessed
|
||||||
|
| very rarely, or never at all. You can usually cover more than
|
||||||
|
| #[strong 95% of the tokens] in your corpus with just
|
||||||
|
| #[strong a few thousand rows] in the vector table. However, it's those
|
||||||
|
| #[strong 5% of rare terms] where the word vectors are
|
||||||
|
| #[strong most useful]. The problem is that increasing the size of the
|
||||||
|
| vector table produces rapidly diminishing returns in coverage over these
|
||||||
|
| rare terms.
|
||||||
|
|
||||||
|
+h(3, "custom-vectors-coverage") Optimising vector coverage
|
||||||
|
+tag-new(2)
|
||||||
|
|
||||||
|
p
|
||||||
|
| To help you strike a good balance between coverage and memory usage,
|
||||||
|
| spaCy's #[+api("vectors") #[code Vectors]] class lets you map
|
||||||
|
| #[strong multiple keys] to the #[strong same row] of the table. If
|
||||||
|
| you're using the #[+api("cli#vocab") #[code spacy vocab]] command to
|
||||||
|
| create a vocabulary, pruning the vectors will be taken care of
|
||||||
|
| automatically. You can also do it manually in the following steps:
|
||||||
|
|
||||||
|
+list("numbers")
|
||||||
|
+item
|
||||||
|
| Start with a #[strong word vectors model] that covers a huge
|
||||||
|
| vocabulary. For instance, the
|
||||||
|
| #[+a("/models/en#en_vectors_web_lg") #[code en_vectors_web_lg]] model
|
||||||
|
| provides 300-dimensional GloVe vectors for over 1 million terms of
|
||||||
|
| English.
|
||||||
|
|
||||||
|
+item
|
||||||
|
| If your vocabulary has values set for the #[code Lexeme.prob]
|
||||||
|
| attribute, the lexemes will be sorted by descending probability to
|
||||||
|
| determine which vectors to prune. Otherwise, lexemes will be sorted
|
||||||
|
| by their order in the #[code Vocab].
|
||||||
|
|
||||||
|
+item
|
||||||
|
| Call #[+api("vocab#prune_vectors") #[code Vocab.prune_vectors]] with
|
||||||
|
| the number of vectors you want to keep.
|
||||||
|
|
||||||
|
+code.
|
||||||
|
nlp = spacy.load('en_vectors_web_lg')
|
||||||
|
n_vectors = 105000 # number of vectors to keep
|
||||||
|
removed_words = nlp.vocab.prune_vectors(n_vectors)
|
||||||
|
|
||||||
|
assert len(nlp.vocab.vectors) <= n_vectors # unique vectors have been pruned
|
||||||
|
assert nlp.vocab.vectors.n_keys > n_vectors # but not the total entries
|
||||||
|
|
||||||
|
p
|
||||||
|
| #[+api("vocab#prune_vectors") #[code Vocab.prune_vectors]] reduces the
|
||||||
|
| current vector table to a given number of unique entries, and returns a
|
||||||
|
| dictionary containing the removed words, mapped to #[code (string, score)]
|
||||||
|
| tuples, where #[code string] is the entry the removed word was mapped
|
||||||
|
| to, and #[code score] the similarity score between the two words.
|
||||||
|
|
||||||
|
+code("Removed words").
|
||||||
|
{
|
||||||
|
'Shore': ('coast', 0.732257),
|
||||||
|
'Precautionary': ('caution', 0.490973),
|
||||||
|
'hopelessness': ('sadness', 0.742366),
|
||||||
|
'Continous': ('continuous', 0.732549),
|
||||||
|
'Disemboweled': ('corpse', 0.499432),
|
||||||
|
'biostatistician': ('scientist', 0.339724),
|
||||||
|
'somewheres': ('somewheres', 0.402736),
|
||||||
|
'observing': ('observe', 0.823096),
|
||||||
|
'Leaving': ('leaving', 1.0)
|
||||||
|
}
|
||||||
|
|
||||||
|
p
|
||||||
|
| In the example above, the vector for "Shore" was removed and remapped
|
||||||
|
| to the vector of "coast", which is deemed about 73% similar. "Leaving"
|
||||||
|
| was remapped to the vector of "leaving", which is identical.
|
||||||
|
|
||||||
+h(3, "custom-vectors-add") Adding vectors
|
+h(3, "custom-vectors-add") Adding vectors
|
||||||
+tag-new(2)
|
+tag-new(2)
|
||||||
|
|
||||||
p
|
p
|
||||||
| The new #[+api("vectors") #[code Vectors]] class makes it easy to add
|
| spaCy's new #[+api("vectors") #[code Vectors]] class greatly improves the
|
||||||
| your own vectors to spaCy. Just like the #[+api("vocab") #[code Vocab]],
|
| way word vectors are stored, accessed and used. The data is stored in
|
||||||
| it is initialised with a #[+api("stringstore") #[code StringStore]] or
|
| two structures:
|
||||||
| a list of strings.
|
|
||||||
|
|
||||||
+code("Adding vectors one-by-one").
|
+list
|
||||||
from spacy.strings import StringStore
|
+item
|
||||||
from spacy.vectors import Vectors
|
| An array, which can be either on CPU or #[+a("#gpu") GPU].
|
||||||
|
|
||||||
vector_data = {'dog': numpy.random.uniform(-1, 1, (300,)),
|
+item
|
||||||
'cat': numpy.random.uniform(-1, 1, (300,)),
|
| A dictionary mapping string-hashes to rows in the table.
|
||||||
'orange': numpy.random.uniform(-1, 1, (300,))}
|
|
||||||
|
|
||||||
vectors = Vectors(StringStore(), 300)
|
|
||||||
for word, vector in vector_data.items():
|
|
||||||
vectors.add(word, vector)
|
|
||||||
|
|
||||||
p
|
p
|
||||||
| You can also add the vector values directly on initialisation:
|
| Keep in mind that the #[code Vectors] class itself has no
|
||||||
|
| #[+api("stringstore") #[code StringStore]], so you have to store the
|
||||||
|
| hash-to-string mapping separately. If you need to manage the strings,
|
||||||
|
| you should use the #[code Vectors] via the
|
||||||
|
| #[+api("vocab") #[code Vocab]] class, e.g. #[code vocab.vectors]. To
|
||||||
|
| add vectors to the vocabulary, you can use the
|
||||||
|
| #[+api("vocab#set_vector") #[code Vocab.set_vector]] method.
|
||||||
|
|
||||||
+code("Adding vectors on initialisation").
|
+code("Adding vectors").
|
||||||
from spacy.vectors import Vectors
|
from spacy.vocab import Vocab
|
||||||
|
|
||||||
vector_table = numpy.zeros((3, 300), dtype='f')
|
vector_data = {u'dog': numpy.random.uniform(-1, 1, (300,)),
|
||||||
vectors = Vectors([u'dog', u'cat', u'orange'], vector_table)
|
u'cat': numpy.random.uniform(-1, 1, (300,)),
|
||||||
|
u'orange': numpy.random.uniform(-1, 1, (300,))}
|
||||||
|
|
||||||
|
vocab = Vocab()
|
||||||
|
for word, vector in vector_data.items():
|
||||||
|
vocab.set_vector(word, vector)
|
||||||
|
|
||||||
+h(3, "custom-loading-glove") Loading GloVe vectors
|
+h(3, "custom-loading-glove") Loading GloVe vectors
|
||||||
+tag-new(2)
|
+tag-new(2)
|
||||||
|
@ -89,3 +177,20 @@ p
|
||||||
| #[+api("vocab#set_vector") #[code set_vector]] method.
|
| #[+api("vocab#set_vector") #[code set_vector]] method.
|
||||||
|
|
||||||
+github("spacy", "examples/vectors_fast_text.py")
|
+github("spacy", "examples/vectors_fast_text.py")
|
||||||
|
|
||||||
|
+h(3, "custom-similarity") Using custom similarity methods
|
||||||
|
|
||||||
|
p
|
||||||
|
| By default, #[+api("token#vector") #[code Token.vector]] returns the
|
||||||
|
| vector for its underlying #[+api("lexeme") #[code Lexeme]], while
|
||||||
|
| #[+api("doc#vector") #[code Doc.vector]] and
|
||||||
|
| #[+api("span#vector") #[code Span.vector]] return an average of the
|
||||||
|
| vectors of their tokens. You can customise these
|
||||||
|
| behaviours by modifying the #[code doc.user_hooks],
|
||||||
|
| #[code doc.user_span_hooks] and #[code doc.user_token_hooks]
|
||||||
|
| dictionaries.
|
||||||
|
|
||||||
|
+infobox
|
||||||
|
| For more details on #[strong adding hooks] and #[strong overwriting] the
|
||||||
|
| built-in #[code Doc], #[code Span] and #[code Token] methods, see the
|
||||||
|
| usage guide on #[+a("/usage/processing-pipelines#user-hooks") user hooks].
|
||||||
|
|
|
@ -1,123 +0,0 @@
|
||||||
//- 💫 DOCS > USAGE > VECTORS & SIMILARITY > IN CONTEXT
|
|
||||||
|
|
||||||
p
|
|
||||||
| Aside from spaCy's built-in word vectors, which were trained on a lot of
|
|
||||||
| text with a wide vocabulary, the parsing, tagging and NER models also
|
|
||||||
| rely on vector representations of the #[strong meanings of words in context].
|
|
||||||
| As the first component of the
|
|
||||||
| #[+a("/usage/processing-pipelines") processing pipeline], the
|
|
||||||
| tensorizer encodes a document's internal meaning representations as an
|
|
||||||
| array of floats, also called a tensor. This allows spaCy to make a
|
|
||||||
| reasonable guess at a word's meaning, based on its surrounding words.
|
|
||||||
| Even if a word hasn't been seen before, spaCy will know #[em something]
|
|
||||||
| about it. Because spaCy uses a 4-layer convolutional network, the
|
|
||||||
| tensors are sensitive to up to #[strong four words on either side] of a
|
|
||||||
| word.
|
|
||||||
|
|
||||||
p
|
|
||||||
| For example, here are three sentences containing the out-of-vocabulary
|
|
||||||
| word "labrador" in different contexts.
|
|
||||||
|
|
||||||
+code.
|
|
||||||
doc1 = nlp(u"The labrador barked.")
|
|
||||||
doc2 = nlp(u"The labrador swam.")
|
|
||||||
doc3 = nlp(u"the labrador people live in canada.")
|
|
||||||
|
|
||||||
for doc in [doc1, doc2, doc3]:
|
|
||||||
labrador = doc[1]
|
|
||||||
dog = nlp(u"dog")
|
|
||||||
print(labrador.similarity(dog))
|
|
||||||
|
|
||||||
p
|
|
||||||
| Even though the model has never seen the word "labrador", it can make a
|
|
||||||
| fairly accurate prediction of its similarity to "dog" in different
|
|
||||||
| contexts.
|
|
||||||
|
|
||||||
+table(["Context", "labrador.similarity(dog)"])
|
|
||||||
+row
|
|
||||||
+cell The #[strong labrador] barked.
|
|
||||||
+cell #[code 0.56] #[+procon("yes", "similar")]
|
|
||||||
|
|
||||||
+row
|
|
||||||
+cell The #[strong labrador] swam.
|
|
||||||
+cell #[code 0.48] #[+procon("no", "dissimilar")]
|
|
||||||
|
|
||||||
+row
|
|
||||||
+cell the #[strong labrador] people live in canada.
|
|
||||||
+cell #[code 0.39] #[+procon("no", "dissimilar")]
|
|
||||||
|
|
||||||
p
|
|
||||||
| The same also works for whole documents. Here, the variance of the
|
|
||||||
| similarities is lower, as all words and their order are taken into
|
|
||||||
| account. However, the context-specific similarity is often still
|
|
||||||
| reflected pretty accurately.
|
|
||||||
|
|
||||||
+code.
|
|
||||||
doc1 = nlp(u"Paris is the largest city in France.")
|
|
||||||
doc2 = nlp(u"Vilnius is the capital of Lithuania.")
|
|
||||||
doc3 = nlp(u"An emu is a large bird.")
|
|
||||||
|
|
||||||
for doc in [doc1, doc2, doc3]:
|
|
||||||
for other_doc in [doc1, doc2, doc3]:
|
|
||||||
print(doc.similarity(other_doc))
|
|
||||||
|
|
||||||
p
|
|
||||||
| Even though the sentences about Paris and Vilnius consist of different
|
|
||||||
| words and entities, they both describe the same concept and are seen as
|
|
||||||
| more similar than the sentence about emus. In this case, even a misspelled
|
|
||||||
| version of "Vilnius" would still produce very similar results.
|
|
||||||
|
|
||||||
+table
|
|
||||||
- var examples = {"Paris is the largest city in France.": [1, 0.85, 0.65], "Vilnius is the capital of Lithuania.": [0.85, 1, 0.55], "An emu is a large bird.": [0.65, 0.55, 1]}
|
|
||||||
- var counter = 0
|
|
||||||
|
|
||||||
+row
|
|
||||||
+row
|
|
||||||
+cell
|
|
||||||
for _, label in examples
|
|
||||||
+cell=label
|
|
||||||
|
|
||||||
each cells, label in examples
|
|
||||||
+row(counter ? null : "divider")
|
|
||||||
+cell=label
|
|
||||||
for cell in cells
|
|
||||||
+cell.u-text-center
|
|
||||||
- var result = cell < 0.7 ? ["no", "dissimilar"] : cell != 1 ? ["yes", "similar"] : ["neutral", "identical"]
|
|
||||||
| #[code=cell.toFixed(2)] #[+procon(...result)]
|
|
||||||
- counter++
|
|
||||||
|
|
||||||
p
|
|
||||||
| Sentences that consist of the same words in different order will likely
|
|
||||||
| be seen as very similar – but never identical.
|
|
||||||
|
|
||||||
+code.
|
|
||||||
docs = [nlp(u"dog bites man"), nlp(u"man bites dog"),
|
|
||||||
nlp(u"man dog bites"), nlp(u"dog man bites")]
|
|
||||||
|
|
||||||
for doc in docs:
|
|
||||||
for other_doc in docs:
|
|
||||||
print(doc.similarity(other_doc))
|
|
||||||
|
|
||||||
p
|
|
||||||
| Interestingly, "man bites dog" and "man dog bites" are seen as slightly
|
|
||||||
| more similar than "man bites dog" and "dog bites man". This may be a
|
|
||||||
| conincidence – or the result of "man" being interpreted as both sentence's
|
|
||||||
| subject.
|
|
||||||
|
|
||||||
+table
|
|
||||||
- var examples = {"dog bites man": [1, 0.9, 0.89, 0.92], "man bites dog": [0.9, 1, 0.93, 0.9], "man dog bites": [0.89, 0.93, 1, 0.92], "dog man bites": [0.92, 0.9, 0.92, 1]}
|
|
||||||
- var counter = 0
|
|
||||||
|
|
||||||
+row("head")
|
|
||||||
+cell
|
|
||||||
for _, label in examples
|
|
||||||
+cell.u-text-center=label
|
|
||||||
|
|
||||||
each cells, label in examples
|
|
||||||
+row(counter ? null : "divider")
|
|
||||||
+cell=label
|
|
||||||
for cell in cells
|
|
||||||
+cell.u-text-center
|
|
||||||
- var result = cell < 0.7 ? ["no", "dissimilar"] : cell != 1 ? ["yes", "similar"] : ["neutral", "identical"]
|
|
||||||
| #[code=cell.toFixed(2)] #[+procon(...result)]
|
|
||||||
- counter++
|
|
|
@ -5,10 +5,6 @@ include ../_includes/_mixins
|
||||||
+section("basics")
|
+section("basics")
|
||||||
include _vectors-similarity/_basics
|
include _vectors-similarity/_basics
|
||||||
|
|
||||||
+section("in-context")
|
|
||||||
+h(2, "in-context") Similarities in context
|
|
||||||
include _vectors-similarity/_in-context
|
|
||||||
|
|
||||||
+section("custom")
|
+section("custom")
|
||||||
+h(2, "custom") Customising word vectors
|
+h(2, "custom") Customising word vectors
|
||||||
include _vectors-similarity/_custom
|
include _vectors-similarity/_custom
|
||||||
|
|
Loading…
Reference in New Issue
Block a user