mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
fdb4b8e456
|
@ -1,7 +1,6 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""
|
||||
A simple example of extracting relations between phrases and entities using
|
||||
"""A simple example of extracting relations between phrases and entities using
|
||||
spaCy's named entity recognizer and the dependency parse. Here, we extract
|
||||
money and currency values (entities labelled as MONEY) and then check the
|
||||
dependency tree to find the noun phrase they are referring to – for example:
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""
|
||||
This example shows how to navigate the parse tree including subtrees attached
|
||||
to a word.
|
||||
"""This example shows how to navigate the parse tree including subtrees
|
||||
attached to a word.
|
||||
|
||||
Based on issue #252:
|
||||
"In the documents and tutorials the main thing I haven't found is
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""Match a large set of multi-word expressions in O(1) time.
|
||||
|
||||
The idea is to associate each word in the vocabulary with a tag, noting whether
|
||||
they begin, end, or are inside at least one pattern. An additional tag is used
|
||||
for single-word patterns. Complete patterns are also stored in a hash set.
|
||||
|
||||
When we process a document, we look up the words in the vocabulary, to
|
||||
associate the words with the tags. We then search for tag-sequences that
|
||||
correspond to valid candidates. Finally, we look up the candidates in the hash
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
"""
|
||||
Example of multi-processing with Joblib. Here, we're exporting
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""Example of multi-processing with Joblib. Here, we're exporting
|
||||
part-of-speech-tagged, true-cased, (very roughly) sentence-separated text, with
|
||||
each "sentence" on a newline, and spaces between tokens. Data is loaded from
|
||||
the IMDB movie reviews dataset and will be loaded automatically via Thinc's
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""
|
||||
Example of training spaCy's named entity recognizer, starting off with an
|
||||
"""Example of training spaCy's named entity recognizer, starting off with an
|
||||
existing model or a blank model.
|
||||
|
||||
For more details, see the documentation:
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""
|
||||
Example of training an additional entity type
|
||||
"""Example of training an additional entity type
|
||||
|
||||
This script shows how to add a new entity type to an existing pre-trained NER
|
||||
model. To keep the example short and simple, only four sentences are provided
|
||||
|
|
|
@ -1,10 +1,7 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""
|
||||
Example of training spaCy dependency parser, starting off with an existing model
|
||||
or a blank model.
|
||||
|
||||
For more details, see the documentation:
|
||||
"""Example of training spaCy dependency parser, starting off with an existing
|
||||
model or a blank model. For more details, see the documentation:
|
||||
* Training: https://alpha.spacy.io/usage/training
|
||||
* Dependency Parse: https://alpha.spacy.io/usage/linguistic-features#dependency-parse
|
||||
|
||||
|
|
|
@ -3,9 +3,8 @@
|
|||
"""
|
||||
A simple example for training a part-of-speech tagger with a custom tag map.
|
||||
To allow us to update the tag map with our custom one, this example starts off
|
||||
with a blank Language class and modifies its defaults.
|
||||
|
||||
For more details, see the documentation:
|
||||
with a blank Language class and modifies its defaults. For more details, see
|
||||
the documentation:
|
||||
* Training: https://alpha.spacy.io/usage/training
|
||||
* POS Tagging: https://alpha.spacy.io/usage/linguistic-features#pos-tagging
|
||||
|
||||
|
|
|
@ -3,9 +3,8 @@
|
|||
"""Train a multi-label convolutional neural network text classifier on the
|
||||
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
|
||||
automatically via Thinc's built-in dataset loader. The model is added to
|
||||
spacy.pipeline, and predictions are available via `doc.cats`.
|
||||
|
||||
For more details, see the documentation:
|
||||
spacy.pipeline, and predictions are available via `doc.cats`. For more details,
|
||||
see the documentation:
|
||||
* Training: https://alpha.spacy.io/usage/training
|
||||
* Text classification: https://alpha.spacy.io/usage/text-classification
|
||||
|
||||
|
|
|
@ -7,14 +7,13 @@ from __future__ import unicode_literals
|
|||
import plac
|
||||
import numpy
|
||||
|
||||
import from spacy.language import Language
|
||||
from spacy.language import Language
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
vectors_loc=("Path to vectors", "positional", None, str))
|
||||
def main(vectors_loc):
|
||||
nlp = Language()
|
||||
|
||||
nlp = Language() # start off with a blank Language class
|
||||
with open(vectors_loc, 'rb') as file_:
|
||||
header = file_.readline()
|
||||
nr_row, nr_dim = header.split()
|
||||
|
@ -24,9 +23,11 @@ def main(vectors_loc):
|
|||
pieces = line.split()
|
||||
word = pieces[0]
|
||||
vector = numpy.asarray([float(v) for v in pieces[1:]], dtype='f')
|
||||
nlp.vocab.set_vector(word, vector)
|
||||
doc = nlp(u'class colspan')
|
||||
print(doc[0].similarity(doc[1]))
|
||||
nlp.vocab.set_vector(word, vector) # add the vectors to the vocab
|
||||
# test the vectors and similarity
|
||||
text = 'class colspan'
|
||||
doc = nlp(text)
|
||||
print(text, doc[0].similarity(doc[1]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -99,7 +99,8 @@ def generate_meta(model_path, existing_meta):
|
|||
nlp = util.load_model_from_path(Path(model_path))
|
||||
meta['pipeline'] = nlp.pipe_names
|
||||
meta['vectors'] = {'width': nlp.vocab.vectors_length,
|
||||
'entries': len(nlp.vocab.vectors)}
|
||||
'vectors': len(nlp.vocab.vectors),
|
||||
'keys': nlp.vocab.vectors.n_keys}
|
||||
prints("Enter the package settings for your model. The following "
|
||||
"information will be read from your model data: pipeline, vectors.",
|
||||
title="Generating meta.json")
|
||||
|
|
|
@ -146,7 +146,8 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
|
|||
meta['speed'] = {'nwords': nwords, 'cpu': cpu_wps,
|
||||
'gpu': gpu_wps}
|
||||
meta['vectors'] = {'width': nlp.vocab.vectors_length,
|
||||
'entries': len(nlp.vocab.vectors)}
|
||||
'vectors': len(nlp.vocab.vectors),
|
||||
'keys': nlp.vocab.vectors.n_keys}
|
||||
meta['lang'] = nlp.lang
|
||||
meta['pipeline'] = pipeline
|
||||
meta['spacy_version'] = '>=%s' % about.__version__
|
||||
|
|
|
@ -155,7 +155,8 @@ class Language(object):
|
|||
self._meta.setdefault('url', '')
|
||||
self._meta.setdefault('license', '')
|
||||
self._meta['vectors'] = {'width': self.vocab.vectors_length,
|
||||
'entries': len(self.vocab.vectors)}
|
||||
'vectors': len(self.vocab.vectors),
|
||||
'keys': self.vocab.vectors.n_keys}
|
||||
self._meta['pipeline'] = self.pipe_names
|
||||
return self._meta
|
||||
|
||||
|
|
|
@ -184,17 +184,18 @@ cdef class Vectors:
|
|||
yield key, self.data[row]
|
||||
|
||||
def find(self, *, key=None, keys=None, row=None, rows=None):
|
||||
'''Lookup one or more keys by row, or vice versa.
|
||||
"""Look up one or more keys by row, or vice versa.
|
||||
|
||||
key (unicode / int): Find the row that the given key points to.
|
||||
Returns int, -1 if missing.
|
||||
keys (sequence): Find rows that the keys point to.
|
||||
keys (iterable): Find rows that the keys point to.
|
||||
Returns ndarray.
|
||||
row (int): Find the first key that point to the row.
|
||||
Returns int.
|
||||
rows (sequence): Find the first keys that points to the rows.
|
||||
rows (iterable): Find the keys that point to the rows.
|
||||
Returns ndarray.
|
||||
'''
|
||||
RETURNS: The requested key, keys, row or rows.
|
||||
"""
|
||||
if sum(arg is None for arg in (key, keys, row, rows)) != 3:
|
||||
raise ValueError("One (and only one) keyword arg must be set.")
|
||||
xp = get_array_module(self.data)
|
||||
|
|
|
@ -5,46 +5,47 @@ include ../_includes/_mixins
|
|||
p
|
||||
| Vectors data is kept in the #[code Vectors.data] attribute, which should
|
||||
| be an instance of #[code numpy.ndarray] (for CPU vectors) or
|
||||
| #[code cupy.ndarray] (for GPU vectors).
|
||||
| #[code cupy.ndarray] (for GPU vectors). Multiple keys can be mapped to
|
||||
| the same vector, and not all of the rows in the table need to be
|
||||
| assigned – so #[code vectors.n_keys] may be greater or smaller than
|
||||
| #[code vectors.shape[0]].
|
||||
|
||||
+h(2, "init") Vectors.__init__
|
||||
+tag method
|
||||
|
||||
p
|
||||
| Create a new vector store. To keep the vector table empty, pass
|
||||
| #[code width=0]. You can also create the vector table and add
|
||||
| vectors one by one, or set the vector values directly on initialisation.
|
||||
| Create a new vector store. You can set the vector values and keys
|
||||
| directly on initialisation, or supply a #[code shape] keyword argument
|
||||
| to create an empty table you can add vectors to later.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.vectors import Vectors
|
||||
from spacy.strings import StringStore
|
||||
|
||||
empty_vectors = Vectors(StringStore())
|
||||
empty_vectors = Vectors(shape=(10000, 300))
|
||||
|
||||
vectors = Vectors([u'cat'], width=300)
|
||||
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
|
||||
|
||||
vector_table = numpy.zeros((3, 300), dtype='f')
|
||||
vectors = Vectors(StringStore(), data=vector_table)
|
||||
data = numpy.zeros((3, 300), dtype='f')
|
||||
keys = [u'cat', u'dog', u'rat']
|
||||
vectors = Vectors(data=data, keys=keys)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code strings]
|
||||
+cell #[code StringStore] or list
|
||||
+cell
|
||||
| List of strings, or a #[+api("stringstore") #[code StringStore]]
|
||||
| that maps strings to hash values, and vice versa.
|
||||
|
||||
+row
|
||||
+cell #[code width]
|
||||
+cell int
|
||||
+cell Number of dimensions.
|
||||
|
||||
+row
|
||||
+cell #[code data]
|
||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||
+cell The vector data.
|
||||
|
||||
+row
|
||||
+cell #[code keys]
|
||||
+cell iterable
|
||||
+cell A sequence of keys aligned with the data.
|
||||
|
||||
+row
|
||||
+cell #[code shape]
|
||||
+cell tuple
|
||||
+cell
|
||||
| Size of the table as #[code (n_entries, n_columns)], the number
|
||||
| of entries and number of columns. Not required if you're
|
||||
| initialising the object with #[code data] and #[code keys].
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code Vectors]
|
||||
|
@ -54,97 +55,92 @@ p
|
|||
+tag method
|
||||
|
||||
p
|
||||
| Get a vector by key. If key is a string, it is hashed to an integer ID
|
||||
| using the #[code Vectors.strings] table. If the integer key is not found
|
||||
| in the table, a #[code KeyError] is raised.
|
||||
| Get a vector by key. If the key is not found in the table, a
|
||||
| #[code KeyError] is raised.
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(StringStore(), 300)
|
||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||||
cat_vector = vectors[u'cat']
|
||||
cat_id = nlp.vocab.strings[u'cat']
|
||||
cat_vector = nlp.vocab.vectors[cat_id]
|
||||
assert cat_vector == nlp.vocab[u'cat'].vector
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code key]
|
||||
+cell unicode / int
|
||||
+cell int
|
||||
+cell The key to get the vector for.
|
||||
|
||||
+row
|
||||
+cell returns
|
||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||
+cell The vector for the key.
|
||||
|
||||
+h(2, "setitem") Vectors.__setitem__
|
||||
+tag method
|
||||
|
||||
p
|
||||
| Set a vector for the given key. If key is a string, it is hashed to an
|
||||
| integer ID using the #[code Vectors.strings] table.
|
||||
| Set a vector for the given key.
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(StringStore(), 300)
|
||||
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
|
||||
cat_id = nlp.vocab.strings[u'cat']
|
||||
vector = numpy.random.uniform(-1, 1, (300,))
|
||||
nlp.vocab.vectors[cat_id] = vector
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code key]
|
||||
+cell unicode / int
|
||||
+cell int
|
||||
+cell The key to set the vector for.
|
||||
|
||||
+row
|
||||
+cell #[code vector]
|
||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||
+cell The vector to set.
|
||||
|
||||
+h(2, "iter") Vectors.__iter__
|
||||
+tag method
|
||||
|
||||
p Yield vectors from the table.
|
||||
p Iterate over the keys in the table.
|
||||
|
||||
+aside-code("Example").
|
||||
vector_table = numpy.zeros((3, 300), dtype='f')
|
||||
vectors = Vectors(StringStore(), vector_table)
|
||||
for vector in vectors:
|
||||
print(vector)
|
||||
for key in nlp.vocab.vectors:
|
||||
print(key, nlp.vocab.strings[key])
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row("foot")
|
||||
+cell yields
|
||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||||
+cell A vector from the table.
|
||||
+cell int
|
||||
+cell A key in the table.
|
||||
|
||||
+h(2, "len") Vectors.__len__
|
||||
+tag method
|
||||
|
||||
p Return the number of vectors that have been assigned.
|
||||
p Return the number of vectors in the table.
|
||||
|
||||
+aside-code("Example").
|
||||
vector_table = numpy.zeros((3, 300), dtype='f')
|
||||
vectors = Vectors(StringStore(), vector_table)
|
||||
vectors = Vectors(shape=(3, 300))
|
||||
assert len(vectors) == 3
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell int
|
||||
+cell The number of vectors in the data.
|
||||
+cell The number of vectors in the table.
|
||||
|
||||
+h(2, "contains") Vectors.__contains__
|
||||
+tag method
|
||||
|
||||
p
|
||||
| Check whether a key has a vector entry in the table. If key is a string,
|
||||
| it is hashed to an integer ID using the #[code Vectors.strings] table.
|
||||
| Check whether a key has been mapped to a vector entry in the table.
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(StringStore(), 300)
|
||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||||
assert u'cat' in vectors
|
||||
cat_id = nlp.vocab.strings[u'cat']
|
||||
nlp.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
|
||||
assert cat_id in vectors
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code key]
|
||||
+cell unicode / int
|
||||
+cell int
|
||||
+cell The key to check.
|
||||
|
||||
+row("foot")
|
||||
|
@ -156,13 +152,20 @@ p
|
|||
+tag method
|
||||
|
||||
p
|
||||
| Add a key to the table, optionally setting a vector value as well. If
|
||||
| key is a string, it is hashed to an integer ID using the
|
||||
| #[code Vectors.strings] table.
|
||||
| Add a key to the table, optionally setting a vector value as well. Keys
|
||||
| can be mapped to an existing vector by setting #[code row], or a new
|
||||
| vector can be added. When adding unicode keys, keep in mind that the
|
||||
| #[code Vectors] class itself has no
|
||||
| #[+api("stringstore") #[code StringStore]], so you have to store the
|
||||
| hash-to-string mapping separately. If you need to manage the strings,
|
||||
| you should use the #[code Vectors] via the
|
||||
| #[+api("vocab") #[code Vocab]] class, e.g. #[code vocab.vectors].
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(StringStore(), 300)
|
||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||||
vector = numpy.random.uniform(-1, 1, (300,))
|
||||
cat_id = nlp.vocab.strings[u'cat']
|
||||
nlp.vocab.vectors.add(cat_id, vector=vector)
|
||||
nlp.vocab.vectors.add(u'dog', row=0)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
|
@ -172,25 +175,66 @@ p
|
|||
|
||||
+row
|
||||
+cell #[code vector]
|
||||
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||||
+cell An optional vector to add.
|
||||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||
+cell An optional vector to add for the key.
|
||||
|
||||
+row
|
||||
+cell #[code row]
|
||||
+cell int
|
||||
+cell An optional row number of a vector to map the key to.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell int
|
||||
+cell The row the vector was added to.
|
||||
|
||||
+h(2, "keys") Vectors.keys
|
||||
+tag method
|
||||
|
||||
p A sequence of the keys in the table.
|
||||
|
||||
+aside-code("Example").
|
||||
for key in nlp.vocab.vectors.keys():
|
||||
print(key, nlp.vocab.strings[key])
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell iterable
|
||||
+cell The keys.
|
||||
|
||||
+h(2, "values") Vectors.values
|
||||
+tag method
|
||||
|
||||
p
|
||||
| Iterate over vectors that have been assigned to at least one key. Note
|
||||
| that some vectors may be unassigned, so the number of vectors returned
|
||||
| may be less than the length of the vectors table.
|
||||
|
||||
+aside-code("Example").
|
||||
for vector in nlp.vocab.vectors.values():
|
||||
print(vector)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row("foot")
|
||||
+cell yields
|
||||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||
+cell A vector in the table.
|
||||
|
||||
+h(2, "items") Vectors.items
|
||||
+tag method
|
||||
|
||||
p Iterate over #[code (string key, vector)] pairs, in order.
|
||||
p Iterate over #[code (key, vector)] pairs, in order.
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(StringStore(), 300)
|
||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||||
for key, vector in vectors.items():
|
||||
print(key, vector)
|
||||
for key, vector in nlp.vocab.vectors.items():
|
||||
print(key, nlp.vocab.strings[key], vector)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row("foot")
|
||||
+cell yields
|
||||
+cell tuple
|
||||
+cell #[code (string key, vector)] pairs, in order.
|
||||
+cell #[code (key, vector)] pairs, in order.
|
||||
|
||||
+h(2, "shape") Vectors.shape
|
||||
+tag property
|
||||
|
@ -200,7 +244,7 @@ p
|
|||
| dimensions in the vector table.
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(StringStore(), 300)
|
||||
vectors = Vectors(shape(1, 300))
|
||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||||
rows, dims = vectors.shape
|
||||
assert rows == 1
|
||||
|
@ -212,6 +256,59 @@ p
|
|||
+cell tuple
|
||||
+cell A #[code (rows, dims)] pair.
|
||||
|
||||
+h(2, "size") Vectors.size
|
||||
+tag property
|
||||
|
||||
p The vector size, i.e. #[code rows * dims].
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(shape=(500, 300))
|
||||
assert vectors.size == 150000
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell int
|
||||
+cell The vector size.
|
||||
|
||||
+h(2, "is_full") Vectors.is_full
|
||||
+tag property
|
||||
|
||||
p
|
||||
| Whether the vectors table is full and has no slots are available for new
|
||||
| keys. If a table is full, it can be resized using
|
||||
| #[+api("vectors#resize") #[code Vectors.resize]].
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(shape=(1, 300))
|
||||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||||
assert vectors.is_full
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell bool
|
||||
+cell Whether the vectors table is full.
|
||||
|
||||
+h(2, "n_keys") Vectors.n_keys
|
||||
+tag property
|
||||
|
||||
p
|
||||
| Get the number of keys in the table. Note that this is the number of
|
||||
| #[em all] keys, not just unique vectors. If several keys are mapped
|
||||
| are mapped to the same vectors, they will be counted individually.
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors(shape=(10, 300))
|
||||
assert len(vectors) == 10
|
||||
assert vectors.n_keys == 0
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell int
|
||||
+cell The number of all keys in the table.
|
||||
|
||||
+h(2, "from_glove") Vectors.from_glove
|
||||
+tag method
|
||||
|
||||
|
@ -223,6 +320,10 @@ p
|
|||
| float32 vectors, #[code vectors.300.d.bin] for 300d float64 (double)
|
||||
| vectors, etc. By default GloVe outputs 64-bit vectors.
|
||||
|
||||
+aside-code("Example").
|
||||
vectors = Vectors()
|
||||
vectors.from_glove('/path/to/glove_vectors')
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code path]
|
||||
|
@ -323,7 +424,7 @@ p Load state from a binary string.
|
|||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code data]
|
||||
+cell #[code numpy.ndarray] / #[code cupy.ndarray]
|
||||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||
+cell
|
||||
| Stored vectors data. #[code numpy] is used for CPU vectors,
|
||||
| #[code cupy] for GPU vectors.
|
||||
|
@ -337,7 +438,7 @@ p Load state from a binary string.
|
|||
|
||||
+row
|
||||
+cell #[code keys]
|
||||
+cell #[code numpy.ndarray]
|
||||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||||
+cell
|
||||
| Array keeping the keys in order, such that
|
||||
| #[code keys[vectors.key2row[key]] == key]
|
||||
|
|
|
@ -47,7 +47,7 @@
|
|||
font: 600 1.1rem/#{1} $font-secondary
|
||||
background: $color-theme
|
||||
color: $color-back
|
||||
padding: 0.15em 0.5em 0.35em
|
||||
padding: 2px 6px 4px
|
||||
border-radius: 1em
|
||||
text-transform: uppercase
|
||||
vertical-align: middle
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
'use strict';
|
||||
|
||||
import { Templater, handleResponse, convertNumber } from './util.js';
|
||||
import { Templater, handleResponse, convertNumber, abbrNumber } from './util.js';
|
||||
|
||||
/**
|
||||
* Chart.js defaults
|
||||
|
@ -25,7 +25,7 @@ export const formats = {
|
|||
license: (license, url) => url ? `<a href="${url}" target="_blank">${license}</a>` : license,
|
||||
sources: sources => (sources instanceof Array) ? sources.join(', ') : sources,
|
||||
pipeline: pipes => (pipes && pipes.length) ? pipes.map(p => `<code>${p}</code>`).join(', ') : '-',
|
||||
vectors: vec => vec ? `${convertNumber(vec.entries)} (${vec.width} dimensions)` : 'n/a',
|
||||
vectors: vec => vec ? `${abbrNumber(vec.keys)} keys, ${abbrNumber(vec.vectors)} unique vectors (${vec.width} dimensions)` : 'n/a',
|
||||
version: version => `<code>v${version}</code>`
|
||||
};
|
||||
|
||||
|
@ -240,7 +240,8 @@ export class ModelComparer {
|
|||
return data;
|
||||
}
|
||||
|
||||
showError() {
|
||||
showError(err) {
|
||||
console.error(err);
|
||||
this.tpl.get('result').style.display = 'none';
|
||||
this.tpl.get('error').style.display = 'block';
|
||||
}
|
||||
|
|
|
@ -46,11 +46,24 @@ export const handleResponse = res => {
|
|||
else return ({ ok: res.ok })
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Convert a number to a string and add thousand separator.
|
||||
* @param {number|string} num - The number to convert.
|
||||
* @param {string} separator – Thousand separator.
|
||||
*/
|
||||
export const convertNumber = (num, separator = ',') =>
|
||||
export const convertNumber = (num = 0, separator = ',') =>
|
||||
num.toString().replace(/\B(?=(\d{3})+(?!\d))/g, separator);
|
||||
|
||||
/**
|
||||
* Abbreviate a number, e.g. 14249930 --> 14.25m.
|
||||
* @param {number|string} num - The number to convert.
|
||||
* @param {number} fixed - Number of decimals.
|
||||
*/
|
||||
export const abbrNumber = (num = 0, fixed = 2) => {
|
||||
const suffixes = ['', 'k', 'm', 'b', 't'];
|
||||
if (num === null || num === 0) return 0;
|
||||
const b = num.toPrecision(2).split('e');
|
||||
const k = (b.length === 1) ? 0 : Math.floor(Math.min(b[1].slice(1), 14) / 3);
|
||||
const c = (k < 1) ? num.toFixed(fixed) : (num / Math.pow(10, k * 3)).toFixed(fixed + 1);
|
||||
return (c < 0 ? c : Math.abs(c)) + suffixes[k];
|
||||
}
|
||||
|
|
|
@ -100,6 +100,7 @@
|
|||
"hu": "Hungarian",
|
||||
"pl": "Polish",
|
||||
"he": "Hebrew",
|
||||
"ga": "Irish",
|
||||
"bn": "Bengali",
|
||||
"hi": "Hindi",
|
||||
"id": "Indonesian",
|
||||
|
@ -114,6 +115,8 @@
|
|||
"de": "Dies ist ein Satz.",
|
||||
"fr": "C'est une phrase.",
|
||||
"es": "Esto es una frase.",
|
||||
"pt": "Esta é uma frase.",
|
||||
"it": "Questa è una frase.",
|
||||
"xx": "This is a sentence about Facebook."
|
||||
}
|
||||
}
|
||||
|
|
|
@ -116,7 +116,6 @@
|
|||
"next": "text-classification",
|
||||
"menu": {
|
||||
"Basics": "basics",
|
||||
"Similarity in Context": "in-context",
|
||||
"Custom Vectors": "custom",
|
||||
"GPU Usage": "gpu"
|
||||
}
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
|
||||
+qs({package: 'source'}) git clone https://github.com/explosion/spaCy
|
||||
+qs({package: 'source'}) cd spaCy
|
||||
+qs({package: 'source'}) export PYTHONPATH=`pwd`
|
||||
+qs({package: 'source'}) pip install -r requirements.txt
|
||||
+qs({package: 'source'}) pip install -e .
|
||||
|
||||
|
|
|
@ -46,7 +46,6 @@ p
|
|||
+item #[strong Chinese]: #[+a("https://github.com/fxsjy/jieba") Jieba]
|
||||
+item #[strong Japanese]: #[+a("https://github.com/mocobeta/janome") Janome]
|
||||
+item #[strong Thai]: #[+a("https://github.com/wannaphongcom/pythainlp") pythainlp]
|
||||
+item #[strong Russian]: #[+a("https://github.com/kmike/pymorphy2") pymorphy2]
|
||||
|
||||
+h(3, "multi-language") Multi-language support
|
||||
+tag-new(2)
|
||||
|
|
|
@ -13,3 +13,127 @@
|
|||
|
||||
include ../_spacy-101/_similarity
|
||||
include ../_spacy-101/_word-vectors
|
||||
|
||||
+h(3, "in-context") Similarities in context
|
||||
|
||||
p
|
||||
| Aside from spaCy's built-in word vectors, which were trained on a lot of
|
||||
| text with a wide vocabulary, the parsing, tagging and NER models also
|
||||
| rely on vector representations of the #[strong meanings of words in context].
|
||||
| As the first component of the
|
||||
| #[+a("/usage/processing-pipelines") processing pipeline], the
|
||||
| tensorizer encodes a document's internal meaning representations as an
|
||||
| array of floats, also called a tensor. This allows spaCy to make a
|
||||
| reasonable guess at a word's meaning, based on its surrounding words.
|
||||
| Even if a word hasn't been seen before, spaCy will know #[em something]
|
||||
| about it. Because spaCy uses a 4-layer convolutional network, the
|
||||
| tensors are sensitive to up to #[strong four words on either side] of a
|
||||
| word.
|
||||
|
||||
p
|
||||
| For example, here are three sentences containing the out-of-vocabulary
|
||||
| word "labrador" in different contexts.
|
||||
|
||||
+code.
|
||||
doc1 = nlp(u"The labrador barked.")
|
||||
doc2 = nlp(u"The labrador swam.")
|
||||
doc3 = nlp(u"the labrador people live in canada.")
|
||||
|
||||
for doc in [doc1, doc2, doc3]:
|
||||
labrador = doc[1]
|
||||
dog = nlp(u"dog")
|
||||
print(labrador.similarity(dog))
|
||||
|
||||
p
|
||||
| Even though the model has never seen the word "labrador", it can make a
|
||||
| fairly accurate prediction of its similarity to "dog" in different
|
||||
| contexts.
|
||||
|
||||
+table(["Context", "labrador.similarity(dog)"])
|
||||
+row
|
||||
+cell The #[strong labrador] barked.
|
||||
+cell #[code 0.56] #[+procon("yes", "similar")]
|
||||
|
||||
+row
|
||||
+cell The #[strong labrador] swam.
|
||||
+cell #[code 0.48] #[+procon("no", "dissimilar")]
|
||||
|
||||
+row
|
||||
+cell the #[strong labrador] people live in canada.
|
||||
+cell #[code 0.39] #[+procon("no", "dissimilar")]
|
||||
|
||||
p
|
||||
| The same also works for whole documents. Here, the variance of the
|
||||
| similarities is lower, as all words and their order are taken into
|
||||
| account. However, the context-specific similarity is often still
|
||||
| reflected pretty accurately.
|
||||
|
||||
+code.
|
||||
doc1 = nlp(u"Paris is the largest city in France.")
|
||||
doc2 = nlp(u"Vilnius is the capital of Lithuania.")
|
||||
doc3 = nlp(u"An emu is a large bird.")
|
||||
|
||||
for doc in [doc1, doc2, doc3]:
|
||||
for other_doc in [doc1, doc2, doc3]:
|
||||
print(doc.similarity(other_doc))
|
||||
|
||||
p
|
||||
| Even though the sentences about Paris and Vilnius consist of different
|
||||
| words and entities, they both describe the same concept and are seen as
|
||||
| more similar than the sentence about emus. In this case, even a misspelled
|
||||
| version of "Vilnius" would still produce very similar results.
|
||||
|
||||
+table
|
||||
- var examples = {"Paris is the largest city in France.": [1, 0.85, 0.65], "Vilnius is the capital of Lithuania.": [0.85, 1, 0.55], "An emu is a large bird.": [0.65, 0.55, 1]}
|
||||
- var counter = 0
|
||||
|
||||
+row
|
||||
+row
|
||||
+cell
|
||||
for _, label in examples
|
||||
+cell=label
|
||||
|
||||
each cells, label in examples
|
||||
+row(counter ? null : "divider")
|
||||
+cell=label
|
||||
for cell in cells
|
||||
+cell.u-text-center
|
||||
- var result = cell < 0.7 ? ["no", "dissimilar"] : cell != 1 ? ["yes", "similar"] : ["neutral", "identical"]
|
||||
| #[code=cell.toFixed(2)] #[+procon(...result)]
|
||||
- counter++
|
||||
|
||||
p
|
||||
| Sentences that consist of the same words in different order will likely
|
||||
| be seen as very similar – but never identical.
|
||||
|
||||
+code.
|
||||
docs = [nlp(u"dog bites man"), nlp(u"man bites dog"),
|
||||
nlp(u"man dog bites"), nlp(u"dog man bites")]
|
||||
|
||||
for doc in docs:
|
||||
for other_doc in docs:
|
||||
print(doc.similarity(other_doc))
|
||||
|
||||
p
|
||||
| Interestingly, "man bites dog" and "man dog bites" are seen as slightly
|
||||
| more similar than "man bites dog" and "dog bites man". This may be a
|
||||
| conincidence – or the result of "man" being interpreted as both sentence's
|
||||
| subject.
|
||||
|
||||
+table
|
||||
- var examples = {"dog bites man": [1, 0.9, 0.89, 0.92], "man bites dog": [0.9, 1, 0.93, 0.9], "man dog bites": [0.89, 0.93, 1, 0.92], "dog man bites": [0.92, 0.9, 0.92, 1]}
|
||||
- var counter = 0
|
||||
|
||||
+row("head")
|
||||
+cell
|
||||
for _, label in examples
|
||||
+cell.u-text-center=label
|
||||
|
||||
each cells, label in examples
|
||||
+row(counter ? null : "divider")
|
||||
+cell=label
|
||||
for cell in cells
|
||||
+cell.u-text-center
|
||||
- var result = cell < 0.7 ? ["no", "dissimilar"] : cell != 1 ? ["yes", "similar"] : ["neutral", "identical"]
|
||||
| #[code=cell.toFixed(2)] #[+procon(...result)]
|
||||
- counter++
|
||||
|
|
|
@ -1,49 +1,137 @@
|
|||
//- 💫 DOCS > USAGE > VECTORS & SIMILARITY > CUSTOM VECTORS
|
||||
|
||||
p
|
||||
| By default, #[+api("token#vector") #[code Token.vector]] returns the
|
||||
| vector for its underlying #[+api("lexeme") #[code Lexeme]], while
|
||||
| #[+api("doc#vector") #[code Doc.vector]] and
|
||||
| #[+api("span#vector") #[code Span.vector]] return an average of the
|
||||
| vectors of their tokens. You can customize these
|
||||
| behaviours by modifying the #[code doc.user_hooks],
|
||||
| #[code doc.user_span_hooks] and #[code doc.user_token_hooks]
|
||||
| dictionaries.
|
||||
| Word vectors let you import knowledge from raw text into your model. The
|
||||
| knowledge is represented as a table of numbers, with one row per term in
|
||||
| your vocabulary. If two terms are used in similar contexts, the algorithm
|
||||
| that learns the vectors should assign them
|
||||
| #[strong rows that are quite similar], while words that are used in
|
||||
| different contexts will have quite different values. This lets you use
|
||||
| the row-values assigned to the words as a kind of dictionary, to tell you
|
||||
| some things about what the words in your text mean.
|
||||
|
||||
+infobox
|
||||
| For more details on #[strong adding hooks] and #[strong overwriting] the
|
||||
| built-in #[code Doc], #[code Span] and #[code Token] methods, see the
|
||||
| usage guide on #[+a("/usage/processing-pipelines#user-hooks") user hooks].
|
||||
p
|
||||
| Word vectors are particularly useful for terms which
|
||||
| #[strong aren't well represented in your labelled training data].
|
||||
| For instance, if you're doing named entity recognition, there will always
|
||||
| be lots of names that you don't have examples of. For instance, imagine
|
||||
| your training data happens to contain some examples of the term
|
||||
| "Microsoft", but it doesn't contain any examples of the term "Symantec".
|
||||
| In your raw text sample, there are plenty of examples of both terms, and
|
||||
| they're used in similar contexts. The word vectors make that fact
|
||||
| available to the entity recognition model. It still won't see examples of
|
||||
| "Symantec" labelled as a company. However, it'll see that "Symantec" has
|
||||
| a word vector that usually corresponds to company terms, so it can
|
||||
| #[strong make the inference].
|
||||
|
||||
p
|
||||
| In order to make best use of the word vectors, you want the word vectors
|
||||
| table to cover a #[strong very large vocabulary]. However, most words are
|
||||
| rare, so most of the rows in a large word vectors table will be accessed
|
||||
| very rarely, or never at all. You can usually cover more than
|
||||
| #[strong 95% of the tokens] in your corpus with just
|
||||
| #[strong a few thousand rows] in the vector table. However, it's those
|
||||
| #[strong 5% of rare terms] where the word vectors are
|
||||
| #[strong most useful]. The problem is that increasing the size of the
|
||||
| vector table produces rapidly diminishing returns in coverage over these
|
||||
| rare terms.
|
||||
|
||||
+h(3, "custom-vectors-coverage") Optimising vector coverage
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| To help you strike a good balance between coverage and memory usage,
|
||||
| spaCy's #[+api("vectors") #[code Vectors]] class lets you map
|
||||
| #[strong multiple keys] to the #[strong same row] of the table. If
|
||||
| you're using the #[+api("cli#vocab") #[code spacy vocab]] command to
|
||||
| create a vocabulary, pruning the vectors will be taken care of
|
||||
| automatically. You can also do it manually in the following steps:
|
||||
|
||||
+list("numbers")
|
||||
+item
|
||||
| Start with a #[strong word vectors model] that covers a huge
|
||||
| vocabulary. For instance, the
|
||||
| #[+a("/models/en#en_vectors_web_lg") #[code en_vectors_web_lg]] model
|
||||
| provides 300-dimensional GloVe vectors for over 1 million terms of
|
||||
| English.
|
||||
|
||||
+item
|
||||
| If your vocabulary has values set for the #[code Lexeme.prob]
|
||||
| attribute, the lexemes will be sorted by descending probability to
|
||||
| determine which vectors to prune. Otherwise, lexemes will be sorted
|
||||
| by their order in the #[code Vocab].
|
||||
|
||||
+item
|
||||
| Call #[+api("vocab#prune_vectors") #[code Vocab.prune_vectors]] with
|
||||
| the number of vectors you want to keep.
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en_vectors_web_lg')
|
||||
n_vectors = 105000 # number of vectors to keep
|
||||
removed_words = nlp.vocab.prune_vectors(n_vectors)
|
||||
|
||||
assert len(nlp.vocab.vectors) <= n_vectors # unique vectors have been pruned
|
||||
assert nlp.vocab.vectors.n_keys > n_vectors # but not the total entries
|
||||
|
||||
p
|
||||
| #[+api("vocab#prune_vectors") #[code Vocab.prune_vectors]] reduces the
|
||||
| current vector table to a given number of unique entries, and returns a
|
||||
| dictionary containing the removed words, mapped to #[code (string, score)]
|
||||
| tuples, where #[code string] is the entry the removed word was mapped
|
||||
| to, and #[code score] the similarity score between the two words.
|
||||
|
||||
+code("Removed words").
|
||||
{
|
||||
'Shore': ('coast', 0.732257),
|
||||
'Precautionary': ('caution', 0.490973),
|
||||
'hopelessness': ('sadness', 0.742366),
|
||||
'Continous': ('continuous', 0.732549),
|
||||
'Disemboweled': ('corpse', 0.499432),
|
||||
'biostatistician': ('scientist', 0.339724),
|
||||
'somewheres': ('somewheres', 0.402736),
|
||||
'observing': ('observe', 0.823096),
|
||||
'Leaving': ('leaving', 1.0)
|
||||
}
|
||||
|
||||
p
|
||||
| In the example above, the vector for "Shore" was removed and remapped
|
||||
| to the vector of "coast", which is deemed about 73% similar. "Leaving"
|
||||
| was remapped to the vector of "leaving", which is identical.
|
||||
|
||||
+h(3, "custom-vectors-add") Adding vectors
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| The new #[+api("vectors") #[code Vectors]] class makes it easy to add
|
||||
| your own vectors to spaCy. Just like the #[+api("vocab") #[code Vocab]],
|
||||
| it is initialised with a #[+api("stringstore") #[code StringStore]] or
|
||||
| a list of strings.
|
||||
| spaCy's new #[+api("vectors") #[code Vectors]] class greatly improves the
|
||||
| way word vectors are stored, accessed and used. The data is stored in
|
||||
| two structures:
|
||||
|
||||
+code("Adding vectors one-by-one").
|
||||
from spacy.strings import StringStore
|
||||
from spacy.vectors import Vectors
|
||||
+list
|
||||
+item
|
||||
| An array, which can be either on CPU or #[+a("#gpu") GPU].
|
||||
|
||||
vector_data = {'dog': numpy.random.uniform(-1, 1, (300,)),
|
||||
'cat': numpy.random.uniform(-1, 1, (300,)),
|
||||
'orange': numpy.random.uniform(-1, 1, (300,))}
|
||||
|
||||
vectors = Vectors(StringStore(), 300)
|
||||
for word, vector in vector_data.items():
|
||||
vectors.add(word, vector)
|
||||
+item
|
||||
| A dictionary mapping string-hashes to rows in the table.
|
||||
|
||||
p
|
||||
| You can also add the vector values directly on initialisation:
|
||||
| Keep in mind that the #[code Vectors] class itself has no
|
||||
| #[+api("stringstore") #[code StringStore]], so you have to store the
|
||||
| hash-to-string mapping separately. If you need to manage the strings,
|
||||
| you should use the #[code Vectors] via the
|
||||
| #[+api("vocab") #[code Vocab]] class, e.g. #[code vocab.vectors]. To
|
||||
| add vectors to the vocabulary, you can use the
|
||||
| #[+api("vocab#set_vector") #[code Vocab.set_vector]] method.
|
||||
|
||||
+code("Adding vectors on initialisation").
|
||||
from spacy.vectors import Vectors
|
||||
+code("Adding vectors").
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
vector_table = numpy.zeros((3, 300), dtype='f')
|
||||
vectors = Vectors([u'dog', u'cat', u'orange'], vector_table)
|
||||
vector_data = {u'dog': numpy.random.uniform(-1, 1, (300,)),
|
||||
u'cat': numpy.random.uniform(-1, 1, (300,)),
|
||||
u'orange': numpy.random.uniform(-1, 1, (300,))}
|
||||
|
||||
vocab = Vocab()
|
||||
for word, vector in vector_data.items():
|
||||
vocab.set_vector(word, vector)
|
||||
|
||||
+h(3, "custom-loading-glove") Loading GloVe vectors
|
||||
+tag-new(2)
|
||||
|
@ -89,3 +177,20 @@ p
|
|||
| #[+api("vocab#set_vector") #[code set_vector]] method.
|
||||
|
||||
+github("spacy", "examples/vectors_fast_text.py")
|
||||
|
||||
+h(3, "custom-similarity") Using custom similarity methods
|
||||
|
||||
p
|
||||
| By default, #[+api("token#vector") #[code Token.vector]] returns the
|
||||
| vector for its underlying #[+api("lexeme") #[code Lexeme]], while
|
||||
| #[+api("doc#vector") #[code Doc.vector]] and
|
||||
| #[+api("span#vector") #[code Span.vector]] return an average of the
|
||||
| vectors of their tokens. You can customise these
|
||||
| behaviours by modifying the #[code doc.user_hooks],
|
||||
| #[code doc.user_span_hooks] and #[code doc.user_token_hooks]
|
||||
| dictionaries.
|
||||
|
||||
+infobox
|
||||
| For more details on #[strong adding hooks] and #[strong overwriting] the
|
||||
| built-in #[code Doc], #[code Span] and #[code Token] methods, see the
|
||||
| usage guide on #[+a("/usage/processing-pipelines#user-hooks") user hooks].
|
||||
|
|
|
@ -1,123 +0,0 @@
|
|||
//- 💫 DOCS > USAGE > VECTORS & SIMILARITY > IN CONTEXT
|
||||
|
||||
p
|
||||
| Aside from spaCy's built-in word vectors, which were trained on a lot of
|
||||
| text with a wide vocabulary, the parsing, tagging and NER models also
|
||||
| rely on vector representations of the #[strong meanings of words in context].
|
||||
| As the first component of the
|
||||
| #[+a("/usage/processing-pipelines") processing pipeline], the
|
||||
| tensorizer encodes a document's internal meaning representations as an
|
||||
| array of floats, also called a tensor. This allows spaCy to make a
|
||||
| reasonable guess at a word's meaning, based on its surrounding words.
|
||||
| Even if a word hasn't been seen before, spaCy will know #[em something]
|
||||
| about it. Because spaCy uses a 4-layer convolutional network, the
|
||||
| tensors are sensitive to up to #[strong four words on either side] of a
|
||||
| word.
|
||||
|
||||
p
|
||||
| For example, here are three sentences containing the out-of-vocabulary
|
||||
| word "labrador" in different contexts.
|
||||
|
||||
+code.
|
||||
doc1 = nlp(u"The labrador barked.")
|
||||
doc2 = nlp(u"The labrador swam.")
|
||||
doc3 = nlp(u"the labrador people live in canada.")
|
||||
|
||||
for doc in [doc1, doc2, doc3]:
|
||||
labrador = doc[1]
|
||||
dog = nlp(u"dog")
|
||||
print(labrador.similarity(dog))
|
||||
|
||||
p
|
||||
| Even though the model has never seen the word "labrador", it can make a
|
||||
| fairly accurate prediction of its similarity to "dog" in different
|
||||
| contexts.
|
||||
|
||||
+table(["Context", "labrador.similarity(dog)"])
|
||||
+row
|
||||
+cell The #[strong labrador] barked.
|
||||
+cell #[code 0.56] #[+procon("yes", "similar")]
|
||||
|
||||
+row
|
||||
+cell The #[strong labrador] swam.
|
||||
+cell #[code 0.48] #[+procon("no", "dissimilar")]
|
||||
|
||||
+row
|
||||
+cell the #[strong labrador] people live in canada.
|
||||
+cell #[code 0.39] #[+procon("no", "dissimilar")]
|
||||
|
||||
p
|
||||
| The same also works for whole documents. Here, the variance of the
|
||||
| similarities is lower, as all words and their order are taken into
|
||||
| account. However, the context-specific similarity is often still
|
||||
| reflected pretty accurately.
|
||||
|
||||
+code.
|
||||
doc1 = nlp(u"Paris is the largest city in France.")
|
||||
doc2 = nlp(u"Vilnius is the capital of Lithuania.")
|
||||
doc3 = nlp(u"An emu is a large bird.")
|
||||
|
||||
for doc in [doc1, doc2, doc3]:
|
||||
for other_doc in [doc1, doc2, doc3]:
|
||||
print(doc.similarity(other_doc))
|
||||
|
||||
p
|
||||
| Even though the sentences about Paris and Vilnius consist of different
|
||||
| words and entities, they both describe the same concept and are seen as
|
||||
| more similar than the sentence about emus. In this case, even a misspelled
|
||||
| version of "Vilnius" would still produce very similar results.
|
||||
|
||||
+table
|
||||
- var examples = {"Paris is the largest city in France.": [1, 0.85, 0.65], "Vilnius is the capital of Lithuania.": [0.85, 1, 0.55], "An emu is a large bird.": [0.65, 0.55, 1]}
|
||||
- var counter = 0
|
||||
|
||||
+row
|
||||
+row
|
||||
+cell
|
||||
for _, label in examples
|
||||
+cell=label
|
||||
|
||||
each cells, label in examples
|
||||
+row(counter ? null : "divider")
|
||||
+cell=label
|
||||
for cell in cells
|
||||
+cell.u-text-center
|
||||
- var result = cell < 0.7 ? ["no", "dissimilar"] : cell != 1 ? ["yes", "similar"] : ["neutral", "identical"]
|
||||
| #[code=cell.toFixed(2)] #[+procon(...result)]
|
||||
- counter++
|
||||
|
||||
p
|
||||
| Sentences that consist of the same words in different order will likely
|
||||
| be seen as very similar – but never identical.
|
||||
|
||||
+code.
|
||||
docs = [nlp(u"dog bites man"), nlp(u"man bites dog"),
|
||||
nlp(u"man dog bites"), nlp(u"dog man bites")]
|
||||
|
||||
for doc in docs:
|
||||
for other_doc in docs:
|
||||
print(doc.similarity(other_doc))
|
||||
|
||||
p
|
||||
| Interestingly, "man bites dog" and "man dog bites" are seen as slightly
|
||||
| more similar than "man bites dog" and "dog bites man". This may be a
|
||||
| conincidence – or the result of "man" being interpreted as both sentence's
|
||||
| subject.
|
||||
|
||||
+table
|
||||
- var examples = {"dog bites man": [1, 0.9, 0.89, 0.92], "man bites dog": [0.9, 1, 0.93, 0.9], "man dog bites": [0.89, 0.93, 1, 0.92], "dog man bites": [0.92, 0.9, 0.92, 1]}
|
||||
- var counter = 0
|
||||
|
||||
+row("head")
|
||||
+cell
|
||||
for _, label in examples
|
||||
+cell.u-text-center=label
|
||||
|
||||
each cells, label in examples
|
||||
+row(counter ? null : "divider")
|
||||
+cell=label
|
||||
for cell in cells
|
||||
+cell.u-text-center
|
||||
- var result = cell < 0.7 ? ["no", "dissimilar"] : cell != 1 ? ["yes", "similar"] : ["neutral", "identical"]
|
||||
| #[code=cell.toFixed(2)] #[+procon(...result)]
|
||||
- counter++
|
|
@ -5,10 +5,6 @@ include ../_includes/_mixins
|
|||
+section("basics")
|
||||
include _vectors-similarity/_basics
|
||||
|
||||
+section("in-context")
|
||||
+h(2, "in-context") Similarities in context
|
||||
include _vectors-similarity/_in-context
|
||||
|
||||
+section("custom")
|
||||
+h(2, "custom") Customising word vectors
|
||||
include _vectors-similarity/_custom
|
||||
|
|
Loading…
Reference in New Issue
Block a user