mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Update processing pipelines usage docs
This commit is contained in:
parent
58dfde7c02
commit
feaf353051
|
@ -11,7 +11,7 @@ p
|
|||
|
||||
p
|
||||
| When you load a model, spaCy first consults the model's
|
||||
| #[+a("/usage/saving-loading#models-generating") meta.json]. The
|
||||
| #[+a("/usage/saving-loading#models-generating") #[code meta.json]]. The
|
||||
| meta typically includes the model details, the ID of a language class,
|
||||
| and an optional list of pipeline components. spaCy then does the
|
||||
| following:
|
||||
|
@ -21,24 +21,26 @@ p
|
|||
"name": "example_model",
|
||||
"lang": "en"
|
||||
"description": "Example model for spaCy",
|
||||
"pipeline": ["tensorizer", "tagger"]
|
||||
"pipeline": ["tagger", "parser"]
|
||||
}
|
||||
|
||||
+list("numbers")
|
||||
+item
|
||||
| Look up #[strong pipeline IDs] in the available
|
||||
| #[strong pipeline factories].
|
||||
+item
|
||||
| Initialise the #[strong pipeline components] by calling their
|
||||
| factories with the #[code Vocab] as an argument. This gives each
|
||||
| factory and component access to the pipeline's shared data, like
|
||||
| strings, morphology and annotation scheme.
|
||||
+item
|
||||
| Load the #[strong language class and data] for the given ID via
|
||||
| #[+api("util.get_lang_class") #[code get_lang_class]].
|
||||
| #[+api("util.get_lang_class") #[code get_lang_class]] and initialise
|
||||
| it. The #[code Language] class contains the shared vocabulary,
|
||||
| tokenization rules and the language-specific annotation scheme.
|
||||
+item
|
||||
| Pass the path to the #[strong model data] to the #[code Language]
|
||||
| class and return it.
|
||||
| Iterate over the #[strong pipeline names] and create each component
|
||||
| using #[+api("language#create_pipe") #[code create_pipe]], which
|
||||
| looks them up in #[code Language.factories].
|
||||
+item
|
||||
| Add each pipeline component to the pipeline in order, using
|
||||
| #[+api("language#add_pipe") #[code add_pipe]].
|
||||
+item
|
||||
| Make the #[strong model data] available to the #[code Language] class
|
||||
| by calling #[+api("language#from_disk") #[code from_disk]] with the
|
||||
| path to the model data ditectory.
|
||||
|
||||
p
|
||||
| So when you call this...
|
||||
|
@ -47,12 +49,12 @@ p
|
|||
nlp = spacy.load('en')
|
||||
|
||||
p
|
||||
| ... the model tells spaCy to use the pipeline
|
||||
| ... the model tells spaCy to use the language #[code "en"] and the pipeline
|
||||
| #[code.u-break ["tensorizer", "tagger", "parser", "ner"]]. spaCy will
|
||||
| then look up each string in its internal factories registry and
|
||||
| initialise the individual components. It'll then load
|
||||
| #[code spacy.lang.en.English], pass it the path to the model's data
|
||||
| directory, and return it for you to use as the #[code nlp] object.
|
||||
| then initialise #[code spacy.lang.en.English], and create each pipeline
|
||||
| component and add it to the processing pipeline. It'll then load in the
|
||||
| model's data from its data ditectory and return the modified
|
||||
| #[code Language] class for you to use as the #[code nlp] object.
|
||||
|
||||
p
|
||||
| Fundamentally, a #[+a("/models") spaCy model] consists of three
|
||||
|
@ -73,9 +75,12 @@ p
|
|||
pipeline = ['tensorizer', 'tagger', 'parser', 'ner']
|
||||
data_path = 'path/to/en_core_web_sm/en_core_web_sm-2.0.0'
|
||||
|
||||
cls = spacy.util.get_lang_class(lang) # 1. get Language instance, e.g. English()
|
||||
nlp = cls(pipeline=pipeline) # 2. initialise it with the pipeline
|
||||
nlp.from_disk(model_data_path) # 3. load in the binary data
|
||||
cls = spacy.util.get_lang_class(lang) # 1. get Language instance, e.g. English()
|
||||
nlp = cls() # 2. initialise it
|
||||
for name in pipeline:
|
||||
component = nlp.create_pipe(name) # 3. create the pipeline components
|
||||
nlp.add_pipe(component) # 4. add the component to the pipeline
|
||||
nlp.from_disk(model_data_path) # 5. load in the binary data
|
||||
|
||||
p
|
||||
| When you call #[code nlp] on a text, spaCy will #[strong tokenize] it and
|
||||
|
@ -87,124 +92,23 @@ p
|
|||
| document, which is then processed by the component next in the pipeline.
|
||||
|
||||
+code("The pipeline under the hood").
|
||||
doc = nlp.make_doc(u'This is a sentence')
|
||||
for proc in nlp.pipeline:
|
||||
doc = proc(doc)
|
||||
|
||||
+h(3, "creating") Creating pipeline components and factories
|
||||
doc = nlp.make_doc(u'This is a sentence') # create a Doc from raw text
|
||||
for name, proc in nlp.pipeline: # iterate over components in order
|
||||
doc = proc(doc) # apply each component
|
||||
|
||||
p
|
||||
| spaCy lets you customise the pipeline with your own components. Components
|
||||
| are functions that receive a #[code Doc] object, modify and return it.
|
||||
| If your component is stateful, you'll want to create a new one for each
|
||||
| pipeline. You can do that by defining and registering a factory which
|
||||
| receives the shared #[code Vocab] object and returns a component.
|
||||
|
||||
+h(4, "creating-component") Creating a component
|
||||
|
||||
p
|
||||
| A component receives a #[code Doc] object and
|
||||
| #[strong performs the actual processing] – for example, using the current
|
||||
| weights to make a prediction and set some annotation on the document. By
|
||||
| adding a component to the pipeline, you'll get access to the #[code Doc]
|
||||
| at any point #[strong during] processing – instead of only being able to
|
||||
| modify it afterwards.
|
||||
|
||||
+aside-code("Example").
|
||||
def my_component(doc):
|
||||
# do something to the doc here
|
||||
return doc
|
||||
|
||||
+table(["Argument", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code doc]
|
||||
+cell #[code Doc]
|
||||
+cell The #[code Doc] object processed by the previous component.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code Doc]
|
||||
+cell The #[code Doc] object processed by this pipeline component.
|
||||
|
||||
p
|
||||
| When creating a new #[code Language] class, you can pass it a list of
|
||||
| pipeline component functions to execute in that order. You can also
|
||||
| add it to an existing pipeline by modifying #[code nlp.pipeline] – just
|
||||
| be careful not to overwrite a pipeline or its components by accident!
|
||||
| The current processing pipeline is available as #[code nlp.pipeline],
|
||||
| which returns a list of #[code (name, component)] tuples, or
|
||||
| #[code nlp.pipe_names], which only returns a list of human-readable
|
||||
| component names.
|
||||
|
||||
+code.
|
||||
# Create a new Language object with a pipeline
|
||||
from spacy.language import Language
|
||||
nlp = Language(pipeline=[my_component])
|
||||
nlp.pipeline
|
||||
# [('tagger', <spacy.pipeline.Tagger>), ('parser', <spacy.pipeline.DependencyParser>), ('ner', <spacy.pipeline.EntityRecognizer>)]
|
||||
nlp.pipe_names
|
||||
# ['tagger', 'parser', 'ner']
|
||||
|
||||
# Modify an existing pipeline
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline.append(my_component)
|
||||
|
||||
+h(4, "creating-factory") Creating a factory
|
||||
|
||||
p
|
||||
| A factory is a #[strong function that returns a pipeline component].
|
||||
| It's called with the #[code Vocab] object, to give it access to the
|
||||
| shared data between components – for example, the strings, morphology,
|
||||
| vectors or annotation scheme. Factories are useful for creating
|
||||
| #[strong stateful components], especially ones which
|
||||
| #[strong depend on shared data].
|
||||
|
||||
+aside-code("Example").
|
||||
def my_factory(vocab):
|
||||
# load some state
|
||||
def my_component(doc):
|
||||
# process the doc
|
||||
return doc
|
||||
return my_component
|
||||
|
||||
+table(["Argument", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code vocab]
|
||||
+cell #[code Vocab]
|
||||
+cell
|
||||
| Shared data between components, including strings, morphology,
|
||||
| vectors etc.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell callable
|
||||
+cell The pipeline component.
|
||||
|
||||
p
|
||||
| By creating a factory, you're essentially telling spaCy how to get the
|
||||
| pipeline component #[strong once the vocab is available]. Factories need to
|
||||
| be registered via #[+api("spacy#set_factory") #[code set_factory()]] and
|
||||
| by assigning them a unique ID. This ID can be added to the pipeline as a
|
||||
| string. When creating a pipeline, you're free to mix strings and
|
||||
| callable components:
|
||||
|
||||
+code.
|
||||
spacy.set_factory('my_factory', my_factory)
|
||||
nlp = Language(pipeline=['my_factory', my_other_component])
|
||||
|
||||
p
|
||||
| If spaCy comes across a string in the pipeline, it will try to resolve it
|
||||
| by looking it up in the available factories. The factory will then be
|
||||
| initialised with the #[code Vocab]. Providing factory names instead of
|
||||
| callables also makes it easy to specify them in the model's
|
||||
| #[+a("/usage/saving-loading#models-generating") meta.json]. If you're
|
||||
| training your own model and want to use one of spaCy's default components,
|
||||
| you won't have to worry about finding and implementing it either – to use
|
||||
| the default tagger, simply add #[code "tagger"] to the pipeline, and
|
||||
| #[strong spaCy will know what to do].
|
||||
|
||||
+infobox("Important note")
|
||||
| Because factories are #[strong resolved on initialisation] of the
|
||||
| #[code Language] class, it's #[strong not possible] to add them to the
|
||||
| pipeline afterwards, e.g. by modifying #[code nlp.pipeline]. This only
|
||||
| works with individual component functions. To use factories, you need to
|
||||
| create a new #[code Language] object, or generate a
|
||||
| #[+a("/usage/training#models-generating") model package] with
|
||||
| a custom pipeline.
|
||||
|
||||
+h(3, "disabling") Disabling pipeline components
|
||||
+h(3, "disabling") Disabling and modifying pipeline components
|
||||
|
||||
p
|
||||
| If you don't need a particular component of the pipeline – for
|
||||
|
@ -217,16 +121,19 @@ p
|
|||
+code.
|
||||
nlp = spacy.load('en', disable['parser', 'tagger'])
|
||||
nlp = English().from_disk('/model', disable=['tensorizer', 'ner'])
|
||||
doc = nlp(u"I don't want parsed", disable=['parser'])
|
||||
|
||||
p
|
||||
| Note that you can't write directly to #[code nlp.pipeline], as this list
|
||||
| holds the #[em actual components], not the IDs. However, if you know the
|
||||
| order of the components, you can still slice the list:
|
||||
| You can also use the #[+api("language#remove_pipe") #[code remove_pipe]]
|
||||
| method to remove pipeline components from an existing pipeline, the
|
||||
| #[+api("language#rename_pipe") #[code rename_pipe]] method to rename them,
|
||||
| or the #[+api("language#replace_pipe") #[code replace_pipe]] method
|
||||
| to replace them with a custom component entirely (more details on this
|
||||
| in the section on #[+a("#custom-components") custom components].
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline = nlp.pipeline[:2] # only use the first two components
|
||||
nlp.remove_pipe('parser')
|
||||
nlp.rename_pipe('ner', 'entityrecognizer')
|
||||
nlp.replace_pipe('tagger', my_custom_tagger)
|
||||
|
||||
+infobox("Important note: disabling pipeline components")
|
||||
.o-block
|
||||
|
@ -234,12 +141,14 @@ p
|
|||
| processing pipeline components, the #[code parser], #[code tagger]
|
||||
| and #[code entity] keyword arguments have been replaced with
|
||||
| #[code disable], which takes a list of pipeline component names.
|
||||
| This lets you disable both default and custom components when loading
|
||||
| This lets you disable pre-defined components when loading
|
||||
| a model, or initialising a Language class via
|
||||
| #[+api("language-from_disk") #[code from_disk]].
|
||||
|
||||
+code-new.
|
||||
nlp = spacy.load('en', disable=['tagger', 'ner'])
|
||||
doc = nlp(u"I don't want parsed", disable=['parser'])
|
||||
nlp = spacy.load('en', disable=['ner'])
|
||||
nlp.remove_pipe('parser')
|
||||
doc = nlp(u"I don't want parsed")
|
||||
+code-old.
|
||||
nlp = spacy.load('en', tagger=False, entity=False)
|
||||
doc = nlp(u"I don't want parsed", parse=False)
|
||||
|
|
Loading…
Reference in New Issue
Block a user