mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Tidy up and auto-format [ci skip]
This commit is contained in:
		
							parent
							
								
									a5633b205f
								
							
						
					
					
						commit
						febb99916d
					
				| 
						 | 
				
			
			@ -5,7 +5,8 @@ from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
 | 
			
		|||
from thinc.api import Model, data_validation
 | 
			
		||||
import typer
 | 
			
		||||
 | 
			
		||||
from ._util import Arg, Opt, debug_cli, show_validation_error, parse_config_overrides, string_to_list
 | 
			
		||||
from ._util import Arg, Opt, debug_cli, show_validation_error
 | 
			
		||||
from ._util import parse_config_overrides, string_to_list
 | 
			
		||||
from .. import util
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -277,7 +277,7 @@ def read_vectors(msg: Printer, vectors_loc: Path, truncate_vectors: int):
 | 
			
		|||
 | 
			
		||||
def ensure_shape(lines):
 | 
			
		||||
    """Ensure that the first line of the data is the vectors shape.
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    If it's not, we read in the data and output the shape as the first result,
 | 
			
		||||
    so that the reader doesn't have to deal with the problem.
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -244,7 +244,8 @@ class Language:
 | 
			
		|||
        self._config["nlp"]["disabled"] = list(self.disabled)
 | 
			
		||||
        self._config["components"] = pipeline
 | 
			
		||||
        if not self._config["training"].get("score_weights"):
 | 
			
		||||
            self._config["training"]["score_weights"] = combine_score_weights(score_weights)
 | 
			
		||||
            combined_score_weights = combine_score_weights(score_weights)
 | 
			
		||||
            self._config["training"]["score_weights"] = combined_score_weights
 | 
			
		||||
        if not srsly.is_json_serializable(self._config):
 | 
			
		||||
            raise ValueError(Errors.E961.format(config=self._config))
 | 
			
		||||
        return self._config
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -9,7 +9,10 @@ from spacy.pipeline.ner import DEFAULT_NER_MODEL
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def _ner_example(ner):
 | 
			
		||||
    doc = Doc(ner.vocab, words=["Joe", "loves", "visiting", "London", "during", "the", "weekend"])
 | 
			
		||||
    doc = Doc(
 | 
			
		||||
        ner.vocab,
 | 
			
		||||
        words=["Joe", "loves", "visiting", "London", "during", "the", "weekend"],
 | 
			
		||||
    )
 | 
			
		||||
    gold = {"entities": [(0, 3, "PERSON"), (19, 25, "LOC")]}
 | 
			
		||||
    return Example.from_dict(doc, gold)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -78,7 +78,7 @@ def patterns(en_vocab):
 | 
			
		|||
            "REL_OP": ">",
 | 
			
		||||
            "RIGHT_ID": "fox",
 | 
			
		||||
            "RIGHT_ATTRS": {"ORTH": "fox"},
 | 
			
		||||
        }
 | 
			
		||||
        },
 | 
			
		||||
    ]
 | 
			
		||||
 | 
			
		||||
    pattern5 = [
 | 
			
		||||
| 
						 | 
				
			
			@ -233,9 +233,7 @@ def test_dependency_matcher_callback(en_vocab, doc):
 | 
			
		|||
    assert matches == matches2
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize(
 | 
			
		||||
    "op,num_matches", [(".", 8), (".*", 20), (";", 8), (";*", 20),]
 | 
			
		||||
)
 | 
			
		||||
@pytest.mark.parametrize("op,num_matches", [(".", 8), (".*", 20), (";", 8), (";*", 20)])
 | 
			
		||||
def test_dependency_matcher_precedence_ops(en_vocab, op, num_matches):
 | 
			
		||||
    # two sentences to test that all matches are within the same sentence
 | 
			
		||||
    doc = get_doc(
 | 
			
		||||
| 
						 | 
				
			
			@ -248,7 +246,7 @@ def test_dependency_matcher_precedence_ops(en_vocab, op, num_matches):
 | 
			
		|||
    for text in ["a", "b", "c", "d", "e"]:
 | 
			
		||||
        pattern = [
 | 
			
		||||
            {"RIGHT_ID": "1", "RIGHT_ATTRS": {"ORTH": text}},
 | 
			
		||||
            {"LEFT_ID": "1", "REL_OP": op, "RIGHT_ID": "2", "RIGHT_ATTRS": {},},
 | 
			
		||||
            {"LEFT_ID": "1", "REL_OP": op, "RIGHT_ID": "2", "RIGHT_ATTRS": {}},
 | 
			
		||||
        ]
 | 
			
		||||
        matcher = DependencyMatcher(en_vocab)
 | 
			
		||||
        matcher.add("A", [pattern])
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -54,7 +54,10 @@ def _parser_example(parser):
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def _ner_example(ner):
 | 
			
		||||
    doc = Doc(ner.vocab, words=["Joe", "loves", "visiting", "London", "during", "the", "weekend"])
 | 
			
		||||
    doc = Doc(
 | 
			
		||||
        ner.vocab,
 | 
			
		||||
        words=["Joe", "loves", "visiting", "London", "during", "the", "weekend"],
 | 
			
		||||
    )
 | 
			
		||||
    gold = {"entities": [(0, 3, "PERSON"), (19, 25, "LOC")]}
 | 
			
		||||
    return Example.from_dict(doc, gold)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -30,9 +30,10 @@ TRAIN_DATA = [
 | 
			
		|||
    ),
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_begin_training_examples():
 | 
			
		||||
    nlp = Language()
 | 
			
		||||
    senter = nlp.add_pipe("senter")
 | 
			
		||||
    nlp.add_pipe("senter")
 | 
			
		||||
    train_examples = []
 | 
			
		||||
    for t in TRAIN_DATA:
 | 
			
		||||
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -89,7 +89,7 @@ def test_no_label():
 | 
			
		|||
 | 
			
		||||
def test_implicit_label():
 | 
			
		||||
    nlp = Language()
 | 
			
		||||
    textcat = nlp.add_pipe("textcat")
 | 
			
		||||
    nlp.add_pipe("textcat")
 | 
			
		||||
    train_examples = []
 | 
			
		||||
    for t in TRAIN_DATA:
 | 
			
		||||
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user